Related
Suppose I have a list of strings [city01, city01002, state02, state03, city04, statebg, countryqw, countrypo]
How do I group them in a dictionary of <string, List<Strings>> like
city - [city01, city04, city01002]
state- [state02, state03, statebg]
country - [countrywq, countrypo]
If not code, can anyone please help with how to approach or proceed?
As shown in other answers you can use the GroupBy method from LINQ to create this grouping based on any condition you want. Before you can group your strings you need to know the conditions for how a string is grouped. It could be that it starts with one of a set of predefined prefixes, grouped by whats before the first digit or any random condition you can describe with code. In my code example the groupBy method calls another method for every string in your list and in that method you can place the code you need to group the strings as you want by returning the key to group the given string under. You can test this example online with dotnetfiddle: https://dotnetfiddle.net/UHNXvZ
using System;
using System.Collections.Generic;
using System.Linq;
public class Program
{
public static void Main()
{
List<string> ungroupedList = new List<string>() {"city01", "city01002", "state02", "state03", "city04", "statebg", "countryqw", "countrypo", "theFirstTown"};
var groupedStrings = ungroupedList.GroupBy(x => groupingCondition(x));
foreach (var a in groupedStrings) {
Console.WriteLine("key: " + a.Key);
foreach (var b in a) {
Console.WriteLine("value: " + b);
}
}
}
public static string groupingCondition(String s) {
if(s.StartsWith("city") || s.EndsWith("Town"))
return "city";
if(s.StartsWith("country"))
return "country";
if(s.StartsWith("state"))
return "state";
return "unknown";
}
}
You can use LINQ:
var input = new List<string>()
{ "city01", "city01002", "state02",
"state03", "city04", "statebg", "countryqw", "countrypo" };
var output = input.GroupBy(c => string.Join("", c.TakeWhile(d => !char.IsDigit(d))
.Take(4))).ToDictionary(c => c.Key, c => c.ToList());
i suppose you have a list of references you are searching in the list:
var list = new List<string>()
{ "city01", "city01002", "state02",
"state03", "city04", "statebg", "countryqw", "countrypo" };
var tofound = new List<string>() { "city", "state", "country" }; //references to found
var result = new Dictionary<string, List<string>>();
foreach (var f in tofound)
{
result.Add(f, list.FindAll(x => x.StartsWith(f)));
}
In the result, you have the dictionary wanted. If no value are founded for a reference key, the value of key is null
Warning: This answer has a combinatorial expansion and will fail if your original string set is large. For 65 words I gave up after running for a couple of hours.
Using some IEnumerable extension methods to find Distinct sets and to find all possible combinations of sets, you can generate a group of prefixes and then group the original strings by these.
public static class IEnumerableExt {
public static bool IsDistinct<T>(this IEnumerable<T> items) {
var hs = new HashSet<T>();
foreach (var item in items)
if (!hs.Add(item))
return false;
return true;
}
public static bool IsEmpty<T>(this IEnumerable<T> items) => !items.Any();
public static IEnumerable<IEnumerable<T>> AllCombinations<T>(this IEnumerable<T> start) {
IEnumerable<IEnumerable<T>> HelperCombinations(IEnumerable<T> items) {
if (items.IsEmpty())
yield return items;
else {
var head = items.First();
var tail = items.Skip(1);
foreach (var sequence in HelperCombinations(tail)) {
yield return sequence; // Without first
yield return sequence.Prepend(head);
}
}
}
return HelperCombinations(start).Skip(1); // don't return the empty set
}
}
var keys = Enumerable.Range(0, src.Count - 1)
.SelectMany(n1 => Enumerable.Range(n1 + 1, src.Count - n1 - 1).Select(n2 => new { n1, n2 }))
.Select(n1n2 => new { s1 = src[n1n2.n1], s2 = src[n1n2.n2], Dist = src[n1n2.n1].TakeWhile((ch, n) => n < src[n1n2.n2].Length && ch == src[n1n2.n2][n]).Count() })
.SelectMany(s1s2d => new[] { new { s = s1s2d.s1, s1s2d.Dist }, new { s = s1s2d.s2, s1s2d.Dist } })
.Where(sd => sd.Dist > 0)
.GroupBy(sd => sd.s.Substring(0, sd.Dist))
.Select(sdg => sdg.Distinct())
.AllCombinations()
.Where(sdgc => sdgc.Sum(sdg => sdg.Count()) == src.Count)
.Where(sdgc => sdgc.SelectMany(sdg => sdg.Select(sd => sd.s)).IsDistinct())
.OrderByDescending(sdgc => sdgc.Sum(sdg => sdg.First().Dist)).First()
.Select(sdg => sdg.First())
.Select(sd => sd.s.Substring(0, sd.Dist))
.ToList();
var groups = src.GroupBy(s => keys.First(k => s.StartsWith(k)));
I have the following relation (for example)
A contains one or more B's
Each B contains one or more C's and D's
I want to flatten everything using SelectMany along with some search conditions and get A,B,C and D's . This is what i have.
context.A.Where(a => (string.IsNullOrEmpty(name) || a.Name.Contains(name)))
.SelectMany(ab =>ab.b.Where(n=>n.bname.Contains(name) || string.IsNullOrEmpty(name)),
(aa, bb) => new { aa, bb }) //gets all a's and b's
.SelectMany(bc => bb.c.Where(w => w.KEYWORD.Contains(Keyword) || string.IsNullOrEmpty(Keyword)),
(bc,words) => new {bc,kwords}) //gets all b's and c's
Is what i am doing right? If so , then how to get B along with all D's adding to the above expression?
Data Selection using Lambda Syntax:
var flatData = context.A.SelectMany(a => a.B.SelectMany(b => b.Select(new {a,b,c = b.C,d = b.D})
Going further, following checks shall be done before applying the Where Clause, as they check the constant input supplied, name and keyword
string.IsNullOrEmpty(name)
string.IsNullOrEmpty(keyword)
Remaining checks would be simple:
if(!string.IsNullOrEmpty(name))
flatData = flatData.Where(data => data.a.Name.Contains(name))
.Where(data => data.b.Name.Contains(name));
if(!string.IsNullOrEmpty(keyword))
flatData = flatData.Where(data => data.c.Keyword.Contains(keyword));
Important points:
flatData above has a cascading filter, first on a.Name, b.Name and c.Keyword
Agreeing with what Ivan suggested you can flatten this 3 levels deep structure like this:
var query = (from a in A
from b in (List<dynamic>)a.b
from c in (List<dynamic>)b.c
from d in (List<dynamic>)b.d
select new { a, b, c, d });
if (!string.IsNullOrEmpty(name))
{
query = query.Where(record => record.b.bname.Contains(name));
}
if (!string.IsNullOrEmpty(keyword))
{
query = query.Where(record => record.c.keyword.Contains(keyword));
}
var result = query.ToList();
You can also add the where clauses in the query at the top but seeing that you are checking if you got any valid input at all I'd put it after
Tested it with this sample data:
List<dynamic> A = new List<dynamic>
{
new { b = new List<dynamic> { new { bname = "a", c = new List<dynamic> { new { keyword = "b" } }, d = new List<dynamic> { 1, 2, 3 } } } },
new { b = new List<dynamic> { new { bname = "a", c = new List<dynamic> { new { keyword = "d" } }, d = new List<dynamic> { 1, 2, 3 } } } }
};
string name = "a";
string keyword = "b";
How can I use LINQ or Lambda instead of nested and multiple foreach statements.
I want to use a better syntax than nested foreach statements to overwrite the initial list with items from the second list.
In the code below:
I want to overwrite initialList with those in secondList that have the same Value. (Remove Red)
Use the items in secondList where Value was the same (Yellow)
New initialList list should include (Green and Yellow)
static void Main(string[] args)
{
int useProd = 2;
int useDomain = 0;
var person1 = new Person() { prodId = 1, Value = "foo", domainId = 0, Name = "Red" };
var person2 = new Person() { prodId = 1, Value = "bar", domainId = 0, Name = "Green" };
var person3 = new Person() { prodId = 1, Value = "foo", domainId = 1, Name = "Yellow" };
var initialList = new List<Person>();
initialList.Add(person1);
initialList.Add(person2);
var secondList = new List<Person>();
secondList.Add(person3);
List<Person> personsToRemove = new List<Person>();
List<Person> personsToUpdate = new List<Person>();
foreach (var pers1 in initialList)
{
foreach (var pers2 in secondList)
{
if (pers1.Value == pers2.Value)
{
personsToRemove.Add(pers1);
personsToUpdate.Add(pers2);
}
}
}
foreach (var remPers in personsToRemove)
{
initialList.Remove(remPers);
}
foreach (var updPers in personsToUpdate)
{
initialList.Add(updPers);
}
foreach (var item in initialList)
{
Console.WriteLine(String.Format("Value: {0}, prodId: {1}, domainId: {2}, Name: {3}", item.Value, item.prodId, item.domainId, item.Name));
}
Console.ReadKey();
}
public class Person
{
public int prodId { get; set; }
public string Value { get; set; }
public int domainId { get; set; }
public string Name { get; set; }
}
Your nested loops are most efficiently represented with a join. In addition, it would be helpful efficiency-wise to not have to do a linear-search on the entire list just to remove an element and then to add a new one in. There is an overload of Enumerable.Select() we can use to embed the item index in the result, so that the element can simply be replaced directly.
Putting it all together, it looks like this:
var join = from p1 in initialList.Select((p, i) => new { Person = p, Index = i })
join p2 in secondList on p1.Person.Value equals p2.Value
select new { Index = p1.Index, Replacement = p2 };
foreach (var item in join.ToList())
{
initialList[item.Index] = item.Replacement;
}
The above code replaces the original code starting with the declarations of the personsToRemove and personsToUpdate lists, and the first three foreach loops (i.e. all but the one that displays the final result).
Notes:
From the initialList, the code synthesizes an anonymous type containing the Person instance and the index of that instance in the list.
The join clause pairs up all of the items from each list where the Value properties are equal.
Important: if there are multiple elements in either list with the same Value property, they are each paired with every other element in the other list having that same Value. I.e. if initialList has two elements having the Value of "foo" and secondList has three such elements, you will wind up with six elements in the resulting join. Your question does not define whether this is possible, nor what you would want to happen if it were, so I've just ignored that possibility here. :)
The join result is projected to a new anonymous type containing the index of the element to be replaced, and the new value.
The query result is materialized by calling ToList(). This is necessary because the join is otherwise deferred and modifying the initialList would invalidate the query.
Of course, in the remaining foreach all that the code then needs to do is assign to the appropriate index position in the list the replacement value determined by the query.
You can use Generics as well. Below is the short code will work for you:
initialList.ForEach(p =>
{
if (secondList.Any(sp => sp.Value == p.Value))
{
initialList.Remove(p);
initialList.Add(secondList.Single(spu => spu.Value == p.Value));
};
});
in linq, is it possible to combine many lists (of the same type), such that two lists,
list 1 = {a,b,c} and list 2 = {x,y,z}
turns into {[1,a] , [1,b] , [1,c] , [2,x] , [2,y] , [2,z] }
where [] represents a pair containing a "list identifier"
The problem is from having decks of arbitrary cards, where each deck is a list in a collection of lists.
I'm trying to create a query such that I can select only cards in a certain deck, or cards similar to 2 or more decks.
This is probably a duplicate question, but I don't know how to search for the question further then I already have.
List<List<int>> lists;
var combined = lists.Select((l, idx) => new { List = l, Idx = idx })
.SelectMany(p => p.List.Select(i => Tuple.Create(p.Idx + 1, i)));
var list1 = new List<string>() {a,b,c};
var list2 = new List<string>() {x,y,z};
var combined = list1.Select(x => new { id = 1, v = x }).Concat(list2.Select(x => new { id = 2, v = x }));
Normally I'd suggest Enumerable.Zip for combining multiple lists, however you seem to actually want to concatenate multiple lists with a list counter.
public IEnumerable<Tuple<int,T>> Combine<T>(params IEnumerable<T>[] lists) {
return lists.Select((x,i) => x.Select(y => Tuple.Create(i+1,y))).SelectMany (l =>l);
}
UPDATE
Completely missed that SelectMany has the index option so the above code can be written as
public IEnumerable<Tuple<int,T>> Combine<T>(params IEnumerable<T>[] lists) {
return lists.SelectMany((x,i) => x.Select(y => Tuple.Create(i+1,y)));
}
Then you can do
var list1 = new List<string> { "a", "b", "c" };
var list2 = new List<string> { "x", "y", "z" };
var combined = Combine(list1,list2);
Combined will be enumerable of tuples, with Item1 being the list index identifier (starting at 1) and Item2 being the value.
This method will handle multiple lists so you could just as easily call it with:
var list3 = new List<string> { "f", "g" };
var combined = Combine(list1,list2,list3);
You can merge the lists like:
var first = new List<string> {"a","b","c"};
var second = new List<string> {"x","y","z"};
var merged = first.Select(item => new { ListIndex = 1, Value = item}).ToList();
merged.AddRange(second.Select(item => new { ListIndex = 2, Value = item});
//or use concat
var merged = first.Select(item => new { ListIndex = 1, Value = item});
.Concat(second.Select(item => new { ListIndex = 2, Value = item});
Alternatively if you have the sources in something like:
List<List<string>> lists = new List<List<string>>
{
new List<string> {"a","b","c"},
new List<string> {"x","y","z"}
};
you can do:
var merged = lists.SelectMany((item, index) =>
item.Select(s => new { ListIndex = index, Value = s}));
Note that this will produce a 0-based list, so if you really need a 1-base list, just do ListIndex = index +1.
Also, if you will use this a lot, I would create it as an specific entity, something like
struct ListIdentValue
{
public int ListIndex {get; private set;}
public string Value {get; private set;}
public ListIdentValue(int listIndex, string value) {...}
}
Try using Concat
new[] {'a','b','c'}
.Select(v=>new Tuple<int,char>(1, v))
.Concat(
new[] {'x','y','z'}.Select(v=>new Tuple<int,char>(2, v))
)
string[] a = { "a", "b", "c" };
string[] b = { "x", "z", "y" };
var t =
(
from ai in a
select new { listNo = 1, Item = ai }
).Union
(
from bi in b
select new { listNo = 2, Item = bi }
);
or
var t =
(
from ai in a
select new object[] { 1, ai }
).Union
(
from bi in b
select new object[] { 2, bi }
);
I've been searching the difference between Select and SelectMany but I haven't been able to find a suitable answer. I need to learn the difference when using LINQ To SQL but all I've found are standard array examples.
Can someone provide a LINQ To SQL example?
SelectMany flattens queries that return lists of lists. For example
public class PhoneNumber
{
public string Number { get; set; }
}
public class Person
{
public IEnumerable<PhoneNumber> PhoneNumbers { get; set; }
public string Name { get; set; }
}
IEnumerable<Person> people = new List<Person>();
// Select gets a list of lists of phone numbers
IEnumerable<IEnumerable<PhoneNumber>> phoneLists = people.Select(p => p.PhoneNumbers);
// SelectMany flattens it to just a list of phone numbers.
IEnumerable<PhoneNumber> phoneNumbers = people.SelectMany(p => p.PhoneNumbers);
// And to include data from the parent in the result:
// pass an expression to the second parameter (resultSelector) in the overload:
var directory = people
.SelectMany(p => p.PhoneNumbers,
(parent, child) => new { parent.Name, child.Number });
Live Demo on .NET Fiddle
Select many is like cross join operation in SQL where it takes the cross product.
For example if we have
Set A={a,b,c}
Set B={x,y}
Select many can be used to get the following set
{ (x,a) , (x,b) , (x,c) , (y,a) , (y,b) , (y,c) }
Note that here we take the all the possible combinations that can be made from the elements of set A and set B.
Here is a LINQ example you can try
List<string> animals = new List<string>() { "cat", "dog", "donkey" };
List<int> number = new List<int>() { 10, 20 };
var mix = number.SelectMany(num => animals, (n, a) => new { n, a });
the mix will have following elements in flat structure like
{(10,cat), (10,dog), (10,donkey), (20,cat), (20,dog), (20,donkey)}
var players = db.SoccerTeams.Where(c => c.Country == "Spain")
.SelectMany(c => c.players);
foreach(var player in players)
{
Console.WriteLine(player.LastName);
}
De Gea
Alba
Costa
Villa
Busquets
...
SelectMany() lets you collapse a multidimensional sequence in a way that would otherwise require a second Select() or loop.
More details at this blog post.
There are several overloads to SelectMany. One of them allows you to keep trace of any relationship between parent and children while traversing the hierarchy.
Example: suppose you have the following structure: League -> Teams -> Player.
You can easily return a flat collection of players. However you may lose any reference to the team the player is part of.
Fortunately there is an overload for such purpose:
var teamsAndTheirLeagues =
from helper in leagues.SelectMany
( l => l.Teams
, ( league, team ) => new { league, team } )
where helper.team.Players.Count > 2
&& helper.league.Teams.Count < 10
select new
{ LeagueID = helper.league.ID
, Team = helper.team
};
The previous example is taken from Dan's IK blog. I strongly recommend you take a look at it.
I understand SelectMany to work like a join shortcut.
So you can:
var orders = customers
.Where(c => c.CustomerName == "Acme")
.SelectMany(c => c.Orders);
The SelectMany() method is used to flatten a sequence in which each of the elements of the sequence is a separate.
I have class user same like this
class User
{
public string UserName { get; set; }
public List<string> Roles { get; set; }
}
main:
var users = new List<User>
{
new User { UserName = "Reza" , Roles = new List<string>{"Superadmin" } },
new User { UserName = "Amin" , Roles = new List<string>{"Guest","Reseption" } },
new User { UserName = "Nima" , Roles = new List<string>{"Nurse","Guest" } },
};
var query = users.SelectMany(user => user.Roles, (user, role) => new { user.UserName, role });
foreach (var obj in query)
{
Console.WriteLine(obj);
}
//output
//{ UserName = Reza, role = Superadmin }
//{ UserName = Amin, role = Guest }
//{ UserName = Amin, role = Reseption }
//{ UserName = Nima, role = Nurse }
//{ UserName = Nima, role = Guest }
You can use operations on any item of sequence
int[][] numbers = {
new[] {1, 2, 3},
new[] {4},
new[] {5, 6 , 6 , 2 , 7, 8},
new[] {12, 14}
};
IEnumerable<int> result = numbers
.SelectMany(array => array.Distinct())
.OrderBy(x => x);
//output
//{ 1, 2 , 2 , 3, 4, 5, 6, 7, 8, 12, 14 }
List<List<int>> numbers = new List<List<int>> {
new List<int> {1, 2, 3},
new List<int> {12},
new List<int> {5, 6, 5, 7},
new List<int> {10, 10, 10, 12}
};
IEnumerable<int> result = numbers
.SelectMany(list => list)
.Distinct()
.OrderBy(x=>x);
//output
// { 1, 2, 3, 5, 6, 7, 10, 12 }
Select is a simple one-to-one projection from source element to a result element. Select-
Many is used when there are multiple from clauses in a query expression: each element in the original sequence is used to generate a new sequence.
The formal description for SelectMany() is:
Projects each element of a sequence to an IEnumerable and flattens
the resulting sequences into one sequence.
SelectMany() flattens the resulting sequences into one sequence, and invokes a result selector function on each element therein.
class PetOwner
{
public string Name { get; set; }
public List<String> Pets { get; set; }
}
public static void SelectManyEx()
{
PetOwner[] petOwners =
{ new PetOwner { Name="Higa, Sidney",
Pets = new List<string>{ "Scruffy", "Sam" } },
new PetOwner { Name="Ashkenazi, Ronen",
Pets = new List<string>{ "Walker", "Sugar" } },
new PetOwner { Name="Price, Vernette",
Pets = new List<string>{ "Scratches", "Diesel" } } };
// Query using SelectMany().
IEnumerable<string> query1 = petOwners.SelectMany(petOwner => petOwner.Pets);
Console.WriteLine("Using SelectMany():");
// Only one foreach loop is required to iterate
// through the results since it is a
// one-dimensional collection.
foreach (string pet in query1)
{
Console.WriteLine(pet);
}
// This code shows how to use Select()
// instead of SelectMany().
IEnumerable<List<String>> query2 =
petOwners.Select(petOwner => petOwner.Pets);
Console.WriteLine("\nUsing Select():");
// Notice that two foreach loops are required to
// iterate through the results
// because the query returns a collection of arrays.
foreach (List<String> petList in query2)
{
foreach (string pet in petList)
{
Console.WriteLine(pet);
}
Console.WriteLine();
}
}
/*
This code produces the following output:
Using SelectMany():
Scruffy
Sam
Walker
Sugar
Scratches
Diesel
Using Select():
Scruffy
Sam
Walker
Sugar
Scratches
Diesel
*/
The main difference is the result of each method while SelectMany() returns a flattern results; the Select() returns a list of list instead of a flattern result set.
Therefor the result of SelectMany is a list like
{Scruffy, Sam , Walker, Sugar, Scratches , Diesel}
which you can iterate each item by just one foreach. But with the result of select you need an extra foreach loop to iterate through the results because the query returns a collection of arrays.
Some SelectMany may not be necessary. Below 2 queries give the same result.
Customers.Where(c=>c.Name=="Tom").SelectMany(c=>c.Orders)
Orders.Where(o=>o.Customer.Name=="Tom")
For 1-to-Many relationship,
if Start from "1", SelectMany is needed, it flattens the many.
if Start from "Many", SelectMany is not needed. (still be able to filter from "1", also this is simpler than below standard join query)
from o in Orders
join c in Customers on o.CustomerID equals c.ID
where c.Name == "Tom"
select o
Just for an alternate view that may help some functional programmers out there:
Select is map
SelectMany is bind (or flatMap for your Scala/Kotlin people)
Without getting too technical - database with many Organizations, each with many Users:-
var orgId = "123456789";
var userList1 = db.Organizations
.Where(a => a.OrganizationId == orgId)
.SelectMany(a => a.Users)
.ToList();
var userList2 = db.Users
.Where(a => a.OrganizationId == orgId)
.ToList();
both return the same ApplicationUser list for the selected Organization.
The first "projects" from Organization to Users, the second queries the Users table directly.
It's more clear when the query return a string (an array of char):
For example if the list 'Fruits' contains 'apple'
'Select' returns the string:
Fruits.Select(s=>s)
[0]: "apple"
'SelectMany' flattens the string:
Fruits.SelectMany(s=>s)
[0]: 97 'a'
[1]: 112 'p'
[2]: 112 'p'
[3]: 108 'l'
[4]: 101 'e'
Consider this example :
var array = new string[2]
{
"I like what I like",
"I like what you like"
};
//query1 returns two elements sth like this:
//fisrt element would be array[5] :[0] = "I" "like" "what" "I" "like"
//second element would be array[5] :[1] = "I" "like" "what" "you" "like"
IEnumerable<string[]> query1 = array.Select(s => s.Split(' ')).Distinct();
//query2 return back flat result sth like this :
// "I" "like" "what" "you"
IEnumerable<string> query2 = array.SelectMany(s => s.Split(' ')).Distinct();
So as you see duplicate values like "I" or "like" have been removed from query2 because "SelectMany" flattens and projects across multiple sequences.
But query1 returns sequence of string arrays. and since there are two different arrays in query1 (first and second element), nothing would be removed.
The SelectMany method knocks down an IEnumerable<IEnumerable<T>> into an IEnumerable<T>, like communism, every element is behaved in the same manner(a stupid guy has same rights of a genious one).
var words = new [] { "a,b,c", "d,e", "f" };
var splitAndCombine = words.SelectMany(x => x.Split(','));
// returns { "a", "b", "c", "d", "e", "f" }
One more example how SelectMany + Select can be used in order to accumulate sub array objects data.
Suppose we have users with they phones:
class Phone {
public string BasePart = "555-xxx-xxx";
}
class User {
public string Name = "Xxxxx";
public List<Phone> Phones;
}
Now we need to select all phones' BaseParts of all users:
var usersArray = new List<User>(); // array of arrays
List<string> allBaseParts = usersArray.SelectMany(ua => ua.Phones).Select(p => p.BasePart).ToList();
Suppose you have an array of countries
var countries = new[] { "France", "Italy" };
If you perform Select on countries, you will get each element of the array as IEnumerable<T>
IEnumerable<string> selectQuery = countries.Select(country => country);
In the above code, the country represents a string that refers to each country in the array. now iterate over selectQuery to get countries:
foreach(var country in selectQuery)
Console.WriteLine(country);
// output
//
// France
// Italy
If you want to print every character of countries you have to use nested foreach
foreach (var country in selectQuery)
{
foreach (var charOfCountry in country)
{
Console.Write(charOfCountry + ", ");
}
}
// output
// F, r, a, n, c, e, I, t, a, l, y,
OK. now try to perform SelectMany on countries. This time SelectMany gets each country as string (as before) and because of string type is a collection of chars, SelectMany tries to divide each country into its constituent parts (chars) and then returns a collection of chars as IEnumerable<T>
IEnumerable<char> selectManyQuery = countries.SelectMany(country => country);
In the above code, the country represents a string that refers to each country in the array as before, but the return value is the chars of each country
Actually SelectMany likes to fetch two levels inside of collections and flatten the second level as IEnumerable<T>
Now iterate over selectManyQuery to get chars of each country:
foreach(var charOfCountry in selectManyQuery)
Console.Write(charOfCountry + ", ");
// output
// F, r, a, n, c, e, I, t, a, l, y,
Here is a code example with an initialized small collection for testing:
class Program
{
static void Main(string[] args)
{
List<Order> orders = new List<Order>
{
new Order
{
OrderID = "orderID1",
OrderLines = new List<OrderLine>
{
new OrderLine
{
ProductSKU = "SKU1",
Quantity = 1
},
new OrderLine
{
ProductSKU = "SKU2",
Quantity = 2
},
new OrderLine
{
ProductSKU = "SKU3",
Quantity = 3
}
}
},
new Order
{
OrderID = "orderID2",
OrderLines = new List<OrderLine>
{
new OrderLine
{
ProductSKU = "SKU4",
Quantity = 4
},
new OrderLine
{
ProductSKU = "SKU5",
Quantity = 5
}
}
}
};
//required result is the list of all SKUs in orders
List<string> allSKUs = new List<string>();
//With Select case 2 foreach loops are required
var flattenedOrdersLinesSelectCase = orders.Select(o => o.OrderLines);
foreach (var flattenedOrderLine in flattenedOrdersLinesSelectCase)
{
foreach (OrderLine orderLine in flattenedOrderLine)
{
allSKUs.Add(orderLine.ProductSKU);
}
}
//With SelectMany case only one foreach loop is required
allSKUs = new List<string>();
var flattenedOrdersLinesSelectManyCase = orders.SelectMany(o => o.OrderLines);
foreach (var flattenedOrderLine in flattenedOrdersLinesSelectManyCase)
{
allSKUs.Add(flattenedOrderLine.ProductSKU);
}
//If the required result is flattened list which has OrderID, ProductSKU and Quantity,
//SelectMany with selector is very helpful to get the required result
//and allows avoiding own For loops what according to my experience do code faster when
// hundreds of thousands of data rows must be operated
List<OrderLineForReport> ordersLinesForReport = (List<OrderLineForReport>)orders.SelectMany(o => o.OrderLines,
(o, ol) => new OrderLineForReport
{
OrderID = o.OrderID,
ProductSKU = ol.ProductSKU,
Quantity = ol.Quantity
}).ToList();
}
}
class Order
{
public string OrderID { get; set; }
public List<OrderLine> OrderLines { get; set; }
}
class OrderLine
{
public string ProductSKU { get; set; }
public int Quantity { get; set; }
}
class OrderLineForReport
{
public string OrderID { get; set; }
public string ProductSKU { get; set; }
public int Quantity { get; set; }
}
A select operator is used to select value from a collection and SelectMany operator is used to selecting values from a collection of collection i.e. nested collection.
It is the best way to understand i think.
var query =
Enumerable
.Range(1, 10)
.SelectMany(ints => Enumerable.Range(1, 10), (a, b) => $"{a} * {b} = {a * b}")
.ToArray();
Console.WriteLine(string.Join(Environment.NewLine, query));
Console.Read();
Multiplication Table example.