C# threading pattern that will let me flush - c#

I have a class that implements the Begin/End Invocation pattern where I initially used ThreadPool.QueueUserWorkItem() to thread my work. The work done on the thread doesn't loop but does takes a bit of time to process so the work itself is not easily stopped.
I now have the side effect where someone using my class is calling the Begin (with callback) a ton of times to do a lot of processing so ThreadPool.QueueUserWorkItem is creating a ton of threads to do the processing. That in itself isn't bad but there are instances where they want to abandon the processing and start a new process but they are forced to wait for their first request to finish.
Since ThreadPool.QueueUseWorkItem() doesn't allow me to cancel the threads I am trying to come up with a better way to queue up the work and maybe use an explicit FlushQueue() method in my class to allow the caller to abandon work in my queue.
Anyone have any suggestion on a threading pattern that fits my needs?
Edit: I'm currently targeting the 2.0 framework. I'm currently thinking that a Consumer/Producer queue might work. Does anyone have thoughts on the idea of flushing the queue?
Edit 2 Problem Clarification:
Since I'm using the Begin/End pattern in my class every time the caller uses the Begin with callback I create a whole new thread on the thread pool. This call does a very small amount of processing and is not where I want to cancel. It's the uncompleted jobs in the queue I wish to stop.
The fact that the ThreadPool will create 250 threads per processor by default means if you ask the ThreadPool to queue a large amount of items with QueueUserWorkItem() you end up creating a huge amount of concurrent threads that you have no way of stopping.
The caller is able to push the CPU to 100% with not only the work but the creation of the work because of the way I queued the threads.
I was thinking by using the Producer/Consumer pattern I could queue these threads into my own queue that would allow me to moderate how many threads I create to avoid the CPU spike creating all the concurrent threads. And that I might be able to allow the caller of my class to flush all the jobs in the queue when they are abandoning the requests.
I am currently trying to implement this myself but figured SO was a good place to have someone say look at this code or you won't be able to flush because of this or flushing isn't the right term you mean this.

EDIT My answer does not apply since OP is using 2.0. Leaving up and switching to CW for anyone who reads this question and using 4.0
If you are using C# 4.0, or can take a depedency on one of the earlier version of the parallel frameworks, you can use their built-in cancellation support. It's not as easy as cancelling a thread but the framework is much more reliable (cancelling a thread is very attractive but also very dangerous).
Reed did an excellent article on this you should take a look at
http://reedcopsey.com/2010/02/17/parallelism-in-net-part-10-cancellation-in-plinq-and-the-parallel-class/

A method I've used in the past, though it's certainly not a best practice is to dedicate a class instance to each thread, and have an abort flag on the class. Then create a ThrowIfAborting method on the class that is called periodically from the thread (particularly if the thread's running a loop, just call it every iteration). If the flag has been set, ThrowIfAborting will simply throw an exception, which is caught in the main method for the thread. Just make sure to clean up your resources as you're aborting.

You could extend the Begin/End pattern to become the Begin/Cancel/End pattern. The Cancel method could set a cancel flag that the worker thread polls periodically. When the worker thread detects a cancel request, it can stop its work, clean-up resources as needed, and report that the operation was canceled as part of the End arguments.

I've solved what I believe to be your exact problem by using a wrapper class around 1+ BackgroundWorker instances.
Unfortunately, I'm not able to post my entire class, but here's the basic concept along with it's limitations.
Usage:
You simply create an instance and call RunOrReplace(...) when you want to cancel your old worker and start a new one. If the old worker was busy, it is asked to cancel and then another worker is used to immediately execute your request.
public class BackgroundWorkerReplaceable : IDisposable
{
BackgroupWorker activeWorker = null;
object activeWorkerSyncRoot = new object();
List<BackgroupWorker> workerPool = new List<BackgroupWorker>();
DoWorkEventHandler doWork;
RunWorkerCompletedEventHandler runWorkerCompleted;
public bool IsBusy
{
get { return activeWorker != null ? activeWorker.IsBusy; : false }
}
public BackgroundWorkerReplaceable(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler runWorkerCompleted)
{
this.doWork = doWork;
this.runWorkerCompleted = runWorkerCompleted;
ResetActiveWorker();
}
public void RunOrReplace(Object param, ...) // Overloads could include ProgressChangedEventHandler and other stuff
{
try
{
lock(activeWorkerSyncRoot)
{
if(activeWorker.IsBusy)
{
ResetActiveWorker();
}
// This works because if IsBusy was false above, there is no way for it to become true without another thread obtaining a lock
if(!activeWorker.IsBusy)
{
// Optionally handle ProgressChangedEventHandler and other features (under the lock!)
// Work on this new param
activeWorker.RunWorkerAsync(param);
}
else
{ // This should never happen since we create new workers when there's none available!
throw new LogicException(...); // assert or similar
}
}
}
catch(...) // InvalidOperationException and Exception
{ // In my experience, it's safe to just show the user an error and ignore these, but that's going to depend on what you use this for and where you want the exception handling to be
}
}
public void Cancel()
{
ResetActiveWorker();
}
public void Dispose()
{ // You should implement a proper Dispose/Finalizer pattern
if(activeWorker != null)
{
activeWorker.CancelAsync();
}
foreach(BackgroundWorker worker in workerPool)
{
worker.CancelAsync();
worker.Dispose();
// perhaps use a for loop instead so you can set worker to null? This might help the GC, but it's probably not needed
}
}
void ResetActiveWorker()
{
lock(activeWorkerSyncRoot)
{
if(activeWorker == null)
{
activeWorker = GetAvailableWorker();
}
else if(activeWorker.IsBusy)
{ // Current worker is busy - issue a cancel and set another active worker
activeWorker.CancelAsync(); // Make sure WorkerSupportsCancellation must be set to true [Link9372]
// Optionally handle ProgressEventHandler -=
activeWorker = GetAvailableWorker(); // Ensure that the activeWorker is available
}
//else - do nothing, activeWorker is already ready for work!
}
}
BackgroupdWorker GetAvailableWorker()
{
// Loop through workerPool and return a worker if IsBusy is false
// if the loop exits without returning...
if(activeWorker != null)
{
workerPool.Add(activeWorker); // Save the old worker for possible future use
}
return GenerateNewWorker();
}
BackgroundWorker GenerateNewWorker()
{
BackgroundWorker worker = new BackgroundWorker();
worker.WorkerSupportsCancellation = true; // [Link9372]
//worker.WorkerReportsProgress
worker.DoWork += doWork;
worker.RunWorkerCompleted += runWorkerCompleted;
// Other stuff
return worker;
}
} // class
Pro/Con:
This has the benefit of having a very low delay in starting your new execution, since new threads don't have to wait for old ones to finish.
This comes at the cost of a theoretical never-ending growth of BackgroundWorker objects that never get GC'd. However, in practice the code below attempts to recycle old workers so you shouldn't normally encounter a large pool of ideal threads. If you are worried about this because of how you plan to use this class, you could implement a Timer which fires a CleanUpExcessWorkers(...) method, or have ResetActiveWorker() do this cleanup (at the cost of a longer RunOrReplace(...) delay).
The main cost from using this is precisely why it's beneficial - it doesn't wait for the previous thread to exit, so for example, if DoWork is performing a database call and you execute RunOrReplace(...) 10 times in rapid succession, the database call might not be immediately canceled when the thread is - so you'll have 10 queries running, making all of them slow! This generally tends to work fine with Oracle, causing only minor delays, but I do not have experiences with other databases (to speed up the cleanup, I have the canceled worker tell Oracle to cancel the command). Proper use of the EventArgs described below mostly solves this.
Another minor cost is that whatever code this BackgroundWorker is performing must be compatible with this concept - it must be able to safely recover from being canceled. The DoWorkEventArgs and RunWorkerCompletedEventArgs have a Cancel/Cancelled property which you should use. For example, if you do Database calls in the DoWork method (mainly what I use this class for), you need to make sure you periodically check these properties and take perform the appropriate clean-up.

Related

What is the difference between these two methods for pausing/resuming threads?

I have a multithreaded application which is used to extract data from a website. I wanted to be able to pause and resume multiple threads from the UI. After searching on the web I came to know about two approaches that I can use to control (pause/resume) my threads.
Using Monitor class.
Using EventWaitHandle and ManualResetEvent class.
What I did:
I have a function named GetHtml that simply returns the html of the website. I am just showing the fraction part of this function for brevity.
public string GetHtml(string url, bool isProxy = false)
{
string result = "";
ExecutionGateway();
//->> EXTRA CODE FOR FETCHING HTML
return result;
}
I have a function ControlTasks used to control threads from UI, below I have explained the ControlTasks function using both thread control approaches using the Monitor class as well as the EventWaitHandle class (I will also briefly explain the working of the function ExecutionGateway).
1. Using the Monitor class
private object taskStopper = new object();
public bool ControlTasks(bool isPause)
{
try
{
if (isPause)
{
Monitor.Enter(taskStopper);
}
else
{
Monitor.Exit(taskStopper);
}
return true;
}
catch (Exception ex)
{
Logger.Instance.WriteLog("ControlTasks:", ex, Logger.LogTypes.Error);
return false;
}
}
ControlTasks is called from the UI where if isPause is true the exclusive lock is used on object taskStopper else releases the lock, Now here comes the function ExecutionGateway which is used to acquire lock on object taskStopper but it does nothing as the code below shows.
private void ExecutionGateway()
{
lock(taskStopper){ }
}
In this way all running threads enters waiting state when isPause is true in ControlTasks as taskStopper is exclusively locked and if isPause is false all threads resumes their processing.
2. Using the EventWaitHandle class
private EventWaitHandle handle = new ManualResetEvent(true);
public bool ControlTasks(bool isPause)
{
try
{
if (isPause)
{
handle.Reset();
}
else
{
handle.Set();
}
return true;
}
catch (Exception ex)
{
Logger.Instance.WriteLog("ControlTasks:", ex, Logger.LogTypes.Error);
return false;
}
}
This code also fundamentally does the same job, where the event state is signaled/non-signaled depending on the isPause parameter. Now, the corresponding ExecutionGateway method.
private void ExecutionGateway()
{
handle.WaitOne(Timeout.Infinite);
}
Problem:
What is the difference between these two approaches, is one better than the other? Are there any other ways to do this?
The main problem I have faced many times is if I use either of the above methods and I have 100 threads; when I pause them, then resume them after 5 or more minutes, the UI starts hanging. The UI is terrifically unresponsive. It gets updated but keeps on hanging and I keep getting the message "Not Responding" at each interval. One thing I want to mention each thread extracts data and notifies the UI about the data fetched through event handling. What could be the reason of this unresponsiveness? Is it a problem with my approach(es)?
I think it's always desirable to use a construct that communicates your intent clearly. You want a signal to other threads that they should wait (i.e. stop doing what they're doing) until you signal to them that they can start again. You have one controlling thread (your UI) and potentially many threads doing work and marshalling results back to the UI.
Approach 1 isn't ideal because locks (at least in my experience) are most often used to protect a resource that isn't suitable for use in multi threaded code. For example, writing to a shared field.
Approach 2 makes much more sense, a manual reset event functions like a gate: open the gate and things can pass through, close it and they can't. That's exactly the behaviour you're looking for and I think most developers would understand quite quickly that that's your intent.
As for your second problem, it sounds like you're getting waves of messages clogging the UI. If you stop all 100 of your threads then start them at the same time, there's a good chance they're going to finish their work quite close together and all be trying to send the result of their work to the UI thread. To solve that you could try staggering the work when you restart or use fewer threads. Another option would be to aggregate results and only dispatch the the UI every x seconds - but that's a bit more work.
In Option 1, using the Monitor class means that only one thread owns the exclusive lock of the monitor object at a time. This means that of your 100 threads, only 1 is processing at a time, which kind of defeats the purpose of using threads. It also means that your GUI thread has to wait until the current worker thread has finished before it can obtain the lock.
The ManualResetEvent is a much better choice as it is used to signal between threads, rather than protect against multiple thread access.
I do not know why your GUI is so unresponsive using the second option, but I do not think it is related to your manual reset event. More likely you have a different problem where the GUI thread is getting swamped. You suggest you have 100 threads all firing notification events to the GUI which would seem a likely culprit.
What happens if you debug your app, and just randomly break when your GUI is unresponsive? Doing this many times should show what your GUI thread is up to and where the bottleneck is.

How to terminate a thread when the worker can't check the termination string

I have the following code running in a Windows form. The method it is calling takes about 40 seconds to complete, and I need to allow the user the ability to click an 'Abort' button to stop the thread running.
Normally I would have the Worker() method polling to see if the _terminationMessage was set to "Stop" but I can't do this here because the long running method, ThisMethodMightReturnSomethingAndICantChangeIt() is out of my control.
How do I implement this user feature please ?
Here is my thread code.
private const string TerminationValue = "Stop";
private volatile string _terminationMessage;
private bool RunThread()
{
try
{
var worker = new Thread(Worker);
_terminationMessage = "carry on";
_successful = false;
worker.Start();
worker.Join();
finally
{
return _successful;
}
}
private void Worker()
{
ThisMethodMightReturnSomethingAndICantChangeIt();
_successful = true;
}
Well, the simple answer would be "you can't". There's no real thread abort that you can use to cancel any processing that's happenning.
Thread.Abort will allow you to abort a managed thread, running managed code at the moment, but it's really just a bad idea. It's very easy to end up in an inconsistent state just because you were just now running a singleton constructor or something. In the end, there's quite a big chance you're going to blow something up.
A bit orthogonal to the question, but why are you still using threading code like this? Writing multi-threaded code is really hard, so you want to use as many high-level features as you can. The complexity can easily be seen already in your small snippet of code - you're Joining the newly created thread, which means that you're basically gaining no benefit whatsoever from starting the Worker method on a new thread - you start it, and then you just wait. It's just like calling Worker outright, except you'll save an unnecessary thread.
try will not catch exceptions that pop up in a separate thread. So any exception that gets thrown inside of Worker will simply kill your whole process. Not good.
The only way to implement reliable cancellation is through cooperative aborts. .NET has great constructs for this since 4.0, CancellationToken. It's easy to use, it's thread-safe (unlike your solution), and it can be propagated through all the method chain so that you can implement cancellation at depth. Sadly, if you simply can't modify the ThisMethodMightReturnSomethingAndICantChangeIt method, you're out of luck.
The only "supported" "cancellation" pattern that just works is Process.Kill. You'd have to launch the processing method in a wholy separate process, not just a separate thread. That can be killed, and it will not hurt your own process. Of course, it means you have to separate that call into a new process - that's usually quite tricky, and it's not a very good design (though it seems like you have little choice).
So if the method doesn't support some form of cancellation, just treat it like so. It can't be aborted, period. Any way that does abort it is a dirty hack.
Well, here's my solution so far. I will definitely read up on newer .NET higher level features as you suggest. Thanks for the pointers in the right direction
private void RunThread()
{
try
{
var worker = new Thread(Worker);
SetFormEnabledStatus(false);
_usuccessful = false;
worker.Start();
// give up if no response before timeout
worker.Join(60000); // TODO - Add timeout to config
worker.Abort();
}
finally
{
SetFormEnabledStatus(true);
}
}
private void Worker()
{
try
{
_successful= false;
ThisMethodMightReturnSomethingAndICantChangeIt();
_successful = true;
}
catch (ThreadAbortException ex)
{
// nlog.....
}
catch (Exception ex)
{
// nlog...
}
}

stopping my thread

I have a thread that I am trying to discontinue. What I have done is the following.
randomImages = new Thread(new ThreadStart(this.chooseRandomImage));
randomImages.Start();
This is the method called by the thread
bool threadAlive = true;
public void chooseRandomImage()
{
while(threadAlive)
{
try
{
//do stuff
}
catch (Exception exe)
{
MessageBox.Show(exe.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}
}
}
Now, upon clicking a stop thread button I simply set threadAlive to false.
Problem is the thread doesnt stop immediately, as if it has gathered a form of momentum.
How can a stop a thread instantly, and possibly restart it again?
private void butStopThread_Click(object sender, EventArgs e)
{
threadAlive = false;
if(threadAlive == false)
{
//do stuff
}
}
I am sorry, that IS the best way to do it. Using .NET 4.0 upward you should use tasks, not threads, and then there is this thing called CancellationToken that pretty much does the same as your variable.
Then, after cancelling, you wait until the processing is finishing. If that needs to happen fast, then - well - make the check for the cancellation more granular, i.e. check more often.
Aborting threads has possibly significant side effects as explained at http://www.interact-sw.co.uk/iangblog/2004/11/12/cancellation - this is why the method generally should not be used.
And no, stopped threads etc. can not be restarted magically - this you have to put into your logic (restart points, save points ,long running transaction in steps, remembering where it finished).
As a sidenote - if you insist on not using tasks and have access to the latest versin of .NET, Volatile is not needed if you use the Interlocked access class methods, which ago down to some assembler instructions that are thread safe per definition.
It is possible to terminate a thread from another thread with a call
to Abort, but this forcefully terminates the affected thread without
concern for whether it has completed its task and provides no
opportunity for the cleanup of resources. The technique shown in this
example is preferred.
You need to use Abort method BUT IS NOT RECOMMENDED
From the information provided by you, it seems the threadAlive variable is being accessed by both the worker thread and the UI thread. Try declaring threadAlive using volatile keyword which is ensure cross-thread access happens without synchronization issues.
volatile bool threadAlive;
To restart the thread, you first need to ensure that it performs all necessary cleanup. Use the Join method call on your thread object in the main/UI thread to make sure your thread terminates safely. To restart, simply invoke the Start method on the thread.
randomImages.Join();

What is the most efficient method for assigning threads based on the following scenario?

I can have a maximum of 5 threads running simultaneous at any one time which makes use of 5 separate hardware to speedup the computation of some complex calculations and return the result. The API (contains only one method) for each of this hardware is not thread safe and can only run on a single thread at any point in time. Once the computation is completed, the same thread can be re-used to start another computation on either the same or a different hardware depending on availability. Each computation is stand alone and does not depend on the results of the other computation. Hence, up to 5 threads may complete its execution in any order.
What is the most efficient C# (using .Net Framework 2.0) coding solution for keeping track of which hardware is free/available and assigning a thread to the appropriate hardware API for performing the computation? Note that other than the limitation of 5 concurrently running threads, I do not have any control over when or how the threads are fired.
Please correct me if I am wrong but a lock free solution is preferred as I believe it will result in increased efficiency and a more scalable solution.
Also note that this is not homework although it may sound like it...
.NET provides a thread pool that you can use. System.Threading.ThreadPool.QueueUserWorkItem() tells a thread in the pool to do some work for you.
Were I designing this, I'd not focus on mapping threads to your HW resources. Instead I'd expose a lockable object for each HW resource - this can simply be an array or queue of 5 Objects. Then for each bit of computation you have, call QueueUserWorkItem(). Inside the method you pass to QUWI, find the next available lockable object and lock it (aka, dequeue it). Use the HW resource, then re-enqueue the object, exit the QUWI method.
It won't matter how many times you call QUWI; there can be at most 5 locks held, each lock guards access to one instance of your special hardware device.
The doc page for Monitor.Enter() shows how to create a safe (blocking) Queue that can be accessed by multiple workers. In .NET 4.0, you would use the builtin BlockingCollection - it's the same thing.
That's basically what you want. Except don't call Thread.Create(). Use the thread pool.
cite: Advantage of using Thread.Start vs QueueUserWorkItem
// assume the SafeQueue class from the cited doc page.
SafeQueue<SpecialHardware> q = new SafeQueue<SpecialHardware>()
// set up the queue with objects protecting the 5 magic stones
private void Setup()
{
for (int i=0; i< 5; i++)
{
q.Enqueue(GetInstanceOfSpecialHardware(i));
}
}
// something like this gets called many times, by QueueUserWorkItem()
public void DoWork(WorkDescription d)
{
d.DoPrepWork();
// gain access to one of the special hardware devices
SpecialHardware shw = q.Dequeue();
try
{
shw.DoTheMagicThing();
}
finally
{
// ensure no matter what happens the HW device is released
q.Enqueue(shw);
// at this point another worker can use it.
}
d.DoFollowupWork();
}
A lock free solution is only beneficial if the computation time is very small.
I would create a facade for each hardware thread where jobs are enqueued and a callback is invoked each time a job finishes.
Something like:
public class Job
{
public string JobInfo {get;set;}
public Action<Job> Callback {get;set;}
}
public class MyHardwareService
{
Queue<Job> _jobs = new Queue<Job>();
Thread _hardwareThread;
ManualResetEvent _event = new ManualResetEvent(false);
public MyHardwareService()
{
_hardwareThread = new Thread(WorkerFunc);
}
public void Enqueue(Job job)
{
lock (_jobs)
_jobs.Enqueue(job);
_event.Set();
}
public void WorkerFunc()
{
while(true)
{
_event.Wait(Timeout.Infinite);
Job currentJob;
lock (_queue)
{
currentJob = jobs.Dequeue();
}
//invoke hardware here.
//trigger callback in a Thread Pool thread to be able
// to continue with the next job ASAP
ThreadPool.QueueUserWorkItem(() => job.Callback(job));
if (_queue.Count == 0)
_event.Reset();
}
}
}
Sounds like you need a thread pool with 5 threads where each one relinquishes the HW once it's done and adds it back to some queue. Would that work? If so, .Net makes thread pools very easy.
Sounds a lot like the Sleeping barber problem. I believe the standard solution to that is to use semaphores

Proper way to have an endless worker thread?

I have an object that requires a lot of initialization (1-2 seconds on a beefy machine). Though once it is initialized it only takes about 20 miliseconds to do a typical "job"
In order to prevent it from being re-initialized every time an app wants to use it (which could be 50 times a second or not at all for minutes in typical usage), I decided to give it a job que, and have it run on its own thread, checking to see if there is any work for it in the que. However I'm not entirely sure how to make a thread that runs indefinetly with or without work.
Here's what I have so far, any critique is welcomed
private void DoWork()
{
while (true)
{
if (JobQue.Count > 0)
{
// do work on JobQue.Dequeue()
}
else
{
System.Threading.Thread.Sleep(50);
}
}
}
After thought: I was thinking I may need to kill this thread gracefully insead of letting it run forever, so I think I will add a Job type that tells the thread to end. Any thoughts on how to end a thread like this also appreciated.
You need to lock anyway, so you can Wait and Pulse:
while(true) {
SomeType item;
lock(queue) {
while(queue.Count == 0) {
Monitor.Wait(queue); // releases lock, waits for a Pulse,
// and re-acquires the lock
}
item = queue.Dequeue(); // we have the lock, and there's data
}
// process item **outside** of the lock
}
with add like:
lock(queue) {
queue.Enqueue(item);
// if the queue was empty, the worker may be waiting - wake it up
if(queue.Count == 1) { Monitor.PulseAll(queue); }
}
You might also want to look at this question, which limits the size of the queue (blocking if it is too full).
You need a synchronization primitive, like a WaitHandle (look at the static methods) . This way you can 'signal' the worker thread that there is work. It checks the queue and keeps on working until the queue is empty, at which time it waits for the mutex to signal it again.
Make one of the job items be a quit command too, so that you can signal the worker thread when it's time to exit the thread
In most cases, I've done this quite similar to how you've set up -- but not in the same language. I had the advantage of working with a data structure (in Python) which will block the thread until an item is put into the queue, negating the need for the sleep call.
If .NET provides a class like that, I'd look into using it. A thread blocking is much better than a thread spinning on sleep calls.
The job you can pass could be as simple as a "null"; if the code receives a null, it knows it's time to break out of the while and go home.
If you don't really need to have the thread exit (and just want it to keep from keeping your application running) you can set Thread.IsBackground to true and it will end when all non background threads end. Will and Marc both have good solutions for handling the queue.
Grab the Parallel Framework. It has a BlockingCollection<T> which you can use as a job queue. How you'd use it is:
Create the BlockingCollection<T> that will hold your tasks/jobs.
Create some Threads which have a never-ending loop (while(true){ // get job off the queue)
Set the threads going
Add jobs to the collection when they come available
The threads will be blocked until an item appears in the collection. Whoever's turn it is will get it (depends on the CPU). I'm using this now and it works great.
It also has the advantage of relying on MS to write that particularly nasty bit of code where multiple threads access the same resource. And whenever you can get somebody else to write that you should go for it. Assuming, of course, they have more technical/testing resources and combined experience than you.
I've implemented a background-task queue without using any kind of while loop, or pulsing, or waiting, or, indeed, touching Thread objects at all. And it seems to work. (By which I mean it's been in production environments handling thousands of tasks a day for the last 18 months without any unexpected behavior.) It's a class with two significant properties, a Queue<Task> and a BackgroundWorker. There are three significant methods, abbreviated here:
private void BackgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
if (TaskQueue.Count > 0)
{
TaskQueue[0].Execute();
}
}
private void BackgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
Task t = TaskQueue[0];
lock (TaskQueue)
{
TaskQueue.Remove(t);
}
if (TaskQueue.Count > 0 && !BackgroundWorker.IsBusy)
{
BackgroundWorker.RunWorkerAsync();
}
}
public void Enqueue(Task t)
{
lock (TaskQueue)
{
TaskQueue.Add(t);
}
if (!BackgroundWorker.IsBusy)
{
BackgroundWorker.RunWorkerAsync();
}
}
It's not that there's no waiting and pulsing. But that all happens inside the BackgroundWorker. This just wakes up whenever a task is dropped in the queue, runs until the queue is empty, and then goes back to sleep.
I am far from an expert on threading. Is there a reason to mess around with System.Threading for a problem like this if using a BackgroundWorker will do?

Categories

Resources