bad performance from too many caught errors? - c#

I have a large project in C# (.NET 2.0) which contains very large chunks of code generated by SubSonic. Is a try-catch like this causing a horrible performance hit?
for (int x = 0; x < identifiers.Count; x++)
{decimal target = 0;
try
{
target = Convert.ToDecimal(assets[x + identifiers.Count * 2]); // target %
}
catch { targetEmpty = true; }}
What is happening is if the given field that is being passed in is not something that can be converted to a decimal it sets a flag which is then used further along in the record to determine something else.
The problem is that the application is literally throwing 10s of thousands of exceptions as I am parsing through 30k records. The process as a whole takes almost 10 minutes for everything and my overall task is to improve that time some and this seemed like easy hanging fruit if its a bad design idea.
Any thoughts would be helpful (be kind, its been a miserable day)
thanks,
Chris

Using exceptions for control flow is generally a bad practice (exactly because of the poor efficiency that you're observing). What type of data do you need to convert to decimal? Could you use TryParse method or some other method that doesn't throw exception if the input is not in the expected format?
Decimal.TryParse method should do the trick if you're parsing strings as it reports failure by returnning false:
decimal d;
if (Decimal.TryParse(str, out d))
// Ok, use decimal 'd'
else
// Failed - do something else

That is a truly horrible looking piece of code. In general exceptions should only be used to capture unexpected results. The fact that you are getting lots of exceptions means that this is a common condition that should become part of the intrinsic logic.
decimal.TryParse would be a far better option here and I would suggest caching the value of identifiers.Count * 2 as well (not sure if compiler will optimise that)

There's a TryParse for Decimal as well. It avoids the exception and uses a bool instead to signal success/failure.

It's scary looking code, and you're getting good suggestions on how to fix it.
If you want to know if those exceptions are costing you a big percentage of time, there's a simple way to find out.
Just pause it about 10 times, and each time examine the call stack. If the exceptions are costing some percentage of time like, say, 50%, then you will see it in the process of throwing or catching them on roughly that percent of pauses.

Related

Using Catch Blocks to Return, Bad Idea?

This may be a stupid question, but I'm interested in the performance of using try/catch blocks.
I have a DataGrid that assigns a Converter to the background property of a DataGridCell. In the converter, I compare the value of this year's data to last year's data; if this year's data is > 3%, I return a Green background; if it's > 0% and < 3%, I return a Yellow; and if it's < 0%, I return Red:
string x = values[0].ToString().Replace("$", "").Replace(",", ""); //This year's number
string y = values[1].ToString().Replace("$", "").Replace(",", ""); //Last year's
result = (((float.Parse(x) * 100) / float.Parse(y)) - 1) * 100;
if (result >= 3)
return Brushes.LimeGreen;
else if (result >= 0)
return Brushes.Yellow;
else
return Brushes.Red;
However, in some cases, the cell will NOT have a value of last year; as you can guess, dividing by 0 (or some text as the Converter seems to receive when the Cell is empty) is a pretty bad idea and will throw an exception. So, I decided the easiest way to deal with this was:
try
{
result = (((float.Parse(x) * 100) / float.Parse(y)) - 1) * 100;
}
catch
{
return Brushes.DarkOrange;
}
So if the exception is thrown (whereby there is no value to compare to), return an Orange and call it a day. (edit: yes, I do wish to return an Orange when there is no value to compare to.
Currently, I can predict that it will only happen to one row of data for now, so it only catches about 10 cells when it's populated. But as the future goes on, it has the possibility of having it happen more times.
The try/catch block is the easiest and quickest way to handle this(as far as I can tell), but it is obviously not the only way, especially since I know the error. So Is using a try/catch block a bad idea in this case? And by bad idea, I mean will it slow performance since it is iterated over many, many times? Given that I know what the error will be, should I preempt it, or is using a try/catch block fine?
This is a bad idea. It's not an exceptional situation, so don't handle it like it's one. The fact that you're worried about performance and exception handling is a smell that you're doing something wrong. There is a really simple way to handle this, so I don't even see why you ever thought to instead handle it using exception handling.
Yes, it will impact your performance but that shouldn't be your concern here. Your concern should be what is the clearest way to write this logic, and using exceptions is clearly not the way.
Here's that simple way:
double value;
if(!Float.TryParse(y, out value) || value == 0f) {
return Brushes.DarkOrange;
}
else {
double result = (((float.Parse(x) * 100) / value) - 1) * 100;
if (result >= 3) {
return Brushes.LimeGreen;
}
else if (result >= 0) {
return Brushes.Yellow;
}
else {
return Brushes.Red;
}
}
In general, exceptions should be used for truly exceptional cases - cases which are not expected. In a situation like this, where you're well aware that there could be no prior year, I'd suggest using simple if() checks to return your default values.
To answer your performance question, Microsoft says that "Throwing exceptions can negatively impact performance".
The try catch has one of the worst performances on the .Net framework. Look here When an exception is raised the stacktrace has to be checked to find in which method there is a catch for that specific exception and this is a costly operation.
Never do things like that with exceptions if you have performance in mind (and I would say even if you don't have performance on mind).
Catch statements should only be used for catching Exceptions..Not altering the program flow, So to answer your question, yes this is a bad idea.
And I can't imagine it to be performant, because a new Exception object will be created and most likely java will do some logging of the event, so your better of just using an if statement.
Using the catch block in the way you described in your question is a bad idea. Try-catch blocks themselves do not have a huge performance impact, but exceptions do have a large performance cost.
The best option is to use the TryParse method on the float class instead. There is a reason it exists.
I believe Rico Mariani has the last word, as usual:
The True Cost of .NET Exceptions
Yes, using a Try/Catch block is a very bad idea.
I am not familiar enough with the intricacies of c# to tell you whether an if, or a tryparse statement or a try catch are going to be faster. What I can offer you is the idea of thinking about calls.
If you're worried about performance on something as simple as implementation of the same process, think about the number of calls as well. If you check every single number if it's 0, or call try-parse on every single number then you're adding that call to every iteration, not just the iterations that fail. If this implementation works for you, it is a good approach as it only gets into the catch block when it fails.
For many programs, this sort of implementation wouldn't work, because they want to do additional processing in the catch block. For those programs, you'd want to check for the 0, or do the tryparse. Since you're just returning, I believe this makes for easily readable code.

Best practice with Math.Pow

I'm working on a n image processing library which extends OpenCV, HALCON, ... . The library must be with .NET Framework 3.5 and since my experiences with .NET are limited I would like to ask some questions regarding the performance.
I have encountered a few specific things which I cannot explain to myself properly and would like you to ask a) why and b) what is the best practise to deal with the cases.
My first question is about Math.pow. I already found some answers here on StackOverflow which explains it quite well (a) but not what to do about this(b). My benchmark Program looks like this
Stopwatch watch = new Stopwatch(); // from the Diagnostics class
watch.Start();
for (int i = 0; i < 1000000; i++)
double result = Math.Pow(4,7) // the function call
watch.Stop()
The result was not very nice (~300ms on my computer) (I have run the test 10 times and calcuated the average value).
My first idea was to check wether this is because it is a static function. So I implemented my own class
class MyMath
{
public static double Pow (double x, double y) //Using some expensive functions to calculate the power
{
return Math.Exp(Math.Log(x) * y);
}
public static double PowLoop (double x, int y) // Using Loop
{
double res = x;
for(int i = 1; i < y; i++)
res *= x;
return res;
}
public static double Pow7 (double x) // Using inline calls
{
return x * x * x * x * x * x * x;
}
}
THe third thing I checked were if I would replace the Math.Pow(4,7) directly through 4*4*4*4*4*4*4.
The results are (the average out of 10 test runs)
300 ms Math.Pow(4,7)
356 ms MyMath.Pow(4,7) //gives wrong rounded results
264 ms MyMath.PowLoop(4,7)
92 ms MyMath.Pow7(4)
16 ms 4*4*4*4*4*4*4
Now my situation now is basically like this: Don't use Math for Pow. My only problem is just that... do I really have to implement my own Math-class now? It seems somehow ineffective to implement an own class just for the power function. (Btw. PowLoop and Pow7 are even faster in the Release build by ~25% while Math.Pow is not).
So my final questions are
a) am I wrong if I wouldn't use Math.Pow at all (but for fractions maybe) (which makes me somehow sad).
b) if you have code to optimize, are you really writing all such mathematical operations directly?
c) is there maybe already a faster (open-source^^) library for mathematical operations
d) the source of my question is basically: I have assumed that the .NET Framework itself already provides very optimized code / compile results for such basic operations - be it the Math-Class or handling arrays and I was a little surprised how much benefit I would gain by writing my own code. Are there some other, general "fields" or something else to look out in C# where I cannot trust C# directly.
Two things to bear in mind:
You probably don't need to optimise this bit of code. You've just done a million calls to the function in less than a second. Is this really going to cause big problems in your program?
Math.Pow is probably fairly optimal anyway. At a guess, it will be calling a proper numerics library written in a lower level language, which means you shouldn't expect orders of magnitude increases.
Numerical programming is harder than you think. Even the algorithms that you think you know how to calculate, aren't calculated that way. For example, when you calculate the mean, you shouldn't just add up the numbers and divide by how many numbers you have. (Modern numerics libraries use a two pass routine to correct for floating point errors.)
That said, if you decide that you definitely do need to optimise, then consider using integers rather than floating point values, or outsourcing this to another numerics library.
Firstly, integer operations are much faster than floating point. If you don't need floating point values, don't use the floating point data type. This generally true for any programming language.
Secondly, as you have stated yourself, Math.Pow can handle reals. It makes use of a much more intricate algorithm than a simple loop. No wonder it is slower than simply looping. If you get rid of the loop and just do n multiplications, you are also cutting off the overhead of setting up the loop - thus making it faster. But if you don't use a loop, you have to know
the value of the exponent beforehand - it can't be supplied at runtime.
I am not really sure why Math.Exp and Math.Log is faster. But if you use Math.Log, you can't find the power of negative values.
Basically int are faster and avoiding loops avoid extra overhead. But you are trading off some flexibility when you go for those. But it is generally a good idea to avoid reals when all you need are integers, but in this case coding up a custom function when one already exists seems a little too much.
The question you have to ask yourself is whether this is worth it. Is Math.Pow actually slowing your program down? And in any case, the Math.Pow already bundled with your language is often the fastest or very close to that. If you really wanted to make an alternate implementation that is really general purpose (i.e. not limited to only integers, positive values, etc.), you will probably end up using the same algorithm used in the default implementation anyway.
When you are talking about making a million iterations of a line of code then obviously every little detail will make a difference.
Math.Pow() is a function call which will be substantially slower than your manual 4*4...*4 example.
Don't write your own class as its doubtful you'll be able to write anything more optimised than the standard Math class.

How do I learn enough about CLR to make educated guesses about performance problems?

Yes, I am using a profiler (ANTS). But at the micro-level it cannot tell you how to fix your problem. And I'm at a microoptimization stage right now. For example, I was profiling this:
for (int x = 0; x < Width; x++)
{
for (int y = 0; y < Height; y++)
{
packedCells.Add(Data[x, y].HasCar);
packedCells.Add(Data[x, y].RoadState);
packedCells.Add(Data[x, y].Population);
}
}
ANTS showed that the y-loop-line was taking a lot of time. I thought it was because it has to constantly call the Height getter. So I created a local int height = Height; before the loops, and made the inner loop check for y < height. That actually made the performance worse! ANTS now told me the x-loop-line was a problem. Huh? That's supposed to be insignificant, it's the outer loop!
Eventually I had a revelation - maybe using a property for the outer-loop-bound and a local for the inner-loop-bound made CLR jump often between a "locals" cache and a "this-pointer" cache (I'm used to thinking in terms of CPU cache). So I made a local for Width as well, and that fixed it.
From there, it was clear that I should make a local for Data as well - even though Data was not even a property (it was a field). And indeed that bought me some more performance.
Bafflingly, though, reordering the x and y loops (to improve cache usage) made zero difference, even though the array is huge (3000x3000).
Now, I want to learn why the stuff I did improved the performance. What book do you suggest I read?
CLR via C# by Jeffrey Richter.
It is such a great book that someone stolen it in my library together with C# in depth.
The CLR is not involved at all here, this should all be translated to straight machine code without calls into the CLR. The JIT compiler is responsible for generating that machine code, it has an optimizer that tries to come up with the most efficient code. It has limitations, it cannot spend a large amount of time on it.
One of the important things it does is figuring out what local variables should be stored in the CPU registers. That's something that changed when you put the Height property in a local variable. It possibly decided to store that variable in a register. But now there's one less available to store another variable. Like the x or y variable, one that's critical for speed. Yes, that will slow it down.
You got a bad diagnostic about the outer loop. That could possibly be caused by the JIT optimizer re-arranging the loop code, giving the profiler a harder time mapping the machine code back to the corresponding C# statement.
Similarly, the optimizer might have decided that you were using the array inefficiently and switched the indexing order back. Not so sure it actually does that, but not impossible.
Anyhoo, the only way you can get some insight here is by looking at the generated machine code. There are many decent books about x86 assembly code, although they might be a bit hard to find these days. Your starting point is Debug + Windows + Disassembly.
Keep in mind however that even the machine code is not a very good predictor of how efficient code is going to run. Modern CPU cores are enormously complicated and the machine code is no longer representative for what actually happens inside the core. The only tried and true way is what you've already been doing: trial and error.
Albin - no. Honestly I didn't think that running outside a profiler would change the performance difference, so I didn't bother. You think I should have? Has that been a problem for you before? (I am compiling with optimizations on though)
Running under a debugger changes the performance: when it's being run under a debugger, the just-in-time compiler automatically disables optimizations (to make it easier to debug)!
If you must, use the debugger to attach to an already-running already-JITted process.
One thing you should know about working with Arrays is that the CLR will always make sure that array-indices are not out-of-bounds. It has an optimization for 1-dimensional arrays but not for 2+ dimensions.
Knowing this, you may want to benchmark MyCell Data[][] instead of MyCell Data[,]
Hm, I don't think that the loop enrolling is the real problem.
1. I'd try to avoid accessing the array Data three times per inner loop.
2. I'd also recommend, to re-think the three Add statements: you are apparently accessing a collection three times to add trivial some data. Make it only one access per iteration and add a data type containing three entries:
for (int y = 0; ... {
tTemp = Data[x, y];
packedCells.Add(new {
tTemp.HasCar, tTemp.RoadState, tTemp.Population
});
}
Another look reveals, that you are basically vectorizing a matrix by copying it into an array (or some other sequential collection)... Is that necessary at all? Why don't you just define a specialized indexer which simulates that linear access? Even better, if you only need to enumerate the entries (in that example you do, no random access required), why don't you use an adequate LINQ expression?
Point 1) Educated guesses are not the way to do performance tuning. In this case I can guess about as well as most, but guessing is the wrong way to do it.
Point 2) Profilers need to be well understood before you know what they're actually telling you. Here's a discussion of the issues. For example, what many profilers do is tell you "where the program spends its time", i.e. where the program counter spends its time, so they are almost absolutely blind to time requested by function calls, which is what your inner loop seems to consist of.
I do a lot of performance tuning, and here is what I do. I cycle between two activities:
Overall time measurement. This doesn't require special tools. I'm not trying to measure individual routines.
"Bottleneck" location. This does not require running the code at any kind of speed, because I'm not measuring. What I'm doing is locating lines of code that are responsible for a significant percent of time. I know which lines they are because they are on the stack for that percent, and stack samples easily find them.
Once I find a "bottleneck" and fix it, I go back to the first step, measure what percent of time I saved, and do it all again on the next "bottleneck", typically from 2 to 6 times. I am helped by the "magnification effect", in which a fixed problem magnifies the percentage used by remaining problems. It works for both macro and micro optimization.
(Sorry if I can't write "bottleneck" without quotes, because I don't think I've ever found a performance problem that resembled the neck of a bottle. Rather they were all simply doing things that didn't really need to be done.)
Since the comment might be overseen, I repeat myself: it is quite cumbersome to optimize code which is per se overfluous. You do not really need to explicitely linearize your matrix at all, see the comment above: Define a linearizing adapter which implements IEnumerable<MyCell> and feed it into the formatter.
I am getting a warning when I try to add another answer, so I am going to recycle this one.. :) After reading Steve's comments and thinking about it for a while, I suggest the following:
If serializing a multi-dimensional array is too slow (haven't tryied, I just believe you...) don't use it at all! It appears, that your matrix is not sparse and has fixed dimensions. So define the structure holding your cells as simple linear array with indexer:
[Serializable()]
class CellMatrix {
Cell [] mCells;
public int Rows { get; }
public int Columns { get; }
public Cell this (int i, int j) {
get {
return mCells[i + Rows * j];
}
// setter...
}
// constructor taking rows/cols...
}
A thing like this should serialize as fast as native Array does... I don't recommend hard coding the layout of Cell in order to save few bytes there...
Cheers,
Paul

'do...while' vs. 'while'

Possible Duplicates:
While vs. Do While
When should I use do-while instead of while loops?
I've been programming for a while now (2 years work + 4.5 years degree + 1 year pre-college), and I've never used a do-while loop short of being forced to in the Introduction to Programming course. I have a growing feeling that I'm doing programming wrong if I never run into something so fundamental.
Could it be that I just haven't run into the correct circumstances?
What are some examples where it would be necessary to use a do-while instead of a while?
(My schooling was almost all in C/C++ and my work is in C#, so if there is another language where it absolutely makes sense because do-whiles work differently, then these questions don't really apply.)
To clarify...I know the difference between a while and a do-while. While checks the exit condition and then performs tasks. do-while performs tasks and then checks exit condition.
If you always want the loop to execute at least once. It's not common, but I do use it from time to time. One case where you might want to use it is trying to access a resource that could require a retry, e.g.
do
{
try to access resource...
put up message box with retry option
} while (user says retry);
do-while is better if the compiler isn't competent at optimization. do-while has only a single conditional jump, as opposed to for and while which have a conditional jump and an unconditional jump. For CPUs which are pipelined and don't do branch prediction, this can make a big difference in the performance of a tight loop.
Also, since most compilers are smart enough to perform this optimization, all loops found in decompiled code will usually be do-while (if the decompiler even bothers to reconstruct loops from backward local gotos at all).
I have used this in a TryDeleteDirectory function. It was something like this
do
{
try
{
DisableReadOnly(directory);
directory.Delete(true);
}
catch (Exception)
{
retryDeleteDirectoryCount++;
}
} while (Directory.Exists(fullPath) && retryDeleteDirectoryCount < 4);
Do while is useful for when you want to execute something at least once. As for a good example for using do while vs. while, lets say you want to make the following: A calculator.
You could approach this by using a loop and checking after each calculation if the person wants to exit the program. Now you can probably assume that once the program is opened the person wants to do this at least once so you could do the following:
do
{
//do calculator logic here
//prompt user for continue here
} while(cont==true);//cont is short for continue
This is sort of an indirect answer, but this question got me thinking about the logic behind it, and I thought this might be worth sharing.
As everyone else has said, you use a do ... while loop when you want to execute the body at least once. But under what circumstances would you want to do that?
Well, the most obvious class of situations I can think of would be when the initial ("unprimed") value of the check condition is the same as when you want to exit. This means that you need to execute the loop body once to prime the condition to a non-exiting value, and then perform the actual repetition based on that condition. What with programmers being so lazy, someone decided to wrap this up in a control structure.
So for example, reading characters from a serial port with a timeout might take the form (in Python):
response_buffer = []
char_read = port.read(1)
while char_read:
response_buffer.append(char_read)
char_read = port.read(1)
# When there's nothing to read after 1s, there is no more data
response = ''.join(response_buffer)
Note the duplication of code: char_read = port.read(1). If Python had a do ... while loop, I might have used:
do:
char_read = port.read(1)
response_buffer.append(char_read)
while char_read
The added benefit for languages that create a new scope for loops: char_read does not pollute the function namespace. But note also that there is a better way to do this, and that is by using Python's None value:
response_buffer = []
char_read = None
while char_read != '':
char_read = port.read(1)
response_buffer.append(char_read)
response = ''.join(response_buffer)
So here's the crux of my point: in languages with nullable types, the situation initial_value == exit_value arises far less frequently, and that may be why you do not encounter it. I'm not saying it never happens, because there are still times when a function will return None to signify a valid condition. But in my hurried and briefly-considered opinion, this would happen a lot more if the languages you used did not allow for a value that signifies: this variable has not been initialised yet.
This is not perfect reasoning: in reality, now that null-values are common, they simply form one more element of the set of valid values a variable can take. But practically, programmers have a way to distinguish between a variable being in sensible state, which may include the loop exit state, and it being in an uninitialised state.
I used them a fair bit when I was in school, but not so much since.
In theory they are useful when you want the loop body to execute once before the exit condition check. The problem is that for the few instances where I don't want the check first, typically I want the exit check in the middle of the loop body rather than at the very end. In that case, I prefer to use the well-known for (;;) with an if (condition) exit; somewhere in the body.
In fact, if I'm a bit shaky on the loop exit condition, sometimes I find it useful to start writing the loop as a for (;;) {} with an exit statement where needed, and then when I'm done I can see if it can be "cleaned up" by moving initilizations, exit conditions, and/or increment code inside the for's parentheses.
A situation where you always need to run a piece of code once, and depending on its result, possibly more times. The same can be produced with a regular while loop as well.
rc = get_something();
while (rc == wrong_stuff)
{
rc = get_something();
}
do
{
rc = get_something();
}
while (rc == wrong_stuff);
It's as simple as that:
precondition vs postcondition
while (cond) {...} - precondition, it executes the code only after checking.
do {...} while (cond) - postcondition, code is executed at least once.
Now that you know the secret .. use them wisely :)
do while is if you want to run the code block at least once. while on the other hand won't always run depending on the criteria specified.
I see that this question has been adequately answered, but would like to add this very specific use case scenario. You might start using do...while more frequently.
do
{
...
} while (0)
is often used for multi-line #defines. For example:
#define compute_values \
area = pi * r * r; \
volume = area * h
This works alright for:
r = 4;
h = 3;
compute_values;
-but- there is a gotcha for:
if (shape == circle) compute_values;
as this expands to:
if (shape == circle) area = pi *r * r;
volume = area * h;
If you wrap it in a do ... while(0) loop it properly expands to a single block:
if (shape == circle)
do
{
area = pi * r * r;
volume = area * h;
} while (0);
The answers so far summarize the general use for do-while. But the OP asked for an example, so here is one: Get user input. But the user's input may be invalid - so you ask for input, validate it, proceed if it's valid, otherwise repeat.
With do-while, you get the input while the input is not valid. With a regular while-loop, you get the input once, but if it's invalid, you get it again and again until it is valid. It's not hard to see that the former is shorter, more elegant, and simpler to maintain if the body of the loop grows more complex.
I've used it for a reader that reads the same structure multiple times.
using(IDataReader reader = connection.ExecuteReader())
{
do
{
while(reader.Read())
{
//Read record
}
} while(reader.NextResult());
}
I can't imagine how you've gone this long without using a do...while loop.
There's one on another monitor right now and there are multiple such loops in that program. They're all of the form:
do
{
GetProspectiveResult();
}
while (!ProspectIsGood());
I like to understand these two as:
while -> 'repeat until',
do ... while -> 'repeat if'.
I've used a do while when I'm reading a sentinel value at the beginning of a file, but other than that, I don't think it's abnormal that this structure isn't too commonly used--do-whiles are really situational.
-- file --
5
Joe
Bob
Jake
Sarah
Sue
-- code --
int MAX;
int count = 0;
do {
MAX = a.readLine();
k[count] = a.readLine();
count++;
} while(count <= MAX)
Here's my theory why most people (including me) prefer while(){} loops to do{}while(): A while(){} loop can easily be adapted to perform like a do..while() loop while the opposite is not true. A while loop is in a certain way "more general". Also programmers like easy to grasp patterns. A while loop says right at start what its invariant is and this is a nice thing.
Here's what I mean about the "more general" thing. Take this do..while loop:
do {
A;
if (condition) INV=false;
B;
} while(INV);
Transforming this in to a while loop is straightforward:
INV=true;
while(INV) {
A;
if (condition) INV=false;
B;
}
Now, we take a model while loop:
while(INV) {
A;
if (condition) INV=false;
B;
}
And transform this into a do..while loop, yields this monstrosity:
if (INV) {
do
{
A;
if (condition) INV=false;
B;
} while(INV)
}
Now we have two checks on opposite ends and if the invariant changes you have to update it on two places. In a certain way do..while is like the specialized screwdrivers in the tool box which you never use, because the standard screwdriver does everything you need.
I am programming about 12 years and only 3 months ago I have met a situation where it was really convenient to use do-while as one iteration was always necessary before checking a condition. So guess your big-time is ahead :).
It is a quite common structure in a server/consumer:
DOWHILE (no shutdown requested)
determine timeout
wait for work(timeout)
IF (there is work)
REPEAT
process
UNTIL(wait for work(0 timeout) indicates no work)
do what is supposed to be done at end of busy period.
ENDIF
ENDDO
the REPEAT UNTIL(cond) being a do {...} while(!cond)
Sometimes the wait for work(0) can be cheaper CPU wise (even eliminating the timeout calculation might be an improvement with very high arrival rates). Moreover, there are many queuing theory results that make the number served in a busy period an important statistic. (See for example Kleinrock - Vol 1.)
Similarly:
DOWHILE (no shutdown requested)
determine timeout
wait for work(timeout)
IF (there is work)
set throttle
REPEAT
process
UNTIL(--throttle<0 **OR** wait for work(0 timeout) indicates no work)
ENDIF
check for and do other (perhaps polled) work.
ENDDO
where check for and do other work may be exorbitantly expensive to put in the main loop or perhaps a kernel that does not support an efficient waitany(waitcontrol*,n) type operation or perhaps a situation where a prioritized queue might starve the other work and throttle is used as starvation control.
This type of balancing can seem like a hack, but it can be necessary. Blind use of thread pools would entirely defeat the performance benefits of the use of a caretaker thread with a private queue for a high updating rate complicated data structure as the use of a thread pool rather than a caretaker thread would require thread-safe implementation.
I really don't want to get into a debate about the pseudo code (for example, whether shutdown requested should be tested in the UNTIL) or caretaker threads versus thread pools - this is just meant to give a flavor of a particular use case of the control flow structure.
This is my personal opinion, but this question begs for an answer rooted in experience:
I have been programming in C for 38 years, and I never use do / while loops in regular code.
The only compelling use for this construct is in macros where it can wrap multiple statements into a single statement via a do { multiple statements } while (0)
I have seen countless examples of do / while loops with bogus error detection or redundant function calls.
My explanation for this observation is programmers tend to model problems incorrectly when they think in terms of do / while loops. They either miss an important ending condition or they miss the possible failure of the initial condition which they move to the end.
For these reasons, I have come to believe that where there is a do / while loop, there is a bug, and I regularly challenge newbie programmers to show me a do / while loop where I cannot spot a bug nearby.
This type of loop can be easily avoided: use a for (;;) { ... } and add the necessary termination tests where they are appropriate. It is quite common that there need be more than one such test.
Here is a classic example:
/* skip the line */
do {
c = getc(fp);
} while (c != '\n');
This will fail if the file does not end with a newline. A trivial example of such a file is the empty file.
A better version is this:
int c; // another classic bug is to define c as char.
while ((c = getc(fp)) != EOF && c != '\n')
continue;
Alternately, this version also hides the c variable:
for (;;) {
int c = getc(fp);
if (c == EOF || c == '\n')
break;
}
Try searching for while (c != '\n'); in any search engine, and you will find bugs such as this one (retrieved June 24, 2017):
In ftp://ftp.dante.de/tex-archive/biblio/tib/src/streams.c , function getword(stream,p,ignore), has a do / while and sure enough at least 2 bugs:
c is defined as a char and
there is a potential infinite loop while (c!='\n') c=getc(stream);
Conclusion: avoid do / while loops and look for bugs when you see one.
while loops check the condition before the loop, do...while loops check the condition after the loop. This is useful is you want to base the condition on side effects from the loop running or, like other posters said, if you want the loop to run at least once.
I understand where you're coming from, but the do-while is something that most use rarely, and I've never used myself. You're not doing it wrong.
You're not doing it wrong. That's like saying someone is doing it wrong because they've never used the byte primitive. It's just not that commonly used.
The most common scenario I run into where I use a do/while loop is in a little console program that runs based on some input and will repeat as many times as the user likes. Obviously it makes no sense for a console program to run no times; but beyond the first time it's up to the user -- hence do/while instead of just while.
This allows the user to try out a bunch of different inputs if desired.
do
{
int input = GetInt("Enter any integer");
// Do something with input.
}
while (GetBool("Go again?"));
I suspect that software developers use do/while less and less these days, now that practically every program under the sun has a GUI of some sort. It makes more sense with console apps, as there is a need to continually refresh the output to provide instructions or prompt the user with new information. With a GUI, in contrast, the text providing that information to the user can just sit on a form and never need to be repeated programmatically.
I use do-while loops all the time when reading in files. I work with a lot of text files that include comments in the header:
# some comments
# some more comments
column1 column2
1.234 5.678
9.012 3.456
... ...
i'll use a do-while loop to read up to the "column1 column2" line so that I can look for the column of interest. Here's the pseudocode:
do {
line = read_line();
} while ( line[0] == '#');
/* parse line */
Then I'll do a while loop to read through the rest of the file.
Being a geezer programmer, many of my school programming projects used text menu driven interactions. Virtually all used something like the following logic for the main procedure:
do
display options
get choice
perform action appropriate to choice
while choice is something other than exit
Since school days, I have found that I use the while loop more frequently.
One of the applications I have seen it is in Oracle when we look at result sets.
Once you a have a result set, you first fetch from it (do) and from that point on.. check if the fetch returns an element or not (while element found..) .. The same might be applicable for any other "fetch-like" implementations.
I 've used it in a function that returned the next character position in an utf-8 string:
char *next_utf8_character(const char *txt)
{
if (!txt || *txt == '\0')
return txt;
do {
txt++;
} while (((signed char) *txt) < 0 && (((unsigned char) *txt) & 0xc0) == 0xc0)
return (char *)txt;
}
Note that, this function is written from mind and not tested. The point is that you have to do the first step anyway and you have to do it before you can evaluate the condition.
Any sort of console input works well with do-while because you prompt the first time, and re-prompt whenever the input validation fails.
Even though there are plenty of answers here is my take. It all comes down to optimalization. I'll show two examples where one is faster then the other.
Case 1: while
string fileName = string.Empty, fullPath = string.Empty;
while (string.IsNullOrEmpty(fileName) || File.Exists(fullPath))
{
fileName = Guid.NewGuid().ToString() + fileExtension;
fullPath = Path.Combine(uploadDirectory, fileName);
}
Case 2: do while
string fileName = string.Empty, fullPath = string.Empty;
do
{
fileName = Guid.NewGuid().ToString() + fileExtension;
fullPath = Path.Combine(uploadDirectory, fileName);
}
while (File.Exists(fullPath));
So there two will do the exact same things. But there is one fundamental difference and that is that the while requires an extra statement to enter the while. Which is ugly because let's say every possible scenario of the Guid class has already been taken except for one variant. This means I'll have to loop around 5,316,911,983,139,663,491,615,228,241,121,400,000 times.
Every time I get to the end of my while statement I will need to do the string.IsNullOrEmpty(fileName) check. So this would take up a little bit, a tiny fraction of CPU work. But do this very small task times the possible combinations the Guid class has and we are talking about hours, days, months or extra time?
Of course this is an extreme example because you probably wouldn't see this in production. But if we would think about the YouTube algorithm, it is very well possible that they would encounter the generation of an ID where some ID's have already been taken. So it comes down to big projects and optimalization.
Even in educational references you barely would find a do...while example. Only recently, after reading Ethan Brown beautiful book, Learning JavaScript I encountered one do...while well defined example. That's been said, I believe it is OK if you don't find application for this structure in you routine job.
It's true that do/while loops are pretty rare. I think this is because a great many loops are of the form
while(something needs doing)
do it;
In general, this is an excellent pattern, and it has the usually-desirable property that if nothing needs doing, the loop runs zero times.
But once in a while, there's some fine reason why you definitely want to make at least one trip through the loop, no matter what. My favorite example is: converting an integer to its decimal representation as a string, that is, implementing printf("%d"), or the semistandard itoa() function.
To illustrate, here is a reasonably straightforward implementation of itoa(). It's not quite the "traditional" formulation; I'll explain it in more detail below if anyone's curious. But the key point is that it embodies the canonical algorithm, repeatedly dividing by 10 to pick off digits from the right, and it's written using an ordinary while loop... and this means it has a bug.
#include <stddef.h>
char *itoa(unsigned int n, char buf[], int bufsize)
{
if(bufsize < 2) return NULL;
char *p = &buf[bufsize];
*--p = '\0';
while(n > 0) {
if(p == buf) return NULL;
*--p = n % 10 + '0';
n /= 10;
}
return p;
}
If you didn't spot it, the bug is that this code returns nothing — an empty string — if you ask it to convert the integer 0. So this is an example of a case where, when there's "nothing" to do, we don't want the code to do nothing — we always want it to produce at least one digit. So we always want it to make at least one trip through the loop. So a do/while loop is just the ticket:
do {
if(p == buf) return NULL;
*--p = n % 10 + '0';
n /= 10;
} while(n > 0);
So now we have a loop that usually stops when n reaches 0, but if n is initially 0 — if you pass in a 0 — it returns the string "0", as desired.
As promised, here's a bit more information about the itoa function in this example. You pass it arguments which are: an int to convert (actually, an unsigned int, so that we don't have to worry about negative numbers); a buffer to render into; and the size of that buffer. It returns a char * pointing into your buffer, pointing at the beginning of the rendered string. (Or it returns NULL if it discovers that the buffer you gave it wasn't big enough.) The "nontraditional" aspect of this implementation is that it fills in the array from right to left, meaning that it doesn't have to reverse the string at the end — and also meaning that the pointer it returns to you is usually not to the beginning of the buffer. So you have to use the pointer it returns to you as the string to use; you can't call it and then assume that the buffer you handed it is the string you can use.
Finally, for completeness, here is a little test program to test this version of itoa with.
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
int n;
if(argc > 1)
n = atoi(argv[1]);
else {
printf("enter a number: "); fflush(stdout);
if(scanf("%d", &n) != 1) return EXIT_FAILURE;
}
if(n < 0) {
fprintf(stderr, "sorry, can't do negative numbers yet\n");
return EXIT_FAILURE;
}
char buf[20];
printf("converted: %s\n", itoa(n, buf, sizeof(buf)));
return EXIT_SUCCESS;
}
I ran across this while researching the proper loop to use for a situation I have. I believe this will fully satisfy a common situation where a do.. while loop is a better implementation than a while loop (C# language, since you stated that is your primary for work).
I am generating a list of strings based on the results of an SQL query. The returned object by my query is an SQLDataReader. This object has a function called Read() which advances the object to the next row of data, and returns true if there was another row. It will return false if there is not another row.
Using this information, I want to return each row to a list, then stop when there is no more data to return. A Do... While loop works best in this situation as it ensures that adding an item to the list will happen BEFORE checking if there is another row. The reason this must be done BEFORE checking the while(condition) is that when it checks, it also advances. Using a while loop in this situation would cause it to bypass the first row due to the nature of that particular function.
In short:
This won't work in my situation.
//This will skip the first row because Read() returns true after advancing.
while (_read.NextResult())
{
list.Add(_read.GetValue(0).ToString());
}
return list;
This will.
//This will make sure the currently read row is added before advancing.
do
{
list.Add(_read.GetValue(0).ToString());
}
while (_read.NextResult());
return list;

Comparing Doubles in Visual Studio - a standard way to catch this?

Even experienced programmers write C# code like this sometimes:
double x = 2.5;
double y = 3;
if (x + 0.5 == 3) {
// this will never be executed
}
Basically, it's common knowledge that two doubles (or floats) can never be precisely equal to each other, because of the way the computer handles floating point arithmetic.
The problem is, everyone sort-of knows this, but code like this is still all over the place. It's just so easy to overlook.
Questions for you:
How have you dealt with this in your development organization?
Is this such a common thing that the compiler should be checking that we all should be screaming really loud for VS2010 to include a compile-time warning if someone is comparing two doubles/floats?
UPDATE: Folks, thanks for the comments. I want to clarify that I most certainly understand that the code above is incorrect. Yes, you never want to == compare doubles and floats. Instead, you should use epsilon-based comparison. That's obvious. The real question here is "how do you pinpoint the problem", not "how do you solve the technical issue".
Floating point values certainly can be equal to each other, and in the case you've given they always will be equal. You should almost never compare for equality using equals, but you do need to understand why - and why the example you've shown isn't appropriate.
I don't think it's something the compiler should necessarily warn about, but you may want to see whether it's something FxCop can pick up on. I can't see it in the warning list, but it may be there somewhere...
Personally I'm reasonably confident that competent developers would be able to spot this in code review, but that does rely on you having a code review in place to start with. It also relies on your developers knowing when to use double and when to use decimal, which is something I've found often isn't the case...
static int _yes = 0;
static int _no = 0;
static void Main(string[] args)
{
for (int i = 0; i < 1000000; i++)
{
double x = 1;
double y = 2;
if (y - 1 == x)
{
_yes++;
}
else
{
_no++;
}
}
Console.WriteLine("Yes: " + _yes);
Console.WriteLine("No: " + _no);
Console.Read();
}
Output
Yes: 1000000
No: 0
In our organization we have a lot of financial calculations and we don't use float and double for such tasks. We use Decimal in .NET, BigDecimal in Java and Numeric in MSSQL to escape round-off errors.
This article describes the problem: What Every CS Should Know About floating-Point Arithmetic
If FxCop or similar (as Jon suggests) doesn't work out for you a more heavy handed approach might be to take a copy of the code - replace all instances of float or double with a class you've written that's somewhat similar to System.Double, except that you overload the == operator to generate a warning!
I don't know if this is feasible in practice as I've not tried it - but let us know if you do try :-)
Mono's Gendarme is an FxCop-like tool. It has a rule called AvoidFloatingPointEqualityRule under the Correctness category. You could try it to find instances of this error in your code. I haven't used it, but it should analyse regular .net dll's. The FxCop rule with the same name was removed long ago.

Categories

Resources