I want to have all my classes some set of behaviour like all classes in .net (ToString, GetHashCode etc.) have.
But I don't want to create a base class which have these type of functions and inherit all the classes from this base class. By going this way I will lost the liberty of inherting my classes from any other class (since .net support inheritance from only one class).
How .net framework create a class without inherting from base object class but has virtual behaivour in all classes?
We don't write like this
class MyClass : System.Object
{
}
but MyClass gets virtual functions of System.Object.
You do not have to explicitly declare that your class inherits from System.Object because the compiler will enforce that your class derive from System.Object automatically if you do not want to do so manually for it could become very tedious.
You can confirm this yourself by declaring a class in your code and then disassembling the assembly output by the compiler. I declared a class class Person { } and disassembled the output. The following IL was produced
.class public auto ansi beforefieldinit Code.Person
extends [mscorlib]System.Object
If you want to define some common functionality amongst your classes without a base class then you might consider writing an extension method on System.Object
public static class ExtensionMethods
{
public static void DoSomething(this object target)
{
}
}
You could be more explicit yet and define an interface that your classes could implement and then define the extension method for said interface. Because there are no limitiations to how many interfaces you can implement this might mitigate your concerns about multiple inheritance.
To build on ByteBlast's post and address harpo's concern, you could use decorator interfaces with extension methods.
public interface IMyDecorator{}
public interface IMySecondDecorator : IMyDecorator {}
public static class ExtensionMethods
{
public static void Print(this IMyDecorator target)
{
}
public static void Print(this IMySecondDecorator target)
{
}
}
Perhaps what you want to have done can be accomplished with PostSharp? Essentially have the tool replace all classes which inherit from System.Object with an inheritance from your custom class?
It's an interesting question, but I think the answer is, you can't. If you're not willing to use a universal base class, then you cannot provide universal behavior for methods inherited from object.
If this really matters to you, then it's worth considering the base class route. Of course, you can't make it apply to framework classes, but those are sealed (or invisible) in many cases anyway.
I have been thinking about this question because I'm working with a few classes that do nothing but provide GetHashCode and Equals overrides for classes with value-type semantics. In several cases, it would be very handy to use an alternate base class, but you simply cannot override those behaviors by any other means (e.g. interfaces/extension methods).
A universal base class is the obvious answer to this problem but will not provide the 'standard' implementation for classes that inherit from types outside of your application's class hierarchy.
I would consider composition in place of inheritance. This is the essence of what has been proposed by #ByteBlast and #PhilipScottGivens.
Why not have a helper class that provides the functionality for you GetHashCode and ToString methods (I am picturing some reflection in both of these so that you can work with the members / properties of the instances of your types) and whatever other common services you require for all objects?
An instance of this (or maybe the helper has static methods that you pass an instance to - much like the extension methods) is passed into each object or created by the instance of your object.
A while back I wanted to create my own data mapper that would be much simpler than your average ORM. In doing so I found the need to have access to the type information of inheriting classes in my base class. My first thought was reflection, but it's too slow (if you use reflection though, check out Fasterflect as it 'almost' eliminates the performance problems of reflection).
So I turned to a solution that I later found out had it's own name: The Curiously Recurring Template Pattern. This mostly solved my problem, but learning how to correctly implement this pattern was a little challenging. The two main questions I had to solve were:
1) How can I let my consuming code work with my generic objects without needing to know the generic parameters the objects were created with?
2) How can I inherit static fields in C#?
The challenging part was actually figuring out the questions. Once I realized what I needed to do, solving these questions was pretty easy. If you find yourself in need of the CRTP, you will likely find yourself needing to answer these questions... they seem to go hand in hand.
Working with generics without knowing the generic parameter types
When using the CRTP it's good to have a non-generic base class (abstract if possible, but that's not too important) that your 'base' generic class inherits from. Then you can make abstract (or virtual) functions on your non-generic base class and allow consuming code to work with your objects without having to know the generic parameters. For example:
abstract class NonGenBase
{
public abstract void Foo();
}
class GenBase<T>: NonGenBase
{
public override void Foo()
{
// Do something
}
}
Now consuming code that has no knowledge of what T is supposed to be can still call the Foo() procedure on your objects by treating them as instances of the base class.
How to solve the static field inheritance problem
When using the CRTP to solve a problem, it's often beneficial to provide access to static fields in inheriting classes. The problem is that C# doesn't allow inheriting classes to have access to those static fields, except through the type name... which often seems to defeat the purpose in this situation. You may not be able to think of a clear example of what I'm talking about and explaining one is beyond the scope of this answer, but the solution is simple so just tuck it away in your knowledgebase and when you find a need for it you'll be glad it's there :)
class GenBase<T>: NonGenBase
{
static object _someResource;
protected object SomeResource { get { return _someResource; } }
}
This 'simulates' inheritance of static fields. Keep in mind, however, that static fields on a generic class are not scoped across all your generic implementations. Each generic implementation has its own instance of the static field. If you want a single static field that is available to all the implementations, then you simply need to add it to your non-generic base class.
How can I inherit static fields in C#?
I know it's been a long time since you asked this, but, note that in the .NET 6 Preview, you can put static abstract members on an interface. (IIRC, this feature won't be in the release for .NET 6, it will be in preview status until .NET 7).
So, you can do something like this:
public interface IBoundedCollection
{
public static abstract int MaximumItemCount { get; }
}
public abstract class BaseCollection
{
public abstract int Count { get; }
public abstract int GetMaximumItemCount();
public abstract BaseCollection CreateUntypedCopy();
}
public abstract class BoundedCollection<TDerived> : BaseCollection
where TDerived : BoundedCollection<TDerived>, IBoundedCollection
{
public override int GetMaximumItemCount() => TDerived.MaximumItemCount;
public abstract TDerived CreateTypedCopy();
public override BaseCollection CreateUntypedCopy()
=> CreateTypedCopy();
}
public class LimitTenCollection : BoundedCollection<LimitTenCollection>, IBoundedCollection
{
public static int MaximumItemCount => 10;
public override int Count { get; }
public override LimitTenCollection CreateTypedCopy() => new LimitTenCollection();
}
Note the following:
You can work with BaseCollection without working with type arguments. For example, you can use Count, GetMaximumItemCount(), and CreateUntypedCopy().
BoundedCollection<TDerived> can provide the implementation for MaximumItemCount since TDerived is constrained to IBoundedCollection
I have a class with a public property, that I want to restrict access to _for_some_modules_.
(The modules that use this class reside in different assemblies, so internal does not help.)
My first thought was to subclass, and make the derived property accessor private or protected, but this is not possible. The derived property has to have the same access rights. (See http://msdn.microsoft.com/en-us/library/75e8y5dd.aspx)
Any suggestions? I assume it is a common task to make a more restricted variant of a class?
Thanks!
You can use the InternalsVisibleToAttribute to make the internal members of the class visible to other assemblies (as many as you like). The documentation page has an example.
I assume it is a common task to make a
more restricted variant of a class?
This is not a common task since it violates the Liskov substitution principle - you can't use the sub class the same way as you would use the base class in regards to the property you restrict access to. You should consider refactoring your class hierarchy.
You could solve the problem through composition - make the class A internal only and write a public wrapper class that has a member of type A and delegates and controls access to the A's properties / methods.
Making more restricted subclasses is actually not common because it would break consumers of the base class that assumed they had access to the public members. In general, your classes should start out restrictive and get less so as they specialize, not vice-versa.
The concept you're looking for is called a "friend" class in other languages, but C# (purposely) doesn't implement them. The InternalsVisibleToAttribte is as close as it gets, but that is applied at the assembly level, so it may not work for you.
Without more information on why you are trying to restrict access this way, it's hard to give any good general-purpose alternatives. The access modifiers like public/private/etc aren't designed to be a security mechanism, since Reflection will get you access to read/write everything regardless. They're more of a hint to the consumers as to what is safe to use -- public members will usually remain stable across new versions, while private (implementation-detail) members are more likely to change.
You can always do something like this:
class MyBaseClass
{
protected string MyRestrictedProperty { get; set; }
}
class MyClass : MyBaseClass
{
public string MyPublicProperty
{
get { return MyRestrictedProperty; }
set { MyRestrictedProperty = value; }
}
}
How can I prevent inheritance of some methods or properties in derived classes?!
public class BaseClass : Collection
{
//Some operations...
//Should not let derived classes inherit 'Add' method.
}
public class DerivedClass : BaseClass
{
public void DoSomething(int Item)
{
this.Add(Item); // Error: No such method should exist...
}
}
The pattern you want is composition ("Has-a"), not inheritance ("Is-a"). BaseClass should contain a collection, not inherit from collection. BaseClass can then selectively choose what methods or properties to expose on its interface. Most of those may just be passthroughs that call the equivalent methods on the internal collection.
Marking things private in the child classes won't work, because anyone with a base type variable (Collection x = new DerivedClass()) will still be able to access the "hidden" members through the base type.
If "Is-a" vs "Has-a" doesn't click for you, think of it in terms of parents vs friends. You can't choose your parents and can't remove them from your DNA, but you can choose who you associate with.
You can't, in this instance inheritance is the wrong tool for the job. Your class needs to have the collection as a private member, then you can expose as much or as little of it as you wish.
Trying to hide a public member of a class in a derived class is generally a bad thing(*). Trying to hide it as a means of ensuring it won't be called is even worse, and generally won't work anyhow.
There isn't any standardized idiomatic means I know of to prevent a parent class' protected member from being accessed in a sub-derived type, but declaring a new public useless member of a clearly-useless kind would be one approach. The simplest such thing would be an empty class. For example, if class Foo declares an empty public class called MemberwiseClone, derivatives of Foo will be unable to call MemberwiseClone--probably a good thing if MemberwiseClone would break the invariants of class Foo.
(*) The only situation where it is appropriate is when a public method of a derived class returns a more specialized type than the corresponding method in the base class (e.g. a CarFactory.Produce() method may return a Car, while the FordExplorerFactory.Produce() method may return a FordExplorer (which derives from car). Someone who calls Produce() on what they think is a CarFactory (but happens to be a FordExplorerFactory) will get a Car (which happens to be a FordExplorer), but someone who calls Produce() on what is known at compile time to be a FordExplorerFactory will get a result that's known at compile time to be a FordExplorer.
Why was C# designed this way?
As I understand it, an interface only describes behaviour, and serves the purpose of describing a contractual obligation for classes implementing the interface that certain behaviour is implemented.
If classes wish to implement that behavour in a shared method, why shouldn't they?
Here is an example of what I have in mind:
// These items will be displayed in a list on the screen.
public interface IListItem {
string ScreenName();
...
}
public class Animal: IListItem {
// All animals will be called "Animal".
public static string ScreenName() {
return "Animal";
}
....
}
public class Person: IListItem {
private string name;
// All persons will be called by their individual names.
public string ScreenName() {
return name;
}
....
}
Assuming you are asking why you can't do this:
public interface IFoo {
void Bar();
}
public class Foo: IFoo {
public static void Bar() {}
}
This doesn't make sense to me, semantically. Methods specified on an interface should be there to specify the contract for interacting with an object. Static methods do not allow you to interact with an object - if you find yourself in the position where your implementation could be made static, you may need to ask yourself if that method really belongs in the interface.
To implement your example, I would give Animal a const property, which would still allow it to be accessed from a static context, and return that value in the implementation.
public class Animal: IListItem {
/* Can be tough to come up with a different, yet meaningful name!
* A different casing convention, like Java has, would help here.
*/
public const string AnimalScreenName = "Animal";
public string ScreenName(){ return AnimalScreenName; }
}
For a more complicated situation, you could always declare another static method and delegate to that. In trying come up with an example, I couldn't think of any reason you would do something non-trivial in both a static and instance context, so I'll spare you a FooBar blob, and take it as an indication that it might not be a good idea.
My (simplified) technical reason is that static methods are not in the vtable, and the call site is chosen at compile time. It's the same reason you can't have override or virtual static members. For more details, you'd need a CS grad or compiler wonk - of which I'm neither.
For the political reason, I'll quote Eric Lippert (who is a compiler wonk, and holds a Bachelor of Mathematics, Computer science and Applied Mathematics from University of Waterloo (source: LinkedIn):
...the core design principle of static methods, the principle that gives them their name...[is]...it can always be determined exactly, at compile time, what method will be called. That is, the method can be resolved solely by static analysis of the code.
Note that Lippert does leave room for a so-called type method:
That is, a method associated with a type (like a static), which does not take a non-nullable “this” argument (unlike an instance or virtual), but one where the method called would depend on the constructed type of T (unlike a static, which must be determinable at compile time).
but is yet to be convinced of its usefulness.
Most answers here seem to miss the whole point. Polymorphism can be used not only between instances, but also between types. This is often needed, when we use generics.
Suppose we have type parameter in generic method and we need to do some operation with it. We dont want to instantinate, because we are unaware of the constructors.
For example:
Repository GetRepository<T>()
{
//need to call T.IsQueryable, but can't!!!
//need to call T.RowCount
//need to call T.DoSomeStaticMath(int param)
}
...
var r = GetRepository<Customer>()
Unfortunately, I can come up only with "ugly" alternatives:
Use reflection
Ugly and beats the idea of interfaces and polymorphism.
Create completely separate factory class
This might greatly increase the complexity of the code. For example, if we are trying to model domain objects, each object would need another repository class.
Instantiate and then call the desired interface method
This can be hard to implement even if we control the source for the classes, used as generic parameters. The reason is that, for example we might need the instances to be only in well-known, "connected to DB" state.
Example:
public class Customer
{
//create new customer
public Customer(Transaction t) { ... }
//open existing customer
public Customer(Transaction t, int id) { ... }
void SomeOtherMethod()
{
//do work...
}
}
in order to use instantination for solving the static interface problem we need to do the following thing:
public class Customer: IDoSomeStaticMath
{
//create new customer
public Customer(Transaction t) { ... }
//open existing customer
public Customer(Transaction t, int id) { ... }
//dummy instance
public Customer() { IsDummy = true; }
int DoSomeStaticMath(int a) { }
void SomeOtherMethod()
{
if(!IsDummy)
{
//do work...
}
}
}
This is obviously ugly and also unnecessary complicates the code for all other methods. Obviously, not an elegant solution either!
I know it's an old question, but it's interesting. The example isn't the best. I think it would be much clearer if you showed a usage case:
string DoSomething<T>() where T:ISomeFunction
{
if (T.someFunction())
...
}
Merely being able to have static methods implement an interface would not achieve what you want; what would be needed would be to have static members as part of an interface. I can certainly imagine many usage cases for that, especially when it comes to being able to create things. Two approaches I could offer which might be helpful:
Create a static generic class whose type parameter will be the type you'd be passing to DoSomething above. Each variation of this class will have one or more static members holding stuff related to that type. This information could supplied either by having each class of interest call a "register information" routine, or by using Reflection to get the information when the class variation's static constructor is run. I believe the latter approach is used by things like Comparer<T>.Default().
For each class T of interest, define a class or struct which implements IGetWhateverClassInfo<T> and satisfies a "new" constraint. The class won't actually contain any fields, but will have a static property which returns a static field with the type information. Pass the type of that class or struct to the generic routine in question, which will be able to create an instance and use it to get information about the other class. If you use a class for this purpose, you should probably define a static generic class as indicated above, to avoid having to construct a new descriptor-object instance each time. If you use a struct, instantiation cost should be nil, but every different struct type would require a different expansion of the DoSomething routine.
None of these approaches is really appealing. On the other hand, I would expect that if the mechanisms existed in CLR to provide this sort of functionality cleanly, .net would allow one to specify parameterized "new" constraints (since knowing if a class has a constructor with a particular signature would seem to be comparable in difficulty to knowing if it has a static method with a particular signature).
Short-sightedness, I'd guess.
When originally designed, interfaces were intended only to be used with instances of class
IMyInterface val = GetObjectImplementingIMyInterface();
val.SomeThingDefinedinInterface();
It was only with the introduction of interfaces as constraints for generics did adding a static method to an interface have a practical use.
(responding to comment:) I believe changing it now would require a change to the CLR, which would lead to incompatibilities with existing assemblies.
To the extent that interfaces represent "contracts", it seems quiet reasonable for static classes to implement interfaces.
The above arguments all seem to miss this point about contracts.
Interfaces specify behavior of an object.
Static methods do not specify a behavior of an object, but behavior that affects an object in some way.
Because the purpose of an interface is to allow polymorphism, being able to pass an instance of any number of defined classes that have all been defined to implement the defined interface... guaranteeing that within your polymorphic call, the code will be able to find the method you are calling. it makes no sense to allow a static method to implement the interface,
How would you call it??
public interface MyInterface { void MyMethod(); }
public class MyClass: MyInterface
{
public static void MyMethod() { //Do Something; }
}
// inside of some other class ...
// How would you call the method on the interface ???
MyClass.MyMethod(); // this calls the method normally
// not through the interface...
// This next fails you can't cast a classname to a different type...
// Only instances can be Cast to a different type...
MyInterface myItf = MyClass as MyInterface;
Actually, it does.
As of Mid-2022, the current version of C# has full support for so-called static abstract members:
interface INumber<T>
{
static abstract T Zero { get; }
}
struct Fraction : INumber<Fraction>
{
public static Fraction Zero { get; } = new Fraction();
public long Numerator;
public ulong Denominator;
....
}
Please note that depending on your version of Visual Studio and your installed .NET SDK, you'll either have to update at least one of them (or maybe both), or that you'll have to enable preview features (see Use preview features & preview language in Visual Studio).
See more:
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/static-virtual-interface-members
https://blog.ndepend.com/c-11-static-abstract-members/
https://khalidabuhakmeh.com/static-abstract-members-in-csharp-10-interfaces#:~:text=Static%20abstract%20members%20allow%20each,like%20any%20other%20interface%20definition.
Regarding static methods used in non-generic contexts I agree that it doesn't make much sense to allow them in interfaces, since you wouldn't be able to call them if you had a reference to the interface anyway. However there is a fundamental hole in the language design created by using interfaces NOT in a polymorphic context, but in a generic one. In this case the interface is not an interface at all but rather a constraint. Because C# has no concept of a constraint outside of an interface it is missing substantial functionality. Case in point:
T SumElements<T>(T initVal, T[] values)
{
foreach (var v in values)
{
initVal += v;
}
}
Here there is no polymorphism, the generic uses the actual type of the object and calls the += operator, but this fails since it can't say for sure that that operator exists. The simple solution is to specify it in the constraint; the simple solution is impossible because operators are static and static methods can't be in an interface and (here is the problem) constraints are represented as interfaces.
What C# needs is a real constraint type, all interfaces would also be constraints, but not all constraints would be interfaces then you could do this:
constraint CHasPlusEquals
{
static CHasPlusEquals operator + (CHasPlusEquals a, CHasPlusEquals b);
}
T SumElements<T>(T initVal, T[] values) where T : CHasPlusEquals
{
foreach (var v in values)
{
initVal += v;
}
}
There has been lots of talk already about making an IArithmetic for all numeric types to implement, but there is concern about efficiency, since a constraint is not a polymorphic construct, making a CArithmetic constraint would solve that problem.
Because interfaces are in inheritance structure, and static methods don't inherit well.
What you seem to want would allow for a static method to be called via both the Type or any instance of that type. This would at very least result in ambiguity which is not a desirable trait.
There would be endless debates about whether it mattered, which is best practice and whether there are performance issues doing it one way or another. By simply not supporting it C# saves us having to worry about it.
Its also likely that a compilier that conformed to this desire would lose some optimisations that may come with a more strict separation between instance and static methods.
You can think of the static methods and non-static methods of a class as being different interfaces. When called, static methods resolve to the singleton static class object, and non-static methods resolve to the instance of the class you deal with. So, if you use static and non-static methods in an interface, you'd effectively be declaring two interfaces when really we want interfaces to be used to access one cohesive thing.
To give an example where I am missing either static implementation of interface methods or what Mark Brackett introduced as the "so-called type method":
When reading from a database storage, we have a generic DataTable class that handles reading from a table of any structure. All table specific information is put in one class per table that also holds data for one row from the DB and which must implement an IDataRow interface. Included in the IDataRow is a description of the structure of the table to read from the database. The DataTable must ask for the datastructure from the IDataRow before reading from the DB. Currently this looks like:
interface IDataRow {
string GetDataSTructre(); // How to read data from the DB
void Read(IDBDataRow); // How to populate this datarow from DB data
}
public class DataTable<T> : List<T> where T : IDataRow {
public string GetDataStructure()
// Desired: Static or Type method:
// return (T.GetDataStructure());
// Required: Instantiate a new class:
return (new T().GetDataStructure());
}
}
The GetDataStructure is only required once for each table to read, the overhead for instantiating one more instance is minimal. However, it would be nice in this case here.
FYI: You could get a similar behavior to what you want by creating extension methods for the interface. The extension method would be a shared, non overridable static behavior. However, unfortunately, this static method would not be part of the contract.
Interfaces are abstract sets of defined available functionality.
Whether or not a method in that interface behaves as static or not is an implementation detail that should be hidden behind the interface. It would be wrong to define an interface method as static because you would be unnecessarily forcing the method to be implemented in a certain way.
If methods were defined as static, the class implementing the interface wouldn't be as encapsulated as it could be. Encapsulation is a good thing to strive for in object oriented design (I won't go into why, you can read that here: http://en.wikipedia.org/wiki/Object-oriented). For this reason, static methods aren't permitted in interfaces.
Static classes should be able to do this so they can be used generically. I had to instead implement a Singleton to achieve the desired results.
I had a bunch of Static Business Layer classes that implemented CRUD methods like "Create", "Read", "Update", "Delete" for each entity type like "User", "Team", ect.. Then I created a base control that had an abstract property for the Business Layer class that implemented the CRUD methods. This allowed me to automate the "Create", "Read", "Update", "Delete" operations from the base class. I had to use a Singleton because of the Static limitation.
Most people seem to forget that in OOP Classes are objects too, and so they have messages, which for some reason c# calls "static method".
The fact that differences exist between instance objects and class objects only shows flaws or shortcomings in the language.
Optimist about c# though...
OK here is an example of needing a 'type method'. I am creating one of a set of classes based on some source XML. So I have a
static public bool IsHandled(XElement xml)
function which is called in turn on each class.
The function should be static as otherwise we waste time creating inappropriate objects.
As #Ian Boyde points out it could be done in a factory class, but this just adds complexity.
It would be nice to add it to the interface to force class implementors to implement it. This would not cause significant overhead - it is only a compile/link time check and does not affect the vtable.
However, it would also be a fairly minor improvement. As the method is static, I as the caller, must call it explicitly and so get an immediate compile error if it is not implemented. Allowing it to be specified on the interface would mean this error comes marginally earlier in the development cycle, but this is trivial compared to other broken-interface issues.
So it is a minor potential feature which on balance is probably best left out.
The fact that a static class is implemented in C# by Microsoft creating a special instance of a class with the static elements is just an oddity of how static functionality is achieved. It is isn't a theoretical point.
An interface SHOULD be a descriptor of the class interface - or how it is interacted with, and that should include interactions that are static. The general definition of interface (from Meriam-Webster): the place or area at which different things meet and communicate with or affect each other. When you omit static components of a class or static classes entirely, we are ignoring large sections of how these bad boys interact.
Here is a very clear example of where being able to use interfaces with static classes would be quite useful:
public interface ICrudModel<T, Tk>
{
Boolean Create(T obj);
T Retrieve(Tk key);
Boolean Update(T obj);
Boolean Delete(T obj);
}
Currently, I write the static classes that contain these methods without any kind of checking to make sure that I haven't forgotten anything. Is like the bad old days of programming before OOP.
C# and the CLR should support static methods in interfaces as Java does. The static modifier is part of a contract definition and does have meaning, specifically that the behavior and return value do not vary base on instance although it may still vary from call to call.
That said, I recommend that when you want to use a static method in an interface and cannot, use an annotation instead. You will get the functionality you are looking for.
Static Methods within an Interface are allowed as of c# 9 (see https://www.dotnetcurry.com/csharp/simpler-code-with-csharp-9).
I think the short answer is "because it is of zero usefulness".
To call an interface method, you need an instance of the type. From instance methods you can call any static methods you want to.
I think the question is getting at the fact that C# needs another keyword, for precisely this sort of situation. You want a method whose return value depends only on the type on which it is called. You can't call it "static" if said type is unknown. But once the type becomes known, it will become static. "Unresolved static" is the idea -- it's not static yet, but once we know the receiving type, it will be. This is a perfectly good concept, which is why programmers keep asking for it. But it didn't quite fit into the way the designers thought about the language.
Since it's not available, I have taken to using non-static methods in the way shown below. Not exactly ideal, but I can't see any approach that makes more sense, at least not for me.
public interface IZeroWrapper<TNumber> {
TNumber Zero {get;}
}
public class DoubleWrapper: IZeroWrapper<double> {
public double Zero { get { return 0; } }
}
As per Object oriented concept Interface implemented by classes and
have contract to access these implemented function(or methods) using
object.
So if you want to access Interface Contract methods you have to create object. It is always must that is not allowed in case of Static methods. Static classes ,method and variables never require objects and load in memory without creating object of that area(or class) or you can say do not require Object Creation.
Conceptually there is no reason why an interface could not define a contract that includes static methods.
For the current C# language implementation, the restriction is due to the allowance of inheritance of a base class and interfaces. If "class SomeBaseClass" implements "interface ISomeInterface" and "class SomeDerivedClass : SomeBaseClass, ISomeInterface" also implements the interface, a static method to implement an interface method would fail compile because a static method cannot have same signature as an instance method (which would be present in base class to implement the interface).
A static class is functionally identical to a singleton and serves the same purpose as a singleton with cleaner syntax. Since a singleton can implement an interface, interface implementations by statics are conceptually valid.
So it simply boils down to the limitation of C# name conflict for instance and static methods of the same name across inheritance. There is no reason why C# could not be "upgraded" to support static method contracts (interfaces).
An interface is an OOPS concept, which means every member of the interface should get used through an object or instance. Hence, an interface can not have static methods.
When a class implements an interface,it is creating instance for the interface members. While a static type doesnt have an instance,there is no point in having static signatures in an interface.