Using implicit conversion as a substitute for multiple inheritance in .NET - c#

I have a situation where I would like to have objects of a certain type be able to be used as two different types. If one of the "base" types was an interface this wouldn't be an issue, but in my case it is preferable that they both be concrete types.
I am considering adding copies of the methods and properties of one of the base types to the derived type, and adding an implicit conversion from the derived type to that base type. Then users will be able treat the derived type as the base type by using the duplicated methods directly, by assigning it to a variable of the base type, or by passing it to a method that takes the base type.
It seems like this solution will fit my needs well, but am I missing anything? Is there a situation where this won't work, or where it is likely to add confusion instead of simplicity when using the API?
EDIT: More details about my specific scenario:
This is for a potential future redesign of the way indicators are written in RightEdge, which is an automated trading system development environment. Price data is represented as a series of bars, which have values for the open, low, high, and close prices for a given period (1 minute, 1 day, etc). Indicators perform calculations on series of data. An example of a simple indicator is the moving average indicator, which gives the moving average of the most recent n values of its input, where n is user-specified. The moving average might be applied to the bar close, or it could be applied to the output of another indicator to smooth it out.
Each time a new bar comes in, the indicators compute the new value for their output for that bar.
Most indicators have only one output series, but sometimes it is convenient to have more than one output (see MACD), and I want to support this.
So, indicators need to derive from a "Component" class which has the methods that are called when new data comes in. However, for indicators which have only one output series (and this is most of them), it would be good for them to act as a series themselves. That way, users can use SMA.Current for the current value of an SMA, instead of having to use SMA.Output.Current. Likewise, Indicator2.Input = Indicator1; is preferable to Indicator2.Input = Indicator1.Output;. This may not seem like much of a difference, but a lot of our target customers are not professional .NET developers so I want to make this as easy as possible.
My idea is to have an implicit conversion from the indicator to its output series for indicators that have only one output series.

You don't provide too many details, so here is an attempt to answering from what you provide.
Take a look at the basic differences:
When you have a base type B and a derived type D, an assignment like this:
B my_B_object = my_D_object;
assigns a reference to the same object. On the other hand, when B and D are independent types with an implicit conversion between them, the above assignment would create a copy of my_D_object and store it (or a reference to it if B is a class) on my_B_object.
In summary, with "real" inheritance works by reference (changes to a reference affect the object shared by many references), while custom type conversions generally work by value (that depends on how you implement it, but implementing something close to "by reference" behavior for converters would be nearly insane): each reference will point to its own object.
You say you don't want to use interfaces, but why? Using the combo interface + helper class + extension methods (C# 3.0 and .Net 3.5 or newer required) can get quite close to real multiple inheritance. Look at this:
interface MyType { ... }
static class MyTypeHelper {
public static void MyMethod(this MyType value) {...}
}
Doing that for each "base" type would allow you to provide default implementations for the methods you want to.
These won't behave as virtual methods out-of-the-box; but you may use reflection to achieve that; you would need to do the following from within the implementation on the Helper class:
retrieve a System.Type with value.GetType()
find if that type has a method matching the signature
if you find a matching method, invoke it and return (so the rest of the Helper's method is not run).
Finally, if you found no specific implementation, let the rest of the method run and work as a "base class implementation".
There you go: multiple inheritance in C#, with the only caveat of requiring some ugly code in the base classes that will support this, and some overhead due to reflection; but unless your application is working under heavy pressure this should do the trick.
So, once again, why you don't want to use interfaces? If the only reason is their inability to provide method implementations, the trick above solves it. If you have any other issue with interfaces, I might try to sort them out, but I'd have to know about them first ;)
Hope this helps.
[EDIT: Addition based on the comments]
I've added a bunch of details to the original question. I don't want to use interfaces because I want to prevent users from shooting themselves in the foot by implementing them incorrectly, or accidentally calling a method (ie NewBar) which they need to override if they want to implement an indicator, but which they should never need to call directly.
I've looked at your updated question, but the comment quite summarizes it. Maybe I'm missing something, but interfaces + extensions + reflection can solve everything multiple inheritance could, and fares far better than implicit conversions at the task:
Virtual method behavior (an implementation is provided, inheritors can override): include method on the helper (wrapped in the reflection "virtualization" described above), don't declare on the interface.
Abstract method behavior (no implementation provided, inheritors must implement): declare method on the interface, don't include it on the helper.
Non-virtual method behavior (an implementation is provided, inheritors may hide but can't override): Just implement it as normal on the helper.
Bonus: weird method (an implementation is provided, but inheritors must implement anyway; they may explicitly invoke the base implementation): that's not doable with normal or multiple inheritance, but I'm including it for completeness: that's what you'd get if you provide an implementation on the helper and also declare it on the interface. I'm not sure of how would that work (on the aspect of virtual vs. non-virtual) or what use it'd have, but hey, my solution has already beaten multiple inheritance :P
Note: On the case of the non-virtual method, you'd need to have the interface type as the "declared" type to ensure that the base implementation is used. That's exactly the same as when an inheritor hides a method.
I want to prevent users from shooting themselves in the foot by implementing them incorrectly
Seems that non-virtual (implemented only on the helper) will work best here.
or accidentally calling a method (ie NewBar) which they need to override if they want to implement an indicator
That's where abstract methods (or interfaces, which are a kind of super-abstract thing) shine most. The inheritor must implement the method, or the code won't even compile. On some cases virtual methods may do (if you have a generic base implementation but more specific implementations are reasonable).
but which they should never need to call directly
If a method (or any other member) is exposed to client code but shouldn't be called from client code, there is no programmatic solution to enforce that (actually, there is, bear with me). The right place to address that is on the documentation. Because you are documenting you API, aren't you? ;) Neither conversions nor multiple inheritance could help you here. However, reflection may help:
if(System.Reflection.Assembly.GetCallingAssembly()!=System.Reflection.Assembly.GetExecutingAssembly())
throw new Exception("Don't call me. Don't call me!. DON'T CALL ME!!!");
Of course, you may shorten that if you have a using System.Reflection; statement on your file. And, BTW, feel free to change the Exception's type and message to something more descriptive ;).

I see two issues:
User-defined type conversion operators are generally not very discoverable -- they don't show up in IntelliSense.
With an implicit user-defined type conversion operator, it's often not obvious when the operator is applied.
This doesn't been you shouldn't be defining type conversion operators at all, but you have to keep this in mind when designing your solution.
An easily discoverable, easily recognizable solution would be to define explicit conversion methods:
class Person { }
abstract class Student : Person
{
public abstract decimal Wage { get; }
}
abstract class Musician : Person
{
public abstract decimal Wage { get; }
}
class StudentMusician : Person
{
public decimal MusicianWage { get { return 10; } }
public decimal StudentWage { get { return 8; } }
public Musician AsMusician() { return new MusicianFacade(this); }
public Student AsStudent() { return new StudentFacade(this); }
}
Usage:
void PayMusician(Musician musician) { GiveMoney(musician, musician.Wage); }
void PayStudent(Student student) { GiveMoney(student, student.Wage); }
StudentMusician alice;
PayStudent(alice.AsStudent());

It doesn't sound as if your method would support a cross-cast. True multiple inheritance would.
An example from C++, which has multiple inheritance:
class A {};
class B {};
class C : public A, public B {};
C o;
B* pB = &o;
A* pA = dynamic_cast<A*>(pB); // with true MI, this succeeds

Then users will be able treat the derived type as the base type by using the duplicated methods directly, by assigning it to a variable of the base type, or by passing it to a method that takes the base type.
This will behave differently, however. In the case of inheritance, you're just passing your object. However, by implementing an implicit converter, you'll always be constructing a new object when the conversion takes place. This could be very unexpected, since it will behave quite differently in the two cases.
Personally, I'd make this a method that returns the new type, since it would make the actual implementation obvious to the end user.

Maybe I'm going too far off with this, but your use case sounds suspiciously as if it could heavily benefit from building on Rx (Rx in 15 Minutes).
Rx is a framework for working with objects that produce values. It allows such objects to be composed in a very expressive way and to transform, filter and aggregate such streams of produced values.
You say you have a bar:
class Bar
{
double Open { get; }
double Low { get; }
double High { get; }
double Close { get; }
}
A series is an object that produces bars:
class Series : IObservable<Bar>
{
// ...
}
A moving average indicator is an object that produces the average of the last count bars whenever a new bar is produced:
static class IndicatorExtensions
{
public static IObservable<double> MovingAverage(
this IObservable<Bar> source,
int count)
{
// ...
}
}
The usage would be as follows:
Series series = GetSeries();
series.MovingAverage(20).Subscribe(average =>
{
txtCurrentAverage.Text = average.ToString();
});
An indicator with multiple outputs is similar to GroupBy.

This might be a stupid idea, but: if your design requires multiple inheritance, then why don't you simply use a language with MI? There are several .NET languages which support multiple inheritance. Off the top of my head: Eiffel, Python, Ioke. There's probable more.

Related

Generic "identifier" pattern in C#

CUrrently in the process of finally learning C#. But after using C++ and python this is one thing that keeps striking me while writing C#.
C# doesn't have a similar thing to typedef in C++. (Or at least htat's true according to various posts here an other googling results.
Now the first use to "type alias" I can understand (though from experience disagree with - but that's something I can learn to accept).
However there is a different use I've gotten used to a lot, especially after using python for years:
The "Generic" pattern. Where I actually don't care about the type (and say I only care that it can be compared to each other). Now of course a generic class can "do" this, but quite often that is overkill: especially since classes typically have many of those, and they are of little importance to people who USE the class.
An example, say I have a dictionary, which binds "values" to certain "identifiers":
System.Collections.Generics.Dictionary<string, double>
Would be a logical start. However say in the future, when having a clearer picture of the whole application, I wish to change it up. I notice that for calculations I would actually need decimal values instead of floating point - (or maybe even bignums instead of floating points). I'd have to go over my whole code changing this.
Similar to the identifier: strings are "easy" but maybe in the future I don't really want to use such bloated structures. Rather I use something that "can be converted from strings and is unique enough" in my class
Or, hey, in a different future I might wish to not use the generic dictionary: rather I implement a custom one for this class specific.
All these things would require me to change code at many different places. Potential bug-heavy, and thus a maintainer would choose not to change it due to maintenance problems.
In other languages I learned this was solved either by "don't caring" (python) - or by allowing a typedef. And always using that typedef, also in other classes.
What is the idiomatic way to do this in C#? Is it generally accepted to use long "lists" of generic variables in your class definition?
MyClass<A_KeyType, A_ValueType, B_KeyType, B_ValueType, ContainerType>
Seems awkward since not the user, but the maintainer of the class might often know better which to use?
As a very simplistic (silly) example
public class MyClass {
public MyClass() { }
private Systems.Collections.Generics.Dictionary<string, double> Points = new Systems.Collections.Generics.Dictionary<string, double>()
Public void AddPerson(string studentID, double val) {
Points.Add(studentID, val)
}
}
getters, maybe changers etc would all have to explicitly refer to Systems.Collections.Generics.Dictionary<string, double>, even though maybe in the future a studentID would be a simple numeric value or something else. Also the code "using" this, which "gets" the student ID needs to understand it is a string.
In C++ I would parametrize the student type "under" the my class as:
public class MyClass {
typedef string StudentIDType
...
Then I would use that explicit type MyClass.StudentIDType in all situations.
C# doesn't have a similar thing to typedef in C++.
Typedef in C defines a new type. C# has type aliases:
using Frob = System.Collections.Dictionary<System.String, System.String>;
...
Frob f = new Frob();
But these are per file. The named alias is not a member of any namespace or type.
And C# of course allows you to define new types by wrapping old ones:
struct MyOpaqueIdentifier
{
private int id;
public MyOpaqueIdentifier(int id) { this.id = id; }
... now define equality, conversions, etc ...
}
However say in the future, when having a clearer picture of the whole application, I wish to change it up
This is the premature generality error, also known as YAGNI: You Ain't Gonna Need It. There are infinite ways to design programs to be more general, most of which you will never need. The right way to do it is to think hard about what kinds of generalities you're going to need up front, and design them in from the beginning.
Also, remember that Visual Studio has powerful refactoring tools.
What is the idiomatic way to do this in C#? Is it generally accepted to use long "lists" of generic variables in your class definition?
C# lets you express generality in several ways:
base classes -- I can accept anything derived from this class.
interfaces -- I can accept anything that implements this interface.
generics -- the type is parameterized by n other types
generic covariance and contravariance -- a sequence of turtles may be used where a sequence of animals is expected
generic constraints -- a type argument is constrained to a base type, interface, etc.
delegates -- needed functionality that consists of a single method (example: compare two Ts for equality) can be passed in as a delegate to that function, rather than requiring an interface, base type, etc.
It sounds to me like you are considering abusing generics; one of the other approaches is typically used.
Try something like this:
class Program
{
static void Main(string[] args)
{
var obj = new Class1<int, string>();
obj.Dictionary.Add(1, "hello");
}
}
class Class1<Tkey, Tvalue>
{
public Dictionary<Tkey, Tvalue> Dictionary { get; set; }
}
If you want Python way, then use Dictionary<string, object>
You will sacrifice performance and may run into a lot of runtime issues at the cost of minimizing code changes.
I really don't see any value in this. The maintainer still has to go to all the places where you have used float and replace all variable and inputs. You are kinda missing the point of using a strongly typed compiled language.
Your best bet is to create a generic class that wraps your functionality
class MyClass<T>
{
Dictionary<string, T> innerDict;
}
You seem to have a fundamental misunderstanding of generics in C#. They are not meant to allow for easy refactoring the way your C++ with typedef seems prepared for future maintainers to switch the type out. Such a usage seems wrong and, while I don't code in C++, I assume this is less used as a "generic" and more of an "anonymous class" definition. That is to say, you are actually defining a pseudoclass of type StudentIDType whose only property is a string value that you can access directly via the "alias". There are such a thing as anonymous classes in C# (see closures) but they are defined as the input for some function. Rather, the C# method of handling the above situation is to properly reify the pseudoclass to be an explicitly declared class. Such an implementation would look like this:
public class MyClass {
// DO NOT EVER DO THIS
// classes should not contain public classes this is merely the smallest possible example
public class StudentPoints {
public string StudentId { get; set; }
public double PointsValue { get; set; }
}
private IEnumerable<StudentPoints> StudentPointsList = new List<StudentPoints>();
public void AddPerson(StudentPoints studentPoints) {
this.StudentPointsList.Add(studentPoints);
}
}
However, there is an obvious problem with the above which should illustrate to you why the anonymous class is a bad idea. The first is that you've abandoned Dictionary for a simpler List/IEnumerable. This means you can't access values by key without "searching the list" (that is you no longer have a hash table implementation). The second is that you are still bound to change types when refactoring. Unless you can implicitly convert from one to another of the types you switch out then you will still have to change the constructors you use in your code to create StudentPoints. It is unavoidably true that changing the type of something will require code changes for most if not all references to that object. This is exactly what the refactoring tools in Visual Studio are built to help with. However, there is a pattern that you can use that is C# and would allow you to at least "reduce" the pain of the transition so that you don't have to find every instance in the code base before it will compile again. That pattern looks like this and utilizes overloads + the [Obsolete] parameter to indicate you are moving away from the old type and moving to the new:
public class MyClass {
private Dictionary<int, double> StudentPoints = new Dictionary<int, double>(); //was string, double
[Obsolete] // unfixed code will call this
public void AddPerson(string studentId, double val) {
int studentIdInt;
if (Int32.TryParse(studentId, out studentIdInt) {
this.AddPerson(studentIdInt, val);
return;
}
throw new ArgumentException(nameof(studentId), "string not convertable to int");
}
public void AddPerson(int studentId, double val) {
this.StudentList.Add(studentId, val);
}
}
Now the compiler will warn you instead of erroring when you pass a string instead. Issues here are that you may now get a runtime error for any string that isn't convertable to an int, something that would be a compile time error otherwise. Additionally this pattern (overload+obsolete attribute) could be used even with the first "reified" class as a constructor but my point is that you don't need to reify the class (in fact its unhelpful). Instead you should understand that yes, generics should declare their types as specifically as possible and yes, there are refactoring patterns that exist so that you can compile your code relatively quickly after changing the type for a generic but it comes with the trade of turning compile time errors into runtime errors. Hope that helps.

Why C# compiler use an invalid method's overload?

I have been confused by the following code
class A
{
public void Abc(int q)
{
Console.Write("A");
}
}
class B : A
{
public void Abc(double p)
{
Console.Write("B");
}
}
...
var b = new B();
b.Abc((int)1);
The result of code execution is "B" written to console.
In fact the B class contains two overloads of Abc method, the first for int parameter, the second one for double. Why the compiler use a double version for an integer argument?
Be careful the method abc(double) doesn't shadow or override the method abc(int)
Since the compiler can implicitly convert the int to double, it chooses the B.Abc method. This is explained in this post by Jon Skeet (search for "implicit"):
The target of the method call is an expression of type Child, so the
compiler first looks at the Child class. There's only one method
there, and it's applicable (there's an implicit conversion from int to
double) so that's the one that gets picked. The compiler doesn't
consider the Parent method at all.
The reason for this is to reduce the risk of the brittle base class
problem...
More from Eric Lippert
As the standard says, “methods in a base class are not candidates if any method in a derived class is applicable”.
In other words, the overload resolution algorithm starts by searching
the class for an applicable method. If it finds one then all the other
applicable methods in deeper base classes are removed from the
candidate set for overload resolution. Since Delta.Frob(float) is
applicable, Charlie.Frob(int) is never even considered as a candidate.
Only if no applicable candidates are found in the most derived type do
we start looking at its base class.
Things get a little more interesting if we extend the example in your question with this additional class that descends from A:
class C : A {
public void Abc(byte b) {
Console.Write("C");
}
}
If we execute the following code
int i = 1;
b.Abc((int)1);
b.Abc(i);
c.Abc((int)1);
c.Abc(i);
the results are BBCA. This is because in the case of the B class, the compiler knows it can implicitly cast any int to double. In the case of the C class, the compiler knows it can cast the literal int 1 to a byte (because the value 1 fits in a byte) so C's Abc method gets used. The compiler, however, can't implicitly cast any old int to a byte, so c.Abc(i) can't use C's Abc method. It must use the parent class in that case.
This page on Implicit Numeric Conversions shows a compact table of which numeric types have implicit conversions to other numeric types.
You get the same functionality even when you define B as:
class B : A
{
public void Abc(object p)
{
Console.Write("B");
}
}
Simply, it's because overload resolution is done by looking at methods defined in the current class. If there are any suitable methods in the current class, it stops looking. Only if there are no suitable matches does it look at base classes
You can take a look at the Overload resolution spec for a detailed explanation.
Different languages (such as C++, Java, or C#) have vastly different overload resolution rules. In C#, the overload was correctly chosen as per the language spec. If you wanted the other overload to be chosen, you have a choice. Remember this:
When a derived class intends to declare another overload for an inherited method, so as to treat all available overloads as equal-rights peers, it must also explicitly override all the inherited overloads with a base call as well.
What is the language design benefit of requiring this exercise?
Imagine that you are using a 3rd party library (say, .NET framework) and deriving from one of its classes. At some point you introduce a private method called Abc (a new, unique name, not an overload of anything). Two years later you upgrade the 3rd party library version without noticing that they also added a method, accessible to you and called, regrettably, Abc, except that it has a different parameter type somewhere (so the upgrade doesn't alert you with a compile time error) and it behaves subtly differently or maybe even has a different purpose altogether. Do you really want one half of your private calls to Abc to be silently redirected to the 3rd party Abc? In Java, this may happen. In C# or C++, this isn't going to happen.
The upside of the C# way is that it's somewhat easier, for a redistributed library, to add functionality while rigorously keeping backward compatibility. In two ways actually:
You won't ever mess with your customers' private method calls inside their own code.
You won't ever break your customers by adding a new uniquely named method, although you must still think twice before adding an overload of YOUR own existing method.
The downside of the C# way is that it cuts a hole into the OOP philosophy of overriding methods ever changing only the implementation, but not the API of a class.

Can anybody give a good example of what to use generic classes for?

We recently learned about generic classes in C#, but our teacher failed to mention what they can be used for. I can't really find any good examples and would be extremly happy if somebody help me out :)
Have you made your own generic class, and what did you use it for?
Some code examples would make me, and my classmates, really happy! Pardon the bad english, I am from sweden :)
happy programming!
Sorry- I think I could have written the question a bit better. I am familar with generic collections. I just wondered what your own generic classes can be used for.
and thank you for the MSDN links, I did read them before posting the question, but maybe I missed something? I will have a second look!
Generic Collections
Generics for collections are very useful because they allow compile time type safety. This is useful for a few reasons:
No casting is required when retreiving values. This is not only a performance benefit but also eliminates the risk of there being a casting exception at runtime
When value types are added to a non generic list such as an ArrayList, the value's have to be boxed. This means that they are stored as reference types. It also means that not only does the value get stored in memory, but so does a reference to it, so more memory than necessery is used. This problem is eliminated when using generic lists.
Generic Classes
Generic classes can be useful for reusing common code for different types. Take for example a simple non generic factory class:
public class CatFactory
{
public Cat CreateCat()
{
return new Cat();
}
}
I can use a generic class to provide a factory for (almost) any type:
public class Factory<T> where T : new()
{
public T Create()
{
return new T();
}
}
In this example I have placed a generic type constraint of new() on the type paramter T. This requires the generic type to contain a parameterless contructor which enables me to create an instance without knowing the type.
Just because you said you are Swedish, I thought I'd give an example integrating IKEA furniture. Your kit couches are an infestation in north america, so I thought I'd give something back :) Imagine a class which represents a particular kit for building chairs and tables. To remain authentic, I'll even use nonsense swedish linguistic homonyms:
// interface for included tools to build your furniture
public interface IToolKit {
string[] GetTools();
}
// interface for included parts for your furniture
public interface IParts {
string[] GetParts();
}
// represents a generic base class for IKEA furniture kit
public abstract class IkeaKit<TContents> where TContents : IToolKit, IParts, new() {
public abstract string Title {
get;
}
public abstract string Colour {
get;
}
public void GetInventory() {
// generic constraint new() lets me do this
var contents = new TContents();
foreach (string tool in contents.GetTools()) {
Console.WriteLine("Tool: {0}", tool);
}
foreach (string part in contents.GetParts()) {
Console.WriteLine("Part: {0}", part);
}
}
}
// describes a chair
public class Chair : IToolKit, IParts {
public string[] GetTools() {
return new string[] { "Screwdriver", "Allen Key" };
}
public string[] GetParts() {
return new string[] {
"leg", "leg", "leg", "seat", "back", "bag of screws" };
}
}
// describes a chair kit call "Fnood" which is cyan in colour.
public class Fnood : IkeaKit<Chair> {
public override string Title {
get { return "Fnood"; }
}
public override string Colour {
get { return "Cyan"; }
}
}
public class Snoolma : IkeaKit<Chair> {
public override string Title {
get { return "Snoolma "; }
}
public override string Colour {
get { return "Orange"; }
}
}
Ok, so now we've got all the bits we need to figure out how to build some cheap furniture:
var fnood = new Fnood();
fnood.GetInventory(); // print out tools and components for a fnood chair!
(Yes, the lack of instructions and the three legs in the chair kit is deliberate.)
Hope this helps in a cheeky way.
If one has a List object (non-generic), one can store into it anything that can be cast into Object, but there's no way of knowing at compile time what type of things one will get out of it. By contrast, if one has a generic List<Animal>, the only things one can store into it are Animal or derivatives thereof, and the compiler can know that the only things that will be pulled out of it will be Animal. The compiler can thus allow things to be pulled out of the List and stored directly into fields of type Animal without any need for run-time type checking.
Additionally, if the generic type parameter of a generic class happens to be a value type, use of generic types can eliminate the need for casting to and from Object, a process called "Boxing" which converts value-type entities into reference-type objects; boxing is somewhat slow, and can sometimes alter the semantics of value-type objects, and is thus best avoided when possible.
Note that even though an object of type SomeDerivedClass may be substitutable for TheBaseClass, in general, a GenericSomething<SomeDerivedClass> is not substitutable for a GenericSomething<TheBaseClass>. The problem is that if one could substitute e.g. a List<Giraffe> for a List<Zebra>, one could pass a List<Zebra> to a routine that was expecting to take a List<Giraffe> and store an Elephant in it. There are a couple of cases where substitutability is permitted, though:
Arrays of a derived type may be passed to routines expecting arrays of base type, provided that those routines don't try to store into those arrays any items that are not of the proper derived type.
Interfaces may be declared to have "out" type parameters, if the only thing those interfaces will do is return ("output") values of that type. A Giraffe-supplier may be substituted for an Animal-supplier, because all it's going to do is supply Giraffes, which are in turn substitutable for animals. Such interfaces are "covariant" with respect to those parameters.
In addition, it's possible to declare interfaces to declare "in" type parameters, if the only thing the interfaces do is accept parameters of that type by value. An Animal-eater may be substituted a Giraffe-eater, because--being capable of eating all Animals, it is consequently capable of eating all Giraffes. Such interfaces are "contravariant" with respect to those parameters.
The most common example is for collections such as List, Dictionary, etc. All those standard classes are implemented using generics.
Another use is to write more general utility classes or methods for operations such as sorting and comparisons.
Here is a Microsoft article that can be of help: http://msdn.microsoft.com/en-us/library/b5bx6xee%28v=vs.80%29.aspx
The largest benefit that I've seen is the compile-time safety of generics, as #Charlie mentioned. I've also used a generic class to implement a DataReader for bulk inserts into a database.
Well, you have a lot of samples inside the framework. Imagine that you need to implement a list of intergers, and later a list of strings... and later a list of you customer class... etc. It would be very painfull.
But, if you implements a generic list the problem is solved in less time, in less code and you only have to test one class.
Maybe one day you will need to implement your own queue, with rules about the priority of every element. Then, it would be a good idea to make this queue generic if it is possible.
This is a very easy sample, but as you improve your coding skills, you will see how usefull can be to have (for example) a generic repository (It's a design patters).
Not everyday programmers make generic classes, but trust me, you will be happy to count with such tool when you need it.
real world example for generics.
Think u have a cage where there are many different birds(parrot,pegion,sparrow,crow,duck) in it(non generic).
Now you are assigned a work to move the bird to seperate cages(specifically built for single bird) from the cage specified above.
(problem with the non generic list)
It is a tedious task to catch the specific bird from the old cage and to shift it to the cage made for it.(Which Type of bird to which cage --Type casting in c#)
generic list
Now think you have a seperate cage for seperate bird and you want to shift to other cages made for it. This will be a easy task and it wont take time for you to do it(No type casting required-- I mean mapping the birds with cages).
My friend is not a programmer and I would like to explain what is generics? I would explain him generics as below. Thus this is a real-world scenario of using generics.
"There is this manufacturer in the next street. He can manufacture any automobile. But at one instance he can manufacture only one type of automobile. Last week, he manufactured a CAR for me, This week he manufactured a TRUCK for my uncle. Like I said this manufacturing unit is so generic that it can manufacture what the customer specifies. But note that when you go to approach this manufacturer, you must go with a type of automobile you need. Otherwise approaching him is simply not possible."
Have a look at this article by Microsoft. You have a nice and clear explanation of what to use them for and when to use them. http://msdn.microsoft.com/en-us/library/ms172192.aspx
The various generic collections are the best example of generics usage but if you want an example you might generate yourself you could take a look at my anwer to this old question:
uses of delegates in c or other languages
Not sure if it's a particularly great example of generics usage but it's something I find myself doing on occasion.
Are you talking about a base class (or perhaps an abstract class)? As a class that you would build other classes (subclasses) off of?
If that's the case, then you'd create a base class to include methods and properties that will be common to the classes that inherit it. For example, a car class would include wheels, engine, doors, etc. Then maybe you'd maybe create a sportsCar subclass that inherits the car class and adds properties such as spoiler, turboCharger, etc.
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
enter link description here
It's hard to understand what you mean by "generic class" without some context.

Understanding Interfaces

I am still having trouble understanding what interfaces are good for. I read a few tutorials and I still don't know what they really are for other then "they make your classes keep promises" and "they help with multiple inheritance".
Thats about it. I still don't know when I would even use an interface in a real work example or even when to identify when to use it.
From my limited knowledge of interfaces they can help because if something implements it then you can just pass the interface in allowing to pass in like different classes without worrying about it not being the right parameter.
But I never know what the real point of this since they usually stop short at this point from showing what the code would do after it passes the interface and if they sort of do it it seems like they don't do anything useful that I could look at and go "wow they would help in a real world example".
So what I guess I am saying is I am trying to find a real world example where I can see interfaces in action.
I also don't understand that you can do like a reference to an object like this:
ICalculator myInterface = new JustSomeClass();
So now if I would go myInterface dot and intellisense would pull up I would only see the interface methods and not the other methods in JustSomeClass. So I don't see a point to this yet.
Also I started to do unit testing where they seem to love to use interfaces but I still don't understand why.
Like for instance this example:
public AuthenticationController(IFormsAuthentication formsAuth)
{
FormsAuth = formsAuth ?? new FormsAuthenticationWrapper();
}
public class FormsAuthenticationWrapper : IFormsAuthentication
{
public void SetAuthCookie(string userName, bool createPersistentCookie)
{
FormsAuthentication.SetAuthCookie(userName, createPersistentCookie);
}
public void SignOut()
{
FormsAuthentication.SignOut();
}
}
public IFormsAuthentication FormsAuth
{
get;
set;
}
Like why bother making this interface? Why not just make FormsAuthenticationWrapper with the methods in it and call it a day? Why First make an interface then have the Wrapper implement the interface and then finally write the methods?
Then I don't get what the statement is really saying.
Like I now know that the statement is saying this
FormsAuth = formsAuth ?? new FormsAuthenticationWrapper();
if formsAuth is null then make a new FormsAuthenticationWrapper and then assign it to the property that is an Interface.
I guess it goes back to the whole point of why the reference thing. Especially in this case since all the methods are exactly the same. The Wrapper does not have any new methods that the interface does not have and I am not sure but when you do this the methods are filled right(ie they have a body) they don't get converted to stubs because that would really seem pointless to me(it it would be converted back to an interface).
Then in the testing file they have:
var formsAuthenticationMock = new Mock<AuthenticationController.IFormsAuthentication>();
So they just pass in the FormsAuthentication what I am guessing makes all the fake stubs. I am guessing the wrapper class is used when the program is actually running since it has real methods that do something(like sign a person out).
But looking at new Mock(from moq) it accepts a class or an interface. Why not just again made the wrapper class put those methods in and then in the new Mock call that?
Would that not just make the stubs for you?
Ok, I had a hard time understanding too at first, so don't worry about it.
Think about this, if you have a class, that lets say is a video game character.
public class Character
{
}
Now say I want to have the Character have a weapon. I could use an interface to determin the methods required by a weapon:
interface IWeapon
{
public Use();
}
So lets give the Character a weapon:
public class Character
{
IWeapon weapon;
public void GiveWeapon(IWeapon weapon)
{
this.weapon = weapon;
}
public void UseWeapon()
{
weapon.Use();
}
}
Now we can create weapons that use the IWeapon interface and we can give them to any character class and that class can use the item.
public class Gun : IWeapon
{
public void Use()
{
Console.Writeline("Weapon Fired");
}
}
Then you can stick it together:
Character bob = new character();
Gun pistol = new Gun();
bob.GiveWeapon(pistol);
bob.UseWeapon();
Now this is a general example, but it gives a lot of power. You can read about this more if you look up the Strategy Pattern.
Interfaces define contracts.
In the example you provide, the ?? operator just provides a default value if you pass null to the constructor and doesn't really have anything to do with interfaces.
What is more relevant is that you might use an actual FormsAuthenticationWrapper object, but you can also implement your own IFormsAuthentication type that has nothing to do with the wrapper class at all. The interface tells you what methods and properties you need to implement to fulfill the contract, and allows the compiler to verify that your object really does honor that contract (to some extent - it's simple to honor a contract in name, but not in spirit), and so you don't have to use the pre-built FormsAuthenticationWrapper if you don't want to. You can build a different class that works completely differently but still honors the required contract.
In this respect interfaces are much like normal inheritance, with one important difference. In C# a class can only inherit from one type but can implement many interfaces. So interfaces allow you to fulfill multiple contracts in one class. An object can be an IFormsAuthentication object and also be something else, like IEnumerable.
Interfaces are even more useful when you look at it from the other direction: they allow you to treat many different types as if they were all the same. A good example of this is with the various collections classes. Take this code sample:
void OutputValues(string[] values)
{
foreach (string value in values)
{
Console.Writeline(value);
}
}
This accepts an array and outputs it to the console. Now apply this simple change to use an interface:
void OutputValues(IEnumerable<string> values)
{
foreach (string value in values)
{
Console.Writeline(value);
}
}
This code still takes an array and outputs it to the console. But it also takes a List<string> or anything else you care to give it that implements IEnumerable<string>. So we've taken an interface and used it to make a simple block of code much more powerful.
Another good example is the ASP.Net membership provider. You tell ASP.Net that you honor the membership contract by implementing the required interfaces. Now you can easily customize the built-in ASP.Net authentication to use any source, and all thanks to interfaces. The data providers in the System.Data namespace work in a similar fashion.
One final note: when I see an interface with a "default" wrapper implementation like that, I consider it a bit of an anit-pattern, or at least a code smell. It indicates to me that maybe the interface is too complicated, and you either need to split it apart or consider using some combination of composition + events + delegates rather than derivation to accomplish the same thing.
Perhaps the best way to get a good understanding of interfaces is to use an example from the .NET framework.
Consider the following function:
void printValues(IEnumerable sequence)
{
foreach (var value in sequence)
Console.WriteLine(value);
}
Now I could have written this function to accept a List<T>, object[], or any other type of concrete sequence. But since I have written this function to accept a parameter of type IEnumerable that means that I can pass any concrete type into this function that implements the IEnumerable interface.
The reason this is desirable is that by using the interface type your function is more flexible than it would otherwise be. Also you are increasing the utility of this function as many different callers will be able to make use of it without requiring modification.
By using an interface type you are able to declare the type of your parameter as a contract of what you need from whatever concrete type is passed in. In my example I don't care what type you pass me, I just care that I can iterate it.
All of the answers here have been helpful and I doubt I can add anything new to the mix but in reading the answers here, two of the concepts mentioned in two different answers really meshed well in my head so I will compose my understanding here in the hopes that it might help you.
A class has methods and properties and each of the methods and properties of a class has a signature and a body
public int Add(int x, int y)
{
return x + y;
}
The signature of the Add method is everything before the first curly brace character
public int Add(int x, int y)
The purpose of the method signature is to assign a name to a method and also to describe it's protection level (public, protected, internal, private and / or virtual) which defines where a method can be accessed from in code
The signature also defines the type of the value returned by the method, the Add method above returns an int, and the arguments a method expects to have passed to it by callers
Methods are generally considered to be something an object can do, the example above implies that the class the method is defined in works with numbers
The method body describes precisly (in code) how it is that an object performs the action described by the method name. In the example above the add method works by applying the addition operator to it's parameters and returing the result.
One of the primary differences between an interface and a class in terms of language syntax is that an interface can only define the signature of a methd, never the method body.
Put another way, an interface can describe in a the actions (methods) of a class, but it must never describe how an action is to be performed.
Now that you hopefully have a better understanding of what an interface is, we can move on to the second and third parts of your question when, and why would we use an interface in a real program.
One of the main times interfaces are used in a program is when one wants to perform an action, without wanting to know, or be tied to the specifics of how those actions are performed.
That is a very abstract concept to grapsp so perhaps an example might help to firm things up in your mind
Imagine you are the author of a very popular web browser that millions of people use every day and you have thousands of feature requests from people, some big, some little, some good and some like "bring back <maquee> and <blink> support".
Because you only have a relitivly small number of developers, and an even smaller number of hours in the day, you can't possibly implement every requested feature yourself, but you still want to satisfy your customers
So you decide to allow users to develop their own plugins, so they can <blink 'till the cows come home.
To implement this you might come up with a plugin class that looks like:
public class Plugin
{
public void Run (PluginHost browser)
{
//do stuff here....
}
}
But how could you reasonably implement that method? You can't possibly know precisly how every poossible future plugin is going to work
One possible way around this is to define Plugin as an interface and have the browser refer to each plugin using that, like this:
public interface IPlugin
{
void Run(PluginHost browser);
}
public class PluginHost
{
public void RunPlugins (IPlugin[] plugins)
{
foreach plugin in plugins
{
plugin.Run(this);
}
}
}
Note that as discussed earlier the IPlugin interface describes the Run method but does not specify how Run does it's job because this is specific to each plugin, we don't want the plugin host concerned with the specifics of each individual plugin.
To demonstrate the "can-be-a" aspect of the relationship between a class and an interface I will write a plugin for the plugin host below that implements the <blink> tag.
public class BlinkPlugin: IPlugin
{
private void MakeTextBlink(string text)
{
//code to make text blink.
}
public void Run(PluginHost browser)
{
MakeTextBlink(browser.CurrentPage.ParsedHtml);
}
}
From this perspective you can see that the plugin is defined in a class named BlinkPlugin but because it also implements the IPlugin interface it can also be refered to as an IPlugin object,as the PluginHost class above does, because it doesn't know or care what type the class actually is, just that it can be an IPlugin
I hope this has helped, I really didnt intend it to be quite this long.
I'll give you an example below but let me start with one of your statements. "I don't know how to identify when to use one". to put it on edge. You don't need to identify when to use it but when not to use it. Any parameter (at least to public methods), any (public) property (and personally I would actually extend the list to and anything else) should be declared as something of an interface not a specific class. The only time I would ever declare something of a specific type would be when there was no suitable interface.
I'd go
IEnumerable<T> sequence;
when ever I can and hardly ever (the only case I can think off is if I really needed the ForEach method)
List<T> sequence;
and now an example. Let's say you are building a sytem that can compare prices on cars and computers. Each is displayed in a list.
The car prices are datamined from a set of websites and the computer prices from a set of services.
a solution could be:
create one web page, say with a datagrid and Dependency Injection of a IDataRetriever
(where IDataRetriver is some interface making data fetching available with out you having to know where the data came from (DB,XML,web services or ...) or how they were fetched (data mined, SQL Quering in house data or read from file).
Since the two scenarios we have have nothing but the usage in common a super class will make little sense. but the page using our two classes (one for cars and one for computers) needs to perform the exact same operations in both cases to make that possible we need to tell the page (compiler) which operations are possible. We do that by means of an interface and then the two classes implement that interfcae.
using dependency injection has nothing to do with when or how to use interfaces but the reason why I included it is another common scenario where interfaces makes you life easier. Testing. if you use injection and interfaces you can easily substitute a production class for a testing class when testing. (This again could be to switch data stores or to enforce an error that might be very hard to produce in release code, say a race condition)
We use interfaces (or abstract base classes) to allow polymorphism, which is a very central concept in object-oriented programming. It allows us to compose behavior in very flexible ways. If you haven't already, you should read Design Patterns - it contains numerous examples of using interfaces.
In relation to Test Doubles (such as Mock objects), we use interfaces to be able to remove functionality that we currently don't want to test, or that can't work from within a unit testing framework.
Particularly when working with web development, a lot of the services that we rely on (such as the HTTP Context) isn't available when the code executes outside of the web context, but if we hide that functionality behind an interface, we can replace it with something else during testing.
The way I understood it was:
Derivation is 'is-a' relationship e.g., A Dog is an Animal, A Cow is an Animal but an interface is never derived, it is implemented.
So, interface is a 'can-be' relationship e.g., A Dog can be a Spy Dog, A Dog can be a Circus Dog etc. But to achieve this, a dog has to learn some specific things. Which in OO terminology means that your class has to able to do some specific things (contract as they call it) if it implements an interface. e.g., if your class implements IEnumerable, it clearly means that your class has (must have) such a functionality that it's objects can be Enumerated.
So, in essence, through Interface Implementation a Class exposes a functionality to its users that it can do something and it is NOT inheritance.
With almost everything written about interfaces, let me have a shot.
In simple terms, interface is something which will relate two or more , otherwise, non related classes.
Interfaces define contract which ensures that any two or more classes, even if not completely related, happens to implement a common interface, will contain a common set of operations.
Combined with the support of polymorphism , one can use interfaces to write cleaner and dynamic code.
eg.
Interface livingBeings
-- speak() // says anybody who IS a livingBeing need to define how they speak
class dog implements livingBeings
--speak(){bark;} // implementation of speak as a dog
class bird implements livingBeings
--speak(){chirp;}// implementation of speak as a bird
ICalculator myInterface = new JustSomeClass();
JustSomeClass myObject = (JustSomeClass) myInterface;
Now you have both "interfaces" to work with on the object.
I am pretty new to this too, but I like to think of interfaces as buttons on a remote control. When using the ICalculator interface, you only have access to the buttons (functionality) intended by the interface designer. When using the JustSomeClass object reference, you have another set of buttons. But they both point to the same object.
There are many reasons to do this. The one that has been most useful to me is communication between co-workers. If they can agree on an interface (buttons which will be pushed), then one developer can work on implementing the button's functionality and another can write code that uses the buttons.
Hope this helps.

Why Doesn't C# Allow Static Methods to Implement an Interface?

Why was C# designed this way?
As I understand it, an interface only describes behaviour, and serves the purpose of describing a contractual obligation for classes implementing the interface that certain behaviour is implemented.
If classes wish to implement that behavour in a shared method, why shouldn't they?
Here is an example of what I have in mind:
// These items will be displayed in a list on the screen.
public interface IListItem {
string ScreenName();
...
}
public class Animal: IListItem {
// All animals will be called "Animal".
public static string ScreenName() {
return "Animal";
}
....
}
public class Person: IListItem {
private string name;
// All persons will be called by their individual names.
public string ScreenName() {
return name;
}
....
}
Assuming you are asking why you can't do this:
public interface IFoo {
void Bar();
}
public class Foo: IFoo {
public static void Bar() {}
}
This doesn't make sense to me, semantically. Methods specified on an interface should be there to specify the contract for interacting with an object. Static methods do not allow you to interact with an object - if you find yourself in the position where your implementation could be made static, you may need to ask yourself if that method really belongs in the interface.
To implement your example, I would give Animal a const property, which would still allow it to be accessed from a static context, and return that value in the implementation.
public class Animal: IListItem {
/* Can be tough to come up with a different, yet meaningful name!
* A different casing convention, like Java has, would help here.
*/
public const string AnimalScreenName = "Animal";
public string ScreenName(){ return AnimalScreenName; }
}
For a more complicated situation, you could always declare another static method and delegate to that. In trying come up with an example, I couldn't think of any reason you would do something non-trivial in both a static and instance context, so I'll spare you a FooBar blob, and take it as an indication that it might not be a good idea.
My (simplified) technical reason is that static methods are not in the vtable, and the call site is chosen at compile time. It's the same reason you can't have override or virtual static members. For more details, you'd need a CS grad or compiler wonk - of which I'm neither.
For the political reason, I'll quote Eric Lippert (who is a compiler wonk, and holds a Bachelor of Mathematics, Computer science and Applied Mathematics from University of Waterloo (source: LinkedIn):
...the core design principle of static methods, the principle that gives them their name...[is]...it can always be determined exactly, at compile time, what method will be called. That is, the method can be resolved solely by static analysis of the code.
Note that Lippert does leave room for a so-called type method:
That is, a method associated with a type (like a static), which does not take a non-nullable “this” argument (unlike an instance or virtual), but one where the method called would depend on the constructed type of T (unlike a static, which must be determinable at compile time).
but is yet to be convinced of its usefulness.
Most answers here seem to miss the whole point. Polymorphism can be used not only between instances, but also between types. This is often needed, when we use generics.
Suppose we have type parameter in generic method and we need to do some operation with it. We dont want to instantinate, because we are unaware of the constructors.
For example:
Repository GetRepository<T>()
{
//need to call T.IsQueryable, but can't!!!
//need to call T.RowCount
//need to call T.DoSomeStaticMath(int param)
}
...
var r = GetRepository<Customer>()
Unfortunately, I can come up only with "ugly" alternatives:
Use reflection
Ugly and beats the idea of interfaces and polymorphism.
Create completely separate factory class
This might greatly increase the complexity of the code. For example, if we are trying to model domain objects, each object would need another repository class.
Instantiate and then call the desired interface method
This can be hard to implement even if we control the source for the classes, used as generic parameters. The reason is that, for example we might need the instances to be only in well-known, "connected to DB" state.
Example:
public class Customer
{
//create new customer
public Customer(Transaction t) { ... }
//open existing customer
public Customer(Transaction t, int id) { ... }
void SomeOtherMethod()
{
//do work...
}
}
in order to use instantination for solving the static interface problem we need to do the following thing:
public class Customer: IDoSomeStaticMath
{
//create new customer
public Customer(Transaction t) { ... }
//open existing customer
public Customer(Transaction t, int id) { ... }
//dummy instance
public Customer() { IsDummy = true; }
int DoSomeStaticMath(int a) { }
void SomeOtherMethod()
{
if(!IsDummy)
{
//do work...
}
}
}
This is obviously ugly and also unnecessary complicates the code for all other methods. Obviously, not an elegant solution either!
I know it's an old question, but it's interesting. The example isn't the best. I think it would be much clearer if you showed a usage case:
string DoSomething<T>() where T:ISomeFunction
{
if (T.someFunction())
...
}
Merely being able to have static methods implement an interface would not achieve what you want; what would be needed would be to have static members as part of an interface. I can certainly imagine many usage cases for that, especially when it comes to being able to create things. Two approaches I could offer which might be helpful:
Create a static generic class whose type parameter will be the type you'd be passing to DoSomething above. Each variation of this class will have one or more static members holding stuff related to that type. This information could supplied either by having each class of interest call a "register information" routine, or by using Reflection to get the information when the class variation's static constructor is run. I believe the latter approach is used by things like Comparer<T>.Default().
For each class T of interest, define a class or struct which implements IGetWhateverClassInfo<T> and satisfies a "new" constraint. The class won't actually contain any fields, but will have a static property which returns a static field with the type information. Pass the type of that class or struct to the generic routine in question, which will be able to create an instance and use it to get information about the other class. If you use a class for this purpose, you should probably define a static generic class as indicated above, to avoid having to construct a new descriptor-object instance each time. If you use a struct, instantiation cost should be nil, but every different struct type would require a different expansion of the DoSomething routine.
None of these approaches is really appealing. On the other hand, I would expect that if the mechanisms existed in CLR to provide this sort of functionality cleanly, .net would allow one to specify parameterized "new" constraints (since knowing if a class has a constructor with a particular signature would seem to be comparable in difficulty to knowing if it has a static method with a particular signature).
Short-sightedness, I'd guess.
When originally designed, interfaces were intended only to be used with instances of class
IMyInterface val = GetObjectImplementingIMyInterface();
val.SomeThingDefinedinInterface();
It was only with the introduction of interfaces as constraints for generics did adding a static method to an interface have a practical use.
(responding to comment:) I believe changing it now would require a change to the CLR, which would lead to incompatibilities with existing assemblies.
To the extent that interfaces represent "contracts", it seems quiet reasonable for static classes to implement interfaces.
The above arguments all seem to miss this point about contracts.
Interfaces specify behavior of an object.
Static methods do not specify a behavior of an object, but behavior that affects an object in some way.
Because the purpose of an interface is to allow polymorphism, being able to pass an instance of any number of defined classes that have all been defined to implement the defined interface... guaranteeing that within your polymorphic call, the code will be able to find the method you are calling. it makes no sense to allow a static method to implement the interface,
How would you call it??
public interface MyInterface { void MyMethod(); }
public class MyClass: MyInterface
{
public static void MyMethod() { //Do Something; }
}
// inside of some other class ...
// How would you call the method on the interface ???
MyClass.MyMethod(); // this calls the method normally
// not through the interface...
// This next fails you can't cast a classname to a different type...
// Only instances can be Cast to a different type...
MyInterface myItf = MyClass as MyInterface;
Actually, it does.
As of Mid-2022, the current version of C# has full support for so-called static abstract members:
interface INumber<T>
{
static abstract T Zero { get; }
}
struct Fraction : INumber<Fraction>
{
public static Fraction Zero { get; } = new Fraction();
public long Numerator;
public ulong Denominator;
....
}
Please note that depending on your version of Visual Studio and your installed .NET SDK, you'll either have to update at least one of them (or maybe both), or that you'll have to enable preview features (see Use preview features & preview language in Visual Studio).
See more:
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/static-virtual-interface-members
https://blog.ndepend.com/c-11-static-abstract-members/
https://khalidabuhakmeh.com/static-abstract-members-in-csharp-10-interfaces#:~:text=Static%20abstract%20members%20allow%20each,like%20any%20other%20interface%20definition.
Regarding static methods used in non-generic contexts I agree that it doesn't make much sense to allow them in interfaces, since you wouldn't be able to call them if you had a reference to the interface anyway. However there is a fundamental hole in the language design created by using interfaces NOT in a polymorphic context, but in a generic one. In this case the interface is not an interface at all but rather a constraint. Because C# has no concept of a constraint outside of an interface it is missing substantial functionality. Case in point:
T SumElements<T>(T initVal, T[] values)
{
foreach (var v in values)
{
initVal += v;
}
}
Here there is no polymorphism, the generic uses the actual type of the object and calls the += operator, but this fails since it can't say for sure that that operator exists. The simple solution is to specify it in the constraint; the simple solution is impossible because operators are static and static methods can't be in an interface and (here is the problem) constraints are represented as interfaces.
What C# needs is a real constraint type, all interfaces would also be constraints, but not all constraints would be interfaces then you could do this:
constraint CHasPlusEquals
{
static CHasPlusEquals operator + (CHasPlusEquals a, CHasPlusEquals b);
}
T SumElements<T>(T initVal, T[] values) where T : CHasPlusEquals
{
foreach (var v in values)
{
initVal += v;
}
}
There has been lots of talk already about making an IArithmetic for all numeric types to implement, but there is concern about efficiency, since a constraint is not a polymorphic construct, making a CArithmetic constraint would solve that problem.
Because interfaces are in inheritance structure, and static methods don't inherit well.
What you seem to want would allow for a static method to be called via both the Type or any instance of that type. This would at very least result in ambiguity which is not a desirable trait.
There would be endless debates about whether it mattered, which is best practice and whether there are performance issues doing it one way or another. By simply not supporting it C# saves us having to worry about it.
Its also likely that a compilier that conformed to this desire would lose some optimisations that may come with a more strict separation between instance and static methods.
You can think of the static methods and non-static methods of a class as being different interfaces. When called, static methods resolve to the singleton static class object, and non-static methods resolve to the instance of the class you deal with. So, if you use static and non-static methods in an interface, you'd effectively be declaring two interfaces when really we want interfaces to be used to access one cohesive thing.
To give an example where I am missing either static implementation of interface methods or what Mark Brackett introduced as the "so-called type method":
When reading from a database storage, we have a generic DataTable class that handles reading from a table of any structure. All table specific information is put in one class per table that also holds data for one row from the DB and which must implement an IDataRow interface. Included in the IDataRow is a description of the structure of the table to read from the database. The DataTable must ask for the datastructure from the IDataRow before reading from the DB. Currently this looks like:
interface IDataRow {
string GetDataSTructre(); // How to read data from the DB
void Read(IDBDataRow); // How to populate this datarow from DB data
}
public class DataTable<T> : List<T> where T : IDataRow {
public string GetDataStructure()
// Desired: Static or Type method:
// return (T.GetDataStructure());
// Required: Instantiate a new class:
return (new T().GetDataStructure());
}
}
The GetDataStructure is only required once for each table to read, the overhead for instantiating one more instance is minimal. However, it would be nice in this case here.
FYI: You could get a similar behavior to what you want by creating extension methods for the interface. The extension method would be a shared, non overridable static behavior. However, unfortunately, this static method would not be part of the contract.
Interfaces are abstract sets of defined available functionality.
Whether or not a method in that interface behaves as static or not is an implementation detail that should be hidden behind the interface. It would be wrong to define an interface method as static because you would be unnecessarily forcing the method to be implemented in a certain way.
If methods were defined as static, the class implementing the interface wouldn't be as encapsulated as it could be. Encapsulation is a good thing to strive for in object oriented design (I won't go into why, you can read that here: http://en.wikipedia.org/wiki/Object-oriented). For this reason, static methods aren't permitted in interfaces.
Static classes should be able to do this so they can be used generically. I had to instead implement a Singleton to achieve the desired results.
I had a bunch of Static Business Layer classes that implemented CRUD methods like "Create", "Read", "Update", "Delete" for each entity type like "User", "Team", ect.. Then I created a base control that had an abstract property for the Business Layer class that implemented the CRUD methods. This allowed me to automate the "Create", "Read", "Update", "Delete" operations from the base class. I had to use a Singleton because of the Static limitation.
Most people seem to forget that in OOP Classes are objects too, and so they have messages, which for some reason c# calls "static method".
The fact that differences exist between instance objects and class objects only shows flaws or shortcomings in the language.
Optimist about c# though...
OK here is an example of needing a 'type method'. I am creating one of a set of classes based on some source XML. So I have a
static public bool IsHandled(XElement xml)
function which is called in turn on each class.
The function should be static as otherwise we waste time creating inappropriate objects.
As #Ian Boyde points out it could be done in a factory class, but this just adds complexity.
It would be nice to add it to the interface to force class implementors to implement it. This would not cause significant overhead - it is only a compile/link time check and does not affect the vtable.
However, it would also be a fairly minor improvement. As the method is static, I as the caller, must call it explicitly and so get an immediate compile error if it is not implemented. Allowing it to be specified on the interface would mean this error comes marginally earlier in the development cycle, but this is trivial compared to other broken-interface issues.
So it is a minor potential feature which on balance is probably best left out.
The fact that a static class is implemented in C# by Microsoft creating a special instance of a class with the static elements is just an oddity of how static functionality is achieved. It is isn't a theoretical point.
An interface SHOULD be a descriptor of the class interface - or how it is interacted with, and that should include interactions that are static. The general definition of interface (from Meriam-Webster): the place or area at which different things meet and communicate with or affect each other. When you omit static components of a class or static classes entirely, we are ignoring large sections of how these bad boys interact.
Here is a very clear example of where being able to use interfaces with static classes would be quite useful:
public interface ICrudModel<T, Tk>
{
Boolean Create(T obj);
T Retrieve(Tk key);
Boolean Update(T obj);
Boolean Delete(T obj);
}
Currently, I write the static classes that contain these methods without any kind of checking to make sure that I haven't forgotten anything. Is like the bad old days of programming before OOP.
C# and the CLR should support static methods in interfaces as Java does. The static modifier is part of a contract definition and does have meaning, specifically that the behavior and return value do not vary base on instance although it may still vary from call to call.
That said, I recommend that when you want to use a static method in an interface and cannot, use an annotation instead. You will get the functionality you are looking for.
Static Methods within an Interface are allowed as of c# 9 (see https://www.dotnetcurry.com/csharp/simpler-code-with-csharp-9).
I think the short answer is "because it is of zero usefulness".
To call an interface method, you need an instance of the type. From instance methods you can call any static methods you want to.
I think the question is getting at the fact that C# needs another keyword, for precisely this sort of situation. You want a method whose return value depends only on the type on which it is called. You can't call it "static" if said type is unknown. But once the type becomes known, it will become static. "Unresolved static" is the idea -- it's not static yet, but once we know the receiving type, it will be. This is a perfectly good concept, which is why programmers keep asking for it. But it didn't quite fit into the way the designers thought about the language.
Since it's not available, I have taken to using non-static methods in the way shown below. Not exactly ideal, but I can't see any approach that makes more sense, at least not for me.
public interface IZeroWrapper<TNumber> {
TNumber Zero {get;}
}
public class DoubleWrapper: IZeroWrapper<double> {
public double Zero { get { return 0; } }
}
As per Object oriented concept Interface implemented by classes and
have contract to access these implemented function(or methods) using
object.
So if you want to access Interface Contract methods you have to create object. It is always must that is not allowed in case of Static methods. Static classes ,method and variables never require objects and load in memory without creating object of that area(or class) or you can say do not require Object Creation.
Conceptually there is no reason why an interface could not define a contract that includes static methods.
For the current C# language implementation, the restriction is due to the allowance of inheritance of a base class and interfaces. If "class SomeBaseClass" implements "interface ISomeInterface" and "class SomeDerivedClass : SomeBaseClass, ISomeInterface" also implements the interface, a static method to implement an interface method would fail compile because a static method cannot have same signature as an instance method (which would be present in base class to implement the interface).
A static class is functionally identical to a singleton and serves the same purpose as a singleton with cleaner syntax. Since a singleton can implement an interface, interface implementations by statics are conceptually valid.
So it simply boils down to the limitation of C# name conflict for instance and static methods of the same name across inheritance. There is no reason why C# could not be "upgraded" to support static method contracts (interfaces).
An interface is an OOPS concept, which means every member of the interface should get used through an object or instance. Hence, an interface can not have static methods.
When a class implements an interface,it is creating instance for the interface members. While a static type doesnt have an instance,there is no point in having static signatures in an interface.

Categories

Resources