Is there anything wrong with a class with all static methods? - c#

I'm doing code review and came across a class that uses all static methods. The entrance method takes several arguments and then starts calling the other static methods passing along all or some of the arguments the entrance method received.
It isn't like a Math class with largely unrelated utility functions. In my own normal programming, I rarely write methods where Resharper pops and says "this could be a static method", when I do, they tend to be mindless utility methods.
Is there anything wrong with this pattern? Is this just a matter of personal choice if the state of a class is held in fields and properties or passed around amongst static methods using arguments?
UPDATE: the particular state that is being passed around is the result set from the database. The class's responsibility is to populate an excel spreadsheet template from a result set from the DB. I don't know if this makes any difference.

Is there anything wrong with this
pattern? Is this just a matter of
personal choice if the state of a
class is held in fields and properties
or passed around amongst static
methods using arguments?
Speaking from my own personal experience, I've worked on 100 KLOC applications which have very very deep object hiearchies, everything inherits and overrides everything else, everything implements half a dozen interfaces, even the interfaces inherit half a dozen interfaces, the system implements every design pattern in the book, etc.
End result: a truly OOP-tastic architecture with so many levels of indirection that it takes hours to debug anything. I recently started a job with a system like this, where the learning curve was described to me as "a brick wall, followed by a mountain".
Sometimes overzealous OOP results in classes so granular that it actually a net harm.
By contrast, many functional programming languages, even the OO ones like F# and OCaml (and C#!), encourage flat and shallow hiearchy. Libraries in these languages tend to have the following properties:
Most objects are POCOs, or have at most one or two levels of inheritance, where the objects aren't much more than containers for logically related data.
Instead of classes calling into each other, you have modules (equivalent to static classes) controlling the interactions between objects.
Modules tend to act on a very limited number of data types, and so have a narrow scope. For example, the OCaml List module represents operations on lists, a Customer modules facilitates operations on customers. While modules have more or less the same functionality as instance methods on a class, the key difference with module-based libraries is that modules are much more self-contained, much less granular, and tend to have few if any dependencies on other modules.
There's usually no need to subclass objects override methods since you can pass around functions as first-class objects for specialization.
Although C# doesn't support this functionality, functors provide a means to subclass an specialize modules.
Most big libraries tend to be more wide than deep, for example the Win32 API, PHP libraries, Erlang BIFs, OCaml and Haskell libraries, stored procedures in a database, etc. So this style of programming is battle testing and seems to work well in the real world.
In my opinion, the best designed module-based APIs tend to be easier to work with than the best designed OOP APIs. However, coding style is just as important in API design, so if everyone else on your team is using OOP and someone goes off and implements something in a completely different style, then you should probably ask for a rewrite to more closely match your teams coding standards.

What you describe is simply structured programming, as could be done in C, Pascal or Algol. There is nothing intrinsically wrong with that. There are situations were OOP is more appropriate, but OOP is not the ultimate answer and if the problem at hand is best served by structured programming then a class full of static methods is the way to go.

Does it help to rephrase the question:
Can you describe the data that the static methods operates on as an entity having:
a clear meaning
responsibility for keeping it's internal state consistent.
In that case it should be an instantiated object, otherwise it may just be a bunch of related functions, much like a math library.

Here's a refactor workflow that I frequently encounter that involves static methods. It may lend some insight into your problem.
I'll start with a class that has reasonably good encapsulation. As I start to add features I run into a piece of functionality that doesn't really need access to the private fields in my class but seems to contain related functionality. After this happens a few times (sometimes just once) I start to see the outlines of a new class in the static methods I've implemented and how that new class relates to the old class in which I first implemented the static methods.
The benefit that I see of turning these static methods into one or more classes is, when you do this, it frequently becomes easier to understand and maintain your software.

I feel that if the class is required to maintain some form of state (e.g. properties) then it should be instantiated (i.e. a "normal" class.)
If there should only be one instance of this class (hence all the static methods) then there should be a singleton property/method or a factory method that creates an instance of the class the first time it's called, and then just provides that instance when anyone else asks for it.
Having said that, this is just my personal opinion and the way I'd implement it. I'm sure others would disagree with me. Without knowing anything more it's hard to give reasons for/against each method, to be honest.

The biggest problem IMO is that if you want to unit test classes that are calling the class you mention, there is no way to replace that dependency. So you are forced to test both the client class, and the staticly called class at once.
If we are talking about a class with utility methods like Math.floor() this is not really a problem. But if the class is a real dependency, for instance a data access object, then it ties all its clients in to its implementation.
EDIT: I don't agree with the people saying there is 'nothing wrong' with this type of 'structured programming'. I would say a class like this is at least a code smell when encountered within a normal Java project, and probably indicates misunderstanding of object-oriented design on the part of the creator.

There is nothing wrong with this pattern. C# in fact has a construct called static classes which is used to support this notion by enforcing the requirement that all methods be static. Additionally there are many classes in the framework which have this feature: Enumerable, Math, etc ...

Nothing is wrong with it. It is a more "functional" way to code. It can be easier to test (because no internal state) and better performance at runtime (because no overhead to instance an otherwise useless object).
But you immediately lose some OO capabilities
Static methods don't respond well (at all) to inheritance.
A static class cannot participate in many design patterns such as factory/ service locator.

No, many people tend to create completely static classes for utility functions that they wish to group under a related namespace. There are many valid reasons for having completely static classes.
One thing to consider in C# is that many classes previously written completely static are now eligible to be considered as .net extension classes which are also at their heart still static classes. A lot of the Linq extensions are based on this.
An example:
namespace Utils {
public static class IntUtils {
public static bool IsLessThanZero(this int source)
{
return (source < 0);
}
}
}
Which then allows you to simply do the following:
var intTest = 0;
var blNegative = intTest.IsLessThanZero();

One of the disadvantages of using a static class is that its clients cannot replace it by a test double in order to be unit tested.
In the same way, it's harder to unit test a static class because its collaborators cannot be replaced by test doubles (actually,this happens with all the classes that are not dependency-injected).

It depends on whether the passed arguments can really be classified as state.
Having static methods calling each other is OK in case it's all utility functionality split up in multiple methods to avoid duplication. For example:
public static File loadConfiguration(String name, Enum type) {
String fileName = (form file name based on name and type);
return loadFile(fileName); // static method in the same class
}

Well, personnally, I tend to think that a method modifying the state of an object should be an instance method of that object's class. In fact, i consider it a rule a thumb : a method modifying an object is an instance method of that object's class.
There however are a few exceptions :
methods that process strings (like uppercasing their first letters, or that kind of feature)
method that are stateless and simply assemble some things to produce a new one, without any internal state. They obviously are rare, but it is generally useful to make them static.
In fact, I consider the static keyword as what it is : an option that should be used with care since it breaks some of OOP principles.

Passing all state as method parameters can be a useful design pattern. It ensures that there is no shared mutable state, and so the class is intrinsicly thread-safe. Services are commonly implemented using this pattern.
However, passing all state via method parameters doesn't mean the methods have to be static - you can still use the same pattern with non-static methods. The advantages of making the methods static is that calling code can just use the class by referencing it by name. There's no need for injection, or lookup or any other middleman. The disadvantage is maintanability - static methods are not dynamic dispatch, and cannot be easily subclassed, nor refactored to an interface. I recommend using static methods when there is intrinsicly only one possible implementation of the class, and when there is a strong reason not to use non-static methods.

"state of a class is ...passed around amongst static methods using arguments?"
This is how procedual programming works.
A class with all static methods, and no instance variables (except static final constants) is normally a utility class, eg Math.
There is nothing wrong with making a unility class, (not in an of itself)
BTW: If making a utility class, you chould prevent the class aver being used to crteate an object. in java you would do this by explictily defining the constructor, but making the constructor private.
While as i said there is nothing wrong with creating a utility class,
If the bulk of the work is being done by a utiulity class (wich esc. isn't a class in the usual sense - it's more of a collection of functions)
then this is prob as sign the problem hasn't been solved using the object orientated paradim.
this may or maynot be a good thing
The entrance method takes several arguments and then starts calling the other static methods passing along all or some of the arguments the entrance method received.
from the sound of this, the whole class is just effectivly one method (this would definatly be the case is al lthe other static methods are private (and are just helper functions), and there are no instance variables (baring constants))
This may be and Ok thing,
It's esc. structured/procedual progamming, rather neat having them (the function and it's helper)all bundled in one class. (in C you'ld just put them all in one file, and declare the helper's static (meaning can't be accesses from out side this file))

if there's no need of creating an object of a class, then there's no issue in creating all method as static of that class, but i wanna know what you are doing with a class fullof static methods.

I'm not quite sure what you meant by entrance method but if you're talking about something like this:
MyMethod myMethod = new MyMethod();
myMethod.doSomething(1);
public class MyMethod {
public String doSomething(int a) {
String p1 = MyMethod.functionA(a);
String p2 = MyMethod.functionB(p1);
return p1 + P2;
}
public static String functionA(...) {...}
public static String functionB(...) {...}
}
That's not advisable.
I think using all static methods/singletons a good way to code your business logic when you don't have to persist anything in the class. I tend to use it over singletons but that's simply a preference.
MyClass.myStaticMethod(....);
as opposed to:
MyClass.getInstance().mySingletonMethod(...);
All static methods/singletons tend to use less memory as well but depending on how many users you have you may not even notice it.

Related

What is the purpose of declaring a type different to the type you are instantiating? [duplicate]

I have seen this mentioned a few times and I am not clear on what it means. When and why would you do this?
I know what interfaces do, but the fact I am not clear on this makes me think I am missing out on using them correctly.
Is it just so if you were to do:
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that? The only thing I can think of is if you have a method and you are unsure of what object will be passed except for it implementing IInterface. I cannot think how often you would need to do that.
Also, how could you write a method that takes in an object that implements an interface? Is that possible?
There are some wonderful answers on here to this questions that get into all sorts of great detail about interfaces and loosely coupling code, inversion of control and so on. There are some fairly heady discussions, so I'd like to take the opportunity to break things down a bit for understanding why an interface is useful.
When I first started getting exposed to interfaces, I too was confused about their relevance. I didn't understand why you needed them. If we're using a language like Java or C#, we already have inheritance and I viewed interfaces as a weaker form of inheritance and thought, "why bother?" In a sense I was right, you can think of interfaces as sort of a weak form of inheritance, but beyond that I finally understood their use as a language construct by thinking of them as a means of classifying common traits or behaviors that were exhibited by potentially many non-related classes of objects.
For example -- say you have a SIM game and have the following classes:
class HouseFly inherits Insect {
void FlyAroundYourHead(){}
void LandOnThings(){}
}
class Telemarketer inherits Person {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
}
Clearly, these two objects have nothing in common in terms of direct inheritance. But, you could say they are both annoying.
Let's say our game needs to have some sort of random thing that annoys the game player when they eat dinner. This could be a HouseFly or a Telemarketer or both -- but how do you allow for both with a single function? And how do you ask each different type of object to "do their annoying thing" in the same way?
The key to realize is that both a Telemarketer and HouseFly share a common loosely interpreted behavior even though they are nothing alike in terms of modeling them. So, let's make an interface that both can implement:
interface IPest {
void BeAnnoying();
}
class HouseFly inherits Insect implements IPest {
void FlyAroundYourHead(){}
void LandOnThings(){}
void BeAnnoying() {
FlyAroundYourHead();
LandOnThings();
}
}
class Telemarketer inherits Person implements IPest {
void CallDuringDinner(){}
void ContinueTalkingWhenYouSayNo(){}
void BeAnnoying() {
CallDuringDinner();
ContinueTalkingWhenYouSayNo();
}
}
We now have two classes that can each be annoying in their own way. And they do not need to derive from the same base class and share common inherent characteristics -- they simply need to satisfy the contract of IPest -- that contract is simple. You just have to BeAnnoying. In this regard, we can model the following:
class DiningRoom {
DiningRoom(Person[] diningPeople, IPest[] pests) { ... }
void ServeDinner() {
when diningPeople are eating,
foreach pest in pests
pest.BeAnnoying();
}
}
Here we have a dining room that accepts a number of diners and a number of pests -- note the use of the interface. This means that in our little world, a member of the pests array could actually be a Telemarketer object or a HouseFly object.
The ServeDinner method is called when dinner is served and our people in the dining room are supposed to eat. In our little game, that's when our pests do their work -- each pest is instructed to be annoying by way of the IPest interface. In this way, we can easily have both Telemarketers and HouseFlys be annoying in each of their own ways -- we care only that we have something in the DiningRoom object that is a pest, we don't really care what it is and they could have nothing in common with other.
This very contrived pseudo-code example (that dragged on a lot longer than I anticipated) is simply meant to illustrate the kind of thing that finally turned the light on for me in terms of when we might use an interface. I apologize in advance for the silliness of the example, but hope that it helps in your understanding. And, to be sure, the other posted answers you've received here really cover the gamut of the use of interfaces today in design patterns and development methodologies.
The specific example I used to give to students is that they should write
List myList = new ArrayList(); // programming to the List interface
instead of
ArrayList myList = new ArrayList(); // this is bad
These look exactly the same in a short program, but if you go on to use myList 100 times in your program you can start to see a difference. The first declaration ensures that you only call methods on myList that are defined by the List interface (so no ArrayList specific methods). If you've programmed to the interface this way, later on you can decide that you really need
List myList = new TreeList();
and you only have to change your code in that one spot. You already know that the rest of your code doesn't do anything that will be broken by changing the implementation because you programmed to the interface.
The benefits are even more obvious (I think) when you're talking about method parameters and return values. Take this for example:
public ArrayList doSomething(HashMap map);
That method declaration ties you to two concrete implementations (ArrayList and HashMap). As soon as that method is called from other code, any changes to those types probably mean you're going to have to change the calling code as well. It would be better to program to the interfaces.
public List doSomething(Map map);
Now it doesn't matter what kind of List you return, or what kind of Map is passed in as a parameter. Changes that you make inside the doSomething method won't force you to change the calling code.
Programming to an interface is saying, "I need this functionality and I don't care where it comes from."
Consider (in Java), the List interface versus the ArrayList and LinkedList concrete classes. If all I care about is that I have a data structure containing multiple data items that I should access via iteration, I'd pick a List (and that's 99% of the time). If I know that I need constant-time insert/delete from either end of the list, I might pick the LinkedList concrete implementation (or more likely, use the Queue interface). If I know I need random access by index, I'd pick the ArrayList concrete class.
Programming to an interface has absolutely nothing to do with abstract interfaces like we see in Java or .NET. It isn't even an OOP concept.
What it means is don't go messing around with the internals of an object or data structure. Use the Abstract Program Interface, or API, to interact with your data. In Java or C# that means using public properties and methods instead of raw field access. For C that means using functions instead of raw pointers.
EDIT: And with databases it means using views and stored procedures instead of direct table access.
Using interfaces is a key factor in making your code easily testable in addition to removing unnecessary couplings between your classes. By creating an interface that defines the operations on your class, you allow classes that want to use that functionality the ability to use it without depending on your implementing class directly. If later on you decide to change and use a different implementation, you need only change the part of the code where the implementation is instantiated. The rest of the code need not change because it depends on the interface, not the implementing class.
This is very useful in creating unit tests. In the class under test you have it depend on the interface and inject an instance of the interface into the class (or a factory that allows it to build instances of the interface as needed) via the constructor or a property settor. The class uses the provided (or created) interface in its methods. When you go to write your tests, you can mock or fake the interface and provide an interface that responds with data configured in your unit test. You can do this because your class under test deals only with the interface, not your concrete implementation. Any class implementing the interface, including your mock or fake class, will do.
EDIT: Below is a link to an article where Erich Gamma discusses his quote, "Program to an interface, not an implementation."
http://www.artima.com/lejava/articles/designprinciples.html
You should look into Inversion of Control:
Martin Fowler: Inversion of Control Containers and the Dependency Injection pattern
Wikipedia: Inversion of Control
In such a scenario, you wouldn't write this:
IInterface classRef = new ObjectWhatever();
You would write something like this:
IInterface classRef = container.Resolve<IInterface>();
This would go into a rule-based setup in the container object, and construct the actual object for you, which could be ObjectWhatever. The important thing is that you could replace this rule with something that used another type of object altogether, and your code would still work.
If we leave IoC off the table, you can write code that knows that it can talk to an object that does something specific, but not which type of object or how it does it.
This would come in handy when passing parameters.
As for your parenthesized question "Also, how could you write a method that takes in an object that implements an Interface? Is that possible?", in C# you would simply use the interface type for the parameter type, like this:
public void DoSomethingToAnObject(IInterface whatever) { ... }
This plugs right into the "talk to an object that does something specific." The method defined above knows what to expect from the object, that it implements everything in IInterface, but it doesn't care which type of object it is, only that it adheres to the contract, which is what an interface is.
For instance, you're probably familiar with calculators and have probably used quite a few in your days, but most of the time they're all different. You, on the other hand, knows how a standard calculator should work, so you're able to use them all, even if you can't use the specific features that each calculator has that none of the other has.
This is the beauty of interfaces. You can write a piece of code, that knows that it will get objects passed to it that it can expect certain behavior from. It doesn't care one hoot what kind of object it is, only that it supports the behavior needed.
Let me give you a concrete example.
We have a custom-built translation system for windows forms. This system loops through controls on a form and translate text in each. The system knows how to handle basic controls, like the-type-of-control-that-has-a-Text-property, and similar basic stuff, but for anything basic, it falls short.
Now, since controls inherit from pre-defined classes that we have no control over, we could do one of three things:
Build support for our translation system to detect specifically which type of control it is working with, and translate the correct bits (maintenance nightmare)
Build support into base classes (impossible, since all the controls inherit from different pre-defined classes)
Add interface support
So we did nr. 3. All our controls implement ILocalizable, which is an interface that gives us one method, the ability to translate "itself" into a container of translation text/rules. As such, the form doesn't need to know which kind of control it has found, only that it implements the specific interface, and knows that there is a method where it can call to localize the control.
Code to the Interface Not the Implementation has NOTHING to do with Java, nor its Interface construct.
This concept was brought to prominence in the Patterns / Gang of Four books but was most probably around well before that. The concept certainly existed well before Java ever existed.
The Java Interface construct was created to aid in this idea (among other things), and people have become too focused on the construct as the centre of the meaning rather than the original intent. However, it is the reason we have public and private methods and attributes in Java, C++, C#, etc.
It means just interact with an object or system's public interface. Don't worry or even anticipate how it does what it does internally. Don't worry about how it is implemented. In object-oriented code, it is why we have public vs. private methods/attributes. We are intended to use the public methods because the private methods are there only for use internally, within the class. They make up the implementation of the class and can be changed as required without changing the public interface. Assume that regarding functionality, a method on a class will perform the same operation with the same expected result every time you call it with the same parameters. It allows the author to change how the class works, its implementation, without breaking how people interact with it.
And you can program to the interface, not the implementation without ever using an Interface construct. You can program to the interface not the implementation in C++, which does not have an Interface construct. You can integrate two massive enterprise systems much more robustly as long as they interact through public interfaces (contracts) rather than calling methods on objects internal to the systems. The interfaces are expected to always react the same expected way given the same input parameters; if implemented to the interface and not the implementation. The concept works in many places.
Shake the thought that Java Interfaces have anything what-so-ever to do with the concept of 'Program to the Interface, Not the Implementation'. They can help apply the concept, but they are not the concept.
It sounds like you understand how interfaces work but are unsure of when to use them and what advantages they offer. Here are a few examples of when an interface would make sense:
// if I want to add search capabilities to my application and support multiple search
// engines such as Google, Yahoo, Live, etc.
interface ISearchProvider
{
string Search(string keywords);
}
then I could create GoogleSearchProvider, YahooSearchProvider, LiveSearchProvider, etc.
// if I want to support multiple downloads using different protocols
// HTTP, HTTPS, FTP, FTPS, etc.
interface IUrlDownload
{
void Download(string url)
}
// how about an image loader for different kinds of images JPG, GIF, PNG, etc.
interface IImageLoader
{
Bitmap LoadImage(string filename)
}
then create JpegImageLoader, GifImageLoader, PngImageLoader, etc.
Most add-ins and plugin systems work off interfaces.
Another popular use is for the Repository pattern. Say I want to load a list of zip codes from different sources
interface IZipCodeRepository
{
IList<ZipCode> GetZipCodes(string state);
}
then I could create an XMLZipCodeRepository, SQLZipCodeRepository, CSVZipCodeRepository, etc. For my web applications, I often create XML repositories early on so I can get something up and running before the SQL Database is ready. Once the database is ready I write an SQLRepository to replace the XML version. The rest of my code remains unchanged since it runs solely off of interfaces.
Methods can accept interfaces such as:
PrintZipCodes(IZipCodeRepository zipCodeRepository, string state)
{
foreach (ZipCode zipCode in zipCodeRepository.GetZipCodes(state))
{
Console.WriteLine(zipCode.ToString());
}
}
It makes your code a lot more extensible and easier to maintain when you have sets of similar classes. I am a junior programmer, so I am no expert, but I just finished a project that required something similar.
I work on client side software that talks to a server running a medical device. We are developing a new version of this device that has some new components that the customer must configure at times. There are two types of new components, and they are different, but they are also very similar. Basically, I had to create two config forms, two lists classes, two of everything.
I decided that it would be best to create an abstract base class for each control type that would hold almost all of the real logic, and then derived types to take care of the differences between the two components. However, the base classes would not have been able to perform operations on these components if I had to worry about types all of the time (well, they could have, but there would have been an "if" statement or switch in every method).
I defined a simple interface for these components and all of the base classes talk to this interface. Now when I change something, it pretty much 'just works' everywhere and I have no code duplication.
A lot of explanation out there, but to make it even more simpler. Take for instance a List. One can implement a list with as:
An internal array
A linked list
Other implementations
By building to an interface, say a List. You only code as to definition of List or what List means in reality.
You could use any type of implementation internally say an array implementation. But suppose you wish to change the implementation for some reason say a bug or performance. Then you just have to change the declaration List<String> ls = new ArrayList<String>() to List<String> ls = new LinkedList<String>().
Nowhere else in code, will you have to change anything else; Because everything else was built on the definition of List.
If you program in Java, JDBC is a good example. JDBC defines a set of interfaces but says nothing about the implementation. Your applications can be written against this set of interfaces. In theory, you pick some JDBC driver and your application would just work. If you discover there's a faster or "better" or cheaper JDBC driver or for whatever reason, you can again in theory re-configure your property file, and without having to make any change in your application, your application would still work.
I am a late comer to this question, but I want to mention here that the line "Program to an interface, not an implementation" had some good discussion in the GoF (Gang of Four) Design Patterns book.
It stated, on p. 18:
Program to an interface, not an implementation
Don't declare variables to be instances of particular concrete classes. Instead, commit only to an interface defined by an abstract class. You will find this to be a common theme of the design patterns in this book.
and above that, it began with:
There are two benefits to manipulating objects solely in terms of the interface defined by abstract classes:
Clients remain unaware of the specific types of objects they use, as long as the objects adhere to the interface that clients expect.
Clients remain unaware of the classes that implement these objects. Clients only know about the abstract class(es) defining the interface.
So in other words, don't write it your classes so that it has a quack() method for ducks, and then a bark() method for dogs, because they are too specific for a particular implementation of a class (or subclass). Instead, write the method using names that are general enough to be used in the base class, such as giveSound() or move(), so that they can be used for ducks, dogs, or even cars, and then the client of your classes can just say .giveSound() rather than thinking about whether to use quack() or bark() or even determine the type before issuing the correct message to be sent to the object.
Programming to Interfaces is awesome, it promotes loose coupling. As #lassevk mentioned, Inversion of Control is a great use of this.
In addition, look into SOLID principals. here is a video series
It goes through a hard coded (strongly coupled example) then looks at interfaces, finally progressing to a IoC/DI tool (NInject)
To add to the existing posts, sometimes coding to interfaces helps on large projects when developers work on separate components simultaneously. All you need is to define interfaces upfront and write code to them while other developers write code to the interface you are implementing.
It can be advantageous to program to interfaces, even when we are not depending on abstractions.
Programming to interfaces forces us to use a contextually appropriate subset of an object. That helps because it:
prevents us from doing contextually inappropriate things, and
lets us safely change the implementation in the future.
For example, consider a Person class that implements the Friend and the Employee interface.
class Person implements AbstractEmployee, AbstractFriend {
}
In the context of the person's birthday, we program to the Friend interface, to prevent treating the person like an Employee.
function party() {
const friend: Friend = new Person("Kathryn");
friend.HaveFun();
}
In the context of the person's work, we program to the Employee interface, to prevent blurring workplace boundaries.
function workplace() {
const employee: Employee = new Person("Kathryn");
employee.DoWork();
}
Great. We have behaved appropriately in different contexts, and our software is working well.
Far into the future, if our business changes to work with dogs, we can change the software fairly easily. First, we create a Dog class that implements both Friend and Employee. Then, we safely change new Person() to new Dog(). Even if both functions have thousands of lines of code, that simple edit will work because we know the following are true:
Function party uses only the Friend subset of Person.
Function workplace uses only the Employee subset of Person.
Class Dog implements both the Friend and Employee interfaces.
On the other hand, if either party or workplace were to have programmed against Person, there would be a risk of both having Person-specific code. Changing from Person to Dog would require us to comb through the code to extirpate any Person-specific code that Dog does not support.
The moral: programming to interfaces helps our code to behave appropriately and to be ready for change. It also prepares our code to depend on abstractions, which brings even more advantages.
If I'm writing a new class Swimmer to add the functionality swim() and need to use an object of class say Dog, and this Dog class implements interface Animal which declares swim().
At the top of the hierarchy (Animal), it's very abstract while at the bottom (Dog) it's very concrete. The way I think about "programming to interfaces" is that, as I write Swimmer class, I want to write my code against the interface that's as far up that hierarchy which in this case is an Animal object. An interface is free from implementation details and thus makes your code loosely-coupled.
The implementation details can be changed with time, however, it would not affect the remaining code since all you are interacting with is with the interface and not the implementation. You don't care what the implementation is like... all you know is that there will be a class that would implement the interface.
It is also good for Unit Testing, you can inject your own classes (that meet the requirements of the interface) into a class that depends on it
Short story: A postman is asked to go home after home and receive the covers contains (letters, documents, cheques, gift cards, application, love letter) with the address written on it to deliver.
Suppose there is no cover and ask the postman to go home after home and receive all the things and deliver to other people, the postman can get confused.
So better wrap it with cover (in our story it is the interface) then he will do his job fine.
Now the postman's job is to receive and deliver the covers only (he wouldn't bothered what is inside in the cover).
Create a type of interface not actual type, but implement it with actual type.
To create to interface means your components get Fit into the rest of code easily
I give you an example.
you have the AirPlane interface as below.
interface Airplane{
parkPlane();
servicePlane();
}
Suppose you have methods in your Controller class of Planes like
parkPlane(Airplane plane)
and
servicePlane(Airplane plane)
implemented in your program. It will not BREAK your code.
I mean, it need not to change as long as it accepts arguments as AirPlane.
Because it will accept any Airplane despite actual type, flyer, highflyr, fighter, etc.
Also, in a collection:
List<Airplane> plane; // Will take all your planes.
The following example will clear your understanding.
You have a fighter plane that implements it, so
public class Fighter implements Airplane {
public void parkPlane(){
// Specific implementations for fighter plane to park
}
public void servicePlane(){
// Specific implementatoins for fighter plane to service.
}
}
The same thing for HighFlyer and other clasess:
public class HighFlyer implements Airplane {
public void parkPlane(){
// Specific implementations for HighFlyer plane to park
}
public void servicePlane(){
// specific implementatoins for HighFlyer plane to service.
}
}
Now think your controller classes using AirPlane several times,
Suppose your Controller class is ControlPlane like below,
public Class ControlPlane{
AirPlane plane;
// so much method with AirPlane reference are used here...
}
Here magic comes as you may make your new AirPlane type instances as many as you want and you are not changing the code of ControlPlane class.
You can add an instance...
JumboJetPlane // implementing AirPlane interface.
AirBus // implementing AirPlane interface.
You may remove instances of previously created types too.
So, just to get this right, the advantage of a interface is that I can separate the calling of a method from any particular class. Instead creating a instance of the interface, where the implementation is given from whichever class I choose that implements that interface. Thus allowing me to have many classes, which have similar but slightly different functionality and in some cases (the cases related to the intention of the interface) not care which object it is.
For example, I could have a movement interface. A method which makes something 'move' and any object (Person, Car, Cat) that implements the movement interface could be passed in and told to move. Without the method every knowing the type of class it is.
Imagine you have a product called 'Zebra' that can be extended by plugins. It finds the plugins by searching for DLLs in some directory. It loads all those DLLs and uses reflection to find any classes that implement IZebraPlugin, and then calls the methods of that interface to communicate with the plugins.
This makes it completely independent of any specific plugin class - it doesn't care what the classes are. It only cares that they fulfill the interface specification.
Interfaces are a way of defining points of extensibility like this. Code that talks to an interface is more loosely coupled - in fact it is not coupled at all to any other specific code. It can inter-operate with plugins written years later by people who have never met the original developer.
You could instead use a base class with virtual functions - all plugins would be derived from the base class. But this is much more limiting because a class can only have one base class, whereas it can implement any number of interfaces.
C++ explanation.
Think of an interface as your classes public methods.
You then could create a template that 'depends' on these public methods in order to carry out it's own function (it makes function calls defined in the classes public interface). Lets say this template is a container, like a Vector class, and the interface it depends on is a search algorithm.
Any algorithm class that defines the functions/interface Vector makes calls to will satisfy the 'contract' (as someone explained in the original reply). The algorithms don't even need to be of the same base class; the only requirement is that the functions/methods that the Vector depends on (interface) is defined in your algorithm.
The point of all of this is that you could supply any different search algorithm/class just as long as it supplied the interface that Vector depends on (bubble search, sequential search, quick search).
You might also want to design other containers (lists, queues) that would harness the same search algorithm as Vector by having them fulfill the interface/contract that your search algorithms depends on.
This saves time (OOP principle 'code reuse') as you are able to write an algorithm once instead of again and again and again specific to every new object you create without over-complicating the issue with an overgrown inheritance tree.
As for 'missing out' on how things operate; big-time (at least in C++), as this is how most of the Standard TEMPLATE Library's framework operates.
Of course when using inheritance and abstract classes the methodology of programming to an interface changes; but the principle is the same, your public functions/methods are your classes interface.
This is a huge topic and one of the the cornerstone principles of Design Patterns.
In Java these concrete classes all implement the CharSequence interface:
CharBuffer, String, StringBuffer, StringBuilder
These concrete classes do not have a common parent class other than Object, so there is nothing that relates them, other than the fact they each have something to do with arrays of characters, representing such, or manipulating such. For instance, the characters of String cannot be changed once a String object is instantiated, whereas the characters of StringBuffer or StringBuilder can be edited.
Yet each one of these classes is capable of suitably implementing the CharSequence interface methods:
char charAt(int index)
int length()
CharSequence subSequence(int start, int end)
String toString()
In some cases, Java class library classes that used to accept String have been revised to now accept the CharSequence interface. So if you have an instance of StringBuilder, instead of extracting a String object (which means instantiating a new object instance), it can instead just pass the StringBuilder itself as it implements the CharSequence interface.
The Appendable interface that some classes implement has much the same kind of benefit for any situation where characters can be appended to an instance of the underlying concrete class object instance. All of these concrete classes implement the Appendable interface:
BufferedWriter, CharArrayWriter, CharBuffer, FileWriter, FilterWriter, LogStream, OutputStreamWriter, PipedWriter, PrintStream, PrintWriter, StringBuffer, StringBuilder, StringWriter, Writer
Previous answers focus on programming to an abstraction for the sake of extensibility and loose coupling. While these are very important points,
readability is equally important. Readability allows others (and your future self) to understand the code with minimal effort. This is why readability leverages abstractions.
An abstraction is, by definition, simpler than its implementation. An abstraction omits detail in order to convey the essence or purpose of a thing, but nothing more.
Because abstractions are simpler, I can fit a lot more of them in my head at one time, compared to implementations.
As a programmer (in any language) I walk around with a general idea of a List in my head at all times. In particular, a List allows random access, duplicate elements, and maintains order. When I see a declaration like this: List myList = new ArrayList() I think, cool, this is a List that's being used in the (basic) way that I understand; and I don't have to think any more about it.
On the other hand, I do not carry around the specific implementation details of ArrayList in my head. So when I see, ArrayList myList = new ArrayList(). I think, uh-oh, this ArrayList must be used in a way that isn't covered by the List interface. Now I have to track down all the usages of this ArrayList to understand why, because otherwise I won't be able to fully understand this code. It gets even more confusing when I discover that 100% of the usages of this ArrayList do conform to the List interface. Then I'm left wondering... was there some code relying on ArrayList implementation details that got deleted? Was the programmer who instantiated it just incompetent? Is this application locked into that specific implementation in some way at runtime? A way that I don't understand?
I'm now confused and uncertain about this application, and all we're talking about is a simple List. What if this was a complex business object ignoring its interface? Then my knowledge of the business domain is insufficient to understand the purpose of the code.
So even when I need a List strictly within a private method (nothing that would break other applications if it changed, and I could easily find/replace every usage in my IDE) it still benefits readability to program to an abstraction. Because abstractions are simpler than implementation details. You could say that programming to abstractions is one way of adhering to the KISS principle.
An interface is like a contract, where you want your implementation class to implement methods written in the contract (interface). Since Java does not provide multiple inheritance, "programming to interface" is a good way to achieve multiple inheritance.
If you have a class A that is already extending some other class B, but you want that class A to also follow certain guidelines or implement a certain contract, then you can do so by the "programming to interface" strategy.
Q: - ... "Could you use any class that implements an interface?"
A: - Yes.
Q: - ... "When would you need to do that?"
A: - Each time you need a class(es) that implements interface(s).
Note: We couldn't instantiate an interface not implemented by a class - True.
Why?
Because the interface has only method prototypes, not definitions (just functions names, not their logic)
AnIntf anInst = new Aclass();
// we could do this only if Aclass implements AnIntf.
// anInst will have Aclass reference.
Note: Now we could understand what happened if Bclass and Cclass implemented same Dintf.
Dintf bInst = new Bclass();
// now we could call all Dintf functions implemented (defined) in Bclass.
Dintf cInst = new Cclass();
// now we could call all Dintf functions implemented (defined) in Cclass.
What we have: Same interface prototypes (functions names in interface), and call different implementations.
Bibliography:
Prototypes - wikipedia
program to an interface is a term from the GOF book. i would not directly say it has to do with java interface but rather real interfaces. to achieve clean layer separation, you need to create some separation between systems for example: Let's say you had a concrete database you want to use, you would never "program to the database" , instead you would "program to the storage interface". Likewise you would never "program to a Web Service" but rather you would program to a "client interface". this is so you can easily swap things out.
i find these rules help me:
1. we use a java interface when we have multiple types of an object. if i just have single object, i dont see the point. if there are at least two concrete implementations of some idea, then i would use a java interface.
2. if as i stated above, you want to bring decoupling from an external system (storage system) to your own system (local DB) then also use a interface.
notice how there are two ways to consider when to use them.
Coding to an interface is a philosophy, rather than specific language constructs or design patterns - it instructs you what is the correct order of steps to follow in order to create better software systems (e.g. more resilient, more testable, more scalable, more extendible, and other nice traits).
What it actually means is:
===
Before jumping to implementations and coding (the HOW) - think of the WHAT:
What black boxes should make up your system,
What is each box' responsibility,
What are the ways each "client" (that is, one of those other boxes, 3rd party "boxes", or even humans) should communicate with it (the API of each box).
After you figure the above, go ahead and implement those boxes (the HOW).
Thinking first of what a box' is and what its API, leads the developer to distil the box' responsibility, and to mark for himself and future developers the difference between what is its exposed details ("API") and it's hidden details ("implementation details"), which is a very important differentiation to have.
One immediate and easily noticeable gain is the team can then change and improve implementations without affecting the general architecture. It also makes the system MUCH more testable (it goes well with the TDD approach).
===
Beyond the traits I've mentioned above, you also save A LOT OF TIME going this direction.
Micro Services and DDD, when done right, are great examples of "Coding to an interface", however the concept wins in every pattern from monoliths to "serverless", from BE to FE, from OOP to functional, etc....
I strongly recommend this approach for Software Engineering (and I basically believe it makes total sense in other fields as well).
Program to an interface allows to change implementation of contract defined by interface seamlessly. It allows loose coupling between contract and specific implementations.
IInterface classRef = new ObjectWhatever()
You could use any class that implements IInterface? When would you need to do that?
Have a look at this SE question for good example.
Why should the interface for a Java class be preferred?
does using an Interface hit performance?
if so how much?
Yes. It will have slight performance overhead in sub-seconds. But if your application has requirement to change the implementation of interface dynamically, don't worry about performance impact.
how can you avoid it without having to maintain two bits of code?
Don't try to avoid multiple implementations of interface if your application need them. In absence of tight coupling of interface with one specific implementation, you may have to deploy the patch to change one implementation to other implementation.
One good use case: Implementation of Strategy pattern:
Real World Example of the Strategy Pattern
"Program to interface" means don't provide hard code right the way, meaning your code should be extended without breaking the previous functionality. Just extensions, not editing the previous code.
Also I see a lot of good and explanatory answers here, so I want to give my point of view here, including some extra information what I noticed when using this method.
Unit testing
For the last two years, I have written a hobby project and I did not write unit tests for it. After writing about 50K lines I found out it would be really necessary to write unit tests.
I did not use interfaces (or very sparingly) ... and when I made my first unit test, I found out it was complicated. Why?
Because I had to make a lot of class instances, used for input as class variables and/or parameters. So the tests look more like integration tests (having to make a complete 'framework' of classes since all was tied together).
Fear of interfaces
So I decided to use interfaces. My fear was that I had to implement all functionality everywhere (in all used classes) multiple times. In some way this is true, however, by using inheritance it can be reduced a lot.
Combination of interfaces and inheritance
I found out the combination is very good to be used. I give a very simple example.
public interface IPricable
{
int Price { get; }
}
public interface ICar : IPricable
public abstract class Article
{
public int Price { get { return ... } }
}
public class Car : Article, ICar
{
// Price does not need to be defined here
}
This way copying code is not necessary, while still having the benefit of using a car as interface (ICar).

Should I use multiple static classes with maximum one public method

I'm writing a structural detailing (CAD) software for concrete buildings in C#. I have defined like hundreds of static classes each with one public method and if needed some private methods. Each one of these methods in these static classes does part of the job. They are called from one God static class named Building.cs.
For example one class looks like this:
public static partial class GetMainRebars
{
public static void GetMainRebars()
{
}
// other possible variables and private methods
}
The program is running very very fast compared to other similar programs. But deep in my heart, looking at the above code I feel that something still may be wrong with this design pattern. Maybe I will encounter problems in terms of maintenance, or ...? I've taught myself programming, so I may have missed many core principles during the fast self teaching process. Can you elaborate the cons and pros of the above pattern?
And one very rookie question relevant to the pattern. Let's say I define a static variable inside such a class, will it remain in memory during the life time of the program? No disposing and whatsoever? Is it OK?
Ok. First of all I want to say that this is a VERY bad pattern (if I can even call it that). You shouldn't have many static classes with single methods... not even gonna talk about the single god static class. You should read up on SOLID principles. For now though I am gonna give you a few pointers.
Instead of having 1000 small static classes, try to group some of them, so you reduce the number a bit(if they have similar function or something of course not otherwise). After that you can turn those static classes into service classes which should derive from interfaces. For example if you have a BuildingService class, you can make it derive from IBuildingService. That way if for some reason in the feature you decide to switch this class out for another one, you can do that without having to change it in a 1000 places but just in one.
Determining which implementation of each interface is going to be used is an IoC(Unity for example)'s job. Also the god class should be removed entirely. Having a class that does 1000 things violates the separation of concern pattern, it doesn't matter if it does them using methods implemented inside other classes or not. If you really need that functionality you can maybe create class that stores a collection of services which can later be invoked.
I hope this points you in the right direction.

Whether to use static class or not [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
When to Use Static Classes in C#
I will write code in which I need class which holds methods only. I thought it is good idea to make class static. Some senior programmer argue that do not use static class. I do not find any good reason why not to use static class. Can someone knows in C# language there is any harm in using static class. Can static class usage required more memory than creating object of class? I will clear that my class do not have single field and hence property too.
For further information I will explain code also.
We have product in which we need to done XML handling for chart settings. We read object from XML file in class Library which holds chart related properties. Now I have two Layers first is product second class Library and XML related operations. Actually senior programmers want independent class to read and write XML. I make this class static.
In another situation I have class of chartData. In that class I want methods like whether Line of Axis,series of chart is valid or not. Also whether color of chart stores in ARGB format or plain color name. They do not want those methods in same project. Now can I make class static or create object.
If your class does not have to manage state then there is absolutely no reason to not declare it static.
In C# some classes even have to be static like the ones that have extension methods.
Now if there's a chance that it requires state in the future, it's better to not declare it as static as if you change it afterwards, the consumers will need to change their code too.
One concern is that statics can be harder (not impossible) to test in some situations
The danger of static classes is that they often become God Objects. They know too much, they do too much, and they're usually called "Utilities.cs".
Also, just because your class holds methods only doesn't mean that you can't use a regular class, but it depends on what your class does. Does it have any state? Does it persist any data that's being modified in your methods?
Having static classes is not bad, but could make you think why you have those methods there. Some things to keep in mind about that:
if the methods manage behavior for classes you have in your project, you could just add the methods to those classes directly:
//doing this:
if(product.IsValid()) { ... }
//instead of:
if(ProductHelper.IsValid(product)) { ... }
if the methods manage behavior for classes you can't modify, you could use extension methods (that by the end of the day are static! but it adds syntactic sugar)
public static bool IsValid( this Product product ) { ... }
//so you can do:
if(product.IsValid()) { ... }
if the methods are coupled to external services you may want to mock, using a non-static class with virtual methods or implementing an interface will let you replace the instance with a mock one whenever you need to use it:
//instead of:
StaticService.Save(product);
//you can do:
public IService Service {get;set;}
...
Service.Save(product);
//and in your tests:
yourObject.Service = new MockService(); //MockService inherits from your actual class or implements the same IService interface
by the other hand, having the logic in non-static classes will let you make use of polymorphism and replace the instance with another one that extends the behavior.
finally, having the logic in non-static classes will let you use IoC (inversion of control) and proxy-based AOP. If you don't know about that, you could take a look at frameworks like Spring.net, Unity, Castle, Ninject, etc. Just for giving you an example of what you could do with this: you can make all the classes implementing IService log their methods, or check some security constraints, or open a database connection and close it when the method ends; everything without adding the actual code to the class.
Hope it helps.
It depends on the situation when to use static classes or not. In the general case you create static classes when you do not need to manage state. So for example, Math.cs, or Utility.cs - where you have basic utility functions - eg string formatting, etc.
Another scenario where you want to use static is when you expect the class to not be modified alot. When the system grows and you find that you have to modify this static class alot then its best to remove the static keyword. If not then you will miss out on some benefits of OOD - eg polymorphism, interfaces - For example you could find that I need to change a specific method in a static class, but since you can't override a static method, then you might have to 'copy and paste' with minor changes.
Some senior programmer argue that do not use static class.
Tell him he is a traineee, not even a junior. Simple. The static keyword is there for a reason. if your class only has methods without keeping state - and those cases exist - then putting them into a static class is valid. Point.
Can someone knows in C# language there is any harm in using static class.
No. The only valid argument is that your design isbroken (i.e. the class should not be static and keep state). But if you really have methods that do not keep state - and those cases exist, like the "Math" class - then sorry, this is a totally valid approach. There are no negatives.

Making Methods All Static in Class

I was told by my colleague based on one of my classes (it is an instance class) that if you have no fields in your class (backing fields), just make all methods static in the class or make the class a singleton so that you don't have to use the keyword new for calling methods in this BL class.
I assume this is common and good practice? Basic OOP? I just want to see people's opinion on that.
I think basically he's saying since there's no state, no need for the methods to be instance methods.
I'm not sure about making it a singleton every time as an option in this case...is that some sort of pattern or good advice he's giving me?
Here's the class I'm talking about (please do not repost any of this code in this thread, this is private): http://www.elbalazo.net/post/class.txt
There is very little downside to calling new and constructing a class reference, especially if the class has no state. Allocations are fast in .NET, so I wouldn't use this alone as a justification for a class to be static.
Typically, I feel a class should be made static if the class has no specific context - if you're using the class just as a placeholder for "utility" methods or non-context specific operations, then it makes sense to be a static class.
If that class has a specific need for context, and a meaning in a concrete sense, then it probably does not justify being static, even if it has no state (although this is rare). There are times where the class purpose is defined by its reference itself, which provides "state" of a sort (the reference itself) without any local variables.
That being said, there is a big difference between a static class and a singleton. A singleton is a different animal - you want to use it when you need an instance, but only one instance, of the class to be created. There is state in a singleton, but you are using this pattern to enforce that there is only a single copy of the state. This has a very different meaning, and I would highly recommend avoiding using a singleton just to prevent needing to "call new".
There's no absolute rule for when a class should be static. It may have no state, but you may need it for reference equality or locking. Classes should be static when their purpose fits it being implemented as a static class. You shouldn't follow hard-and-fast rules in these situations; use what you 'feel' is right.
Having no state makes it a candidate for static-ness, but look at what it's being used for before arbitarily refactoring it.
A lack of state alone is no reason to make methods static. There are plenty of cases where a stateless class should still have instance methods. For example, any time you need to pass specific implementations of some logic between routines, it's much easier to do it with classes that have instance methods, as it allows us to use interfaces:
interface IConnectionProvider
{
object GetConnectedObject();
}
We could have a dozen implementations of the above, and pass them into routines that require an IConnectionProvider. In that case, static is a very clumsy alternative.
There's nothing wrong with having to use new to use a method in a stateless class.
As long as you don't need to create any abstraction from your class then static methods are fine. If your class needs to be mocked or implement any sort of interface then you're better off making the class a singleton, since you cannot mock static methods on classes. You can have a singleton implement an interface and can inherit instance methods from a singleton whereas you cannot inherit static methods.
We generally use singletons instead of static methods to allow our classes to be abstracted easily. This has helped in unit testing many times since we've run into scenarios where we wanted to mock something and could easily do so since the behavior was implemented as instance methods on a singleton.
Utility classes are often composed of independant methods that don't need state. In that case it is good practice to make those method static. You can as well make the class static, so it can't be instantiated.
With C# 3, you can also take advantage of extension methods, that will extend other classes with those methods. Note that in that case, making the class static is required.
public static class MathUtil
{
public static float Clamp(this float value, float min, float max)
{
return Math.Min(max, Math.Max(min, value));
}
}
Usage:
float f = ...;
f.Clamp(0,1);
I can think of lots of reasons for a non-static class with no members. For one, it may implement an interface and provide/augment behavior of another. For two, it may have virtual or abstract methods that allow customization. Basically using 'static' methods is procedural programming at it's worst and is contrary to object-oriented design.
Having said that, often small utilities routines are best done with a procedural implementation so don't shy away if it make sense. Consider String.IsNullOrEmpty() a great example of a procedural static routine that provides benefit in not being a method. (the benefit is that it can also check to see if the string is null)
Another example on the other side of the fence would be a serialization routine. It doesn't need any members per-say. Suppose it has two methods Write(Stream,Object) and object Read(Stream). It's not required that this be an object and static methods could suffice; however, it make sense to be an object or interface. As an object I could override it's behavior, or later change it's implementation so that it cached information about the object types it serialized. By making it an object to begin with you do not limit yourself.
Most of the time it's OK to make the class static. But a better question is why do you have a class without state?
There are very rare instances where a stateless class is good design. But stateless classes break object oriented design. They are usually a throwback to functional decomposition (all the rage before object oriented techniques became popular). Before you make a class static, ask yourself whether the data that it is working on should be included int he class or whether all of the functionality in the utility class shouldn't be broken up between other classes that may or may not already exist.
Make sure that you have a good reason to make class static.
According to Framework Design Guidelines:
Static classes should be used only as
supporting classes for the
object-oriented core of the framework.
DO NOT treat static classes as a miscellaneous bucket.
There should be a clear charter for
the class.
Static Class, Static Methods and Singleton class are three different concepts. Static classes and static methods are usually used to implement strictly utility classes or making them stateless and hence thread-safe and conncurrently usable.
Static classes need not be Singletons. Singleton means there is only one instance of a class, which is otherwise instantiable. It is most often used to encapsulate the physical world representation of a truly single instance of a resource, such as a single database pool or a single printer.
Coming back to your colleague's suggestion -- I tend to agree it is a sound advice. There is no need to instantiate a class if the methods are made static, when they can be static. It makes the caller code more readable and the called methods more easily usable.
It sounds like you're talking about a strictly Utility class, in which case there's really no reason to have seperate instances.
Make those utility methods static. You can keep the class as a regular object if you'd like (to allow for the future addition of instance methods/state information).

what is the inconveniences of using static property or method in OO approach?

I need to explain myself why I do not use static methods/propertis. For example,
String s=String.Empty;
is this property (belongs to .Net framework) wrong? is should be like?
String s= new EmptySting();
or
IEmptyStringFactory factory=new EmptyStringFactory();
String s= factory.Create();
Why would you want to create a new object every time you want to use the empty string? Basically the empty string is a singleton object.
As Will says, statics can certainly be problematic when it comes to testing, but that doesn't mean you should use statics everywhere.
(Personally I prefer to use "" instead of string.Empty, but that's a discussion which has been done to death elsewhere.)
I think the worst thing about using statics is that you can end up with tight coupling between classes. See the ASP.NET before System.Web.Abstractions came out. This makes your classes harder to test and, possibly, more prone to bugs causing system-wide issues.
Well, in the case of String.Empty it is more of a constant (kind of like Math.PI or Math.E) and is defined for that type. Creating a sub-class for one specific value is typically bad.
On to your other (main) question as to how they are "inconvenient:"
I've only found static properties and methods to be inconvenient when they are abused to create a more functional solution instead of the object-oriented approach that is meant with C#.
Most of my static members are either constants like above or factory-like methods (like Int.TryParse).
If the class has a lot of static properties or methods that are used to define the "object" that is represented by the class, I would say that is typically bad design.
One major thing that does bother me with the static methods/properties is that you sometimes they are too tied to one way of doing something without providing an easy way to create an instance the provides with easy overrides to the behavior. For example, imagine that you want to do your mathematical computations in degrees instead of radians. Since Math is all static, you can't do that and instead have to convert each time. If Math were instance-based, you could create a new Math object that defaulted to radians or degrees as you wished and could still have a static property for the typical behaviors.
For example, I wish I could say this:
Math mD = new Math(AngleMode.Degrees); // ooooh, use one with degrees instead
double x = mD.Sin(angleInDegrees);
but instead I have to write this:
double x = Math.Sin(angleInDegrees * Math.PI / 180);
(of course, you can write extension methods and constants for the conversions, but you get my point).
This may not be the best example, but I hope it conveys the problem of not being able to use the methods with variations on the default. It creates a functional construct and breaks with the usual object-oriented approach.
(As a side note, in this example, I would have a static property for each mode. That in my eyes would be a decent use of the static properties).
The semantics of your three different examples are very different. I'll try to break it down as I do it in practice.
String s=String.Empty;
This is a singleton. You would use this when you want to ensure that there's only ever one of something. In this case, since a string is immutable, there only ever needs to be one "empty" string. Don't overuse singletons, because they're hard to test. When they make sense, though, they're very powerful.
String s= new EmptySting();
This is your standard constructor. You should use this whenever possible. Refactor to the singleton pattern only when the case for a singleton is overwhelming. In the case of string.Empty, it very much makes sense to use singleton because the string's state cannot be changed by referring classes.
IEmptyStringFactory factory=new EmptyStringFactory();
String s= factory.Create();
Instance factories and static factories, like singletons, should be used sparingly. Mostly, they should be used when the construction of a class is complex and relies on multiple steps, and possibly state.
If the construction of an object relies on state that might not be known by the caller, then you should use instance factories (like in your example). When the construction is complex, but the caller knows the conditions that would affect construction, then you should use a static factory (such as StringFactory.CreateEmpty() or StringFactory.Create("foo"). In the case of a string, however, the construction is simple enough that using a factory would smell of a solution looking for a problem.
Generally, it is a bad idea to create a new empty string - this creates extra objects on the heap, so extra work for the garbage collector. You should always use String.Empty or "" when you want the empty string as those are references to existing objects.
In general, the purpose of a static is to make sure that there is ever only one instance of the static "thing" in your program.
Static fields maintain the same value throughout all instances of a type
Static methods and properties do not need an instance in order to be invoked
Static types may only contain static methods/properties/fields
Statics are useful when you know that the "thing" you are creating will never change through the lifetime of the program. In your example, System.String defines a private static field to store the empty string, which is allocated only once, and exposed through a static property.
As mentioned, there are testability issues with statics. For example, it is hard to mock static types since they can't be instantiated or derived from. It is also hard to introduce mocks into some static methods since the fields they use must also be static. (You can use a static setter property to get around this issue, but I personally try to avoid this as it usually breaks encapsulation).
For the most part, use of statics is o.k. You need to decide when to make the trade-off of using static and instance entities based on the complexity of your program.
In a purist OO approach, static methods break the OO paradigm because you're attaching actual data to the definition of data. A class is a definition of a set of objects that conform to semantics. Just like there are mathematical sets that contain one or zero elements, there can be classes that contain only one or zero possible states.
The way of sharing a common object and allowing multiple actors on its state is to pass a reference.
The main problem with static methods comes from, what if in the future you want two of them? We're writing computer programs, one would assume that if we can make one of something, we should be able to make two very simply, with statics this isn't the case. To change something from a static state to a normal instance state is a complete rewrite of the class in question.
I might assume I want to only ever use one SqlConnection pool, but now what if I want a high priority pool and a low priority pool. If the connection pool was instanced instead of static the solution would be simple, instead I have to couple pooling with connection instantiation. I better hope the library writer had forsight or else I have to reimplement the pooling.
Edit:
Static methods in single inheritance languages are a hack to provide reuse of code. Normally if there are methods one wanted to share common code between classes you could pull it in through multiple inheritance or a mixin. Single inheritance languages force you to call static methods; there's no way to use multiple abstract classes with state.
There are draw backs to using statics such as:
Statics dont allow extension methods.
Static constructor is called automatically to initialize the class before the first instance is created (depending on the static class being called of course)
Static class data lives throughout the lifespan of the execution scope, this wastes memory.
Reasons to use static methods
Statics are good for helper methods, as you dont want to create a local copy of a non-static class, just to calla single helper method.
Eeerm, static classes make the singleton pattern possible.
From a scenario-driven design, the criteria for choosing statics vs. instance methods should be: if a method can be called without an instance of a class to be created, make it static. Else, make it an instance method. First option makes the call a once line process, and avoid .ctor calls.
Another useful criteria here is whether responsabilities are in the right place. For ex. you got an Account class. Say you need functionality for currency conversion e.g. from dollars to euros. Do you make that a member of the Account class? account.ConvertTo(Currency.Euro)? Or do you create a different class that encapsulates that responsibility? CurrencyConverter.Convert(account, Currency.Euro)? To me, the latter is better in the sense that encapsulates responsibilities on a different class, while in the former I would be spreading currency conversion knowledge across different accounts.

Categories

Resources