Test a lock with out acquiring it? - c#

I have objects, they get locks. I want to test if they are locked without acquiring a lock. The idea is if I TryEnter() then i have to Exit() if true to only check the lock correctly.
Seems like a really basic question, how is it done?

What possible information can you get from knowing the lock was unlocked back when you looked at it? By the time you make a decision based on that information, the lock may be already taken.

Because the lock statement is equivalent to:
System.Threading.Monitor.Enter(x);
try {
...
}
finally {
System.Threading.Monitor.Exit(x);
}
Can you just do this?
bool ObjectWasUnlocked(object x)
{
if(System.Threading.Monitor.TryEnter(x))
{
System.Threading.Monitor.Exit(x);
return true;
}
else
{
return false;
}
}
Note that I'm naming this function "ObjectWasUnlocked" as opposed to "ObjectIsUnlocked". There is no guarantee that it will still be unlocked when the function has returned.

I was wondering the same thing while trying to audit my code for correct locking. I came up with a method using a second thread. If the lock is available to the calling thread, but unavailable to a second thread, it must be held by the first.
/// <summary>
/// Utiltity for checking if a lock has already been acquired.
/// WARNING: This test isn't actually thread-safe,
/// it's only really useful for unit tests
/// </summary>
private static bool ObjectIsAlreadyLockedByThisThread(object lockObject)
{
if (!Monitor.TryEnter(lockObject))
{
// another thread has the lock
return false;
}
Monitor.Exit(lockObject);
bool? LockAvailable = null;
var T = new Thread(() =>
{
if (Monitor.TryEnter(lockObject))
{
LockAvailable = true;
Monitor.Exit(lockObject);
}
else
{
LockAvailable = false;
}
});
T.Start();
T.Join();
return !LockAvailable.Value;
}
// Tests:
public static void TestLockedByThisThread()
{
object MyLock = new object();
lock (MyLock)
{
bool WasLocked = ObjectIsAlreadyLockedByThisThread(MyLock);
Debug.WriteLine(WasLocked); // prints "True"
}
}
public static void TestLockedByOtherThread()
{
object MyLock = new object();
var T = new Thread(() =>
{
lock (MyLock)
{
Thread.Sleep(TimeSpan.FromSeconds(2));
}
});
T.Start();
Thread.Sleep(TimeSpan.FromSeconds(1));
bool WasLocked = ObjectIsAlreadyLockedByThisThread(MyLock);
T.Join();
Debug.WriteLine(WasLocked); // prints "False"
}
public static void TestNotLocked()
{
object MyLock = new object();
bool WasLocked = ObjectIsAlreadyLockedByThisThread(MyLock);
Debug.WriteLine(WasLocked); // prints "False"
}
I wouldn't use this in production code - there's a race condition that could blow up. However, my unit tests are mostly single threaded, so this was useful.

Here is a related question
Checking whether the current thread owns a lock
The conclusion there was 'you can't'

Related

Threading synchronization - balking pattern

public class Example {
private boolean jobInProgress = false;
public void job() {
lock(this) {
if (jobInProgress) {
return;
}
jobInProgress = true;
}
// Code to execute job goes here
// ...
}
void jobCompleted() {
lock(this) {
jobInProgress = false;
}
}
}
I got this piece of code from Wikipedia and i have one thing i am not sure of.
Why jobInProgress = true; is not set inside the locked block just after the return statement? To be more explicit i will try to give a scenario:
One thread gets the lock while others are waiting
It releases the lock but before executing jobInProgress = true;, one of the waiting threads gets the lock and tests the condition which is still false.
Is this a feasible scenario or am i not getting the flow of execution right?
You are confusing yourself:
lock(this) {
if (jobInProgress) {
return;
} // <= closing brace of if
// INSIDE LOCK, OUTSIDE IF
jobInProgress = true;
} // <= closing brace of lock
I'll note that on the wiki:
public void job() {
synchronized(this) {
if (jobInProgress) {
return;
}
// INSIDE LOCK, OUTSIDE IF
jobInProgress = true;
}
// Code to execute job goes here
// ...
}
it is exactly the same!

Monitor.TryEnter to check if object is already locked?

I have a number of worker threads that call a common function. I use a lock object as follows:
static object var mylock = new object();
public void myFunction()
{
if (Monitor.TryEnter(mylock, 0))
{
try
{
// Do work
}
finally
{
Monitor.Exit(mylock);
}
}
}
However, before entering myFunction, I would like to know if the object is locked so that I can do something else. So I did:
public bool IsLocked
{
get { return !Monitor.TryEnter(locker); }
}
Will this work, or is it locking the object?
It will lock the object if it isn't locked, and won't release the lock until you call exit. If the lock is already taken by another thread it won't acquire the lock, but if you're making the call on the thread that acquired the lock in the first place then TryEnter will succeed.
To get around this you could use a flag and the interlocked functions:
object var mylock = new object();
long isLocked;
public void myFunction()
{
if (Monitor.TryEnter(mylock, 0))
{
Interlocked.Exchange(ref isLocked, 1);
try
{
// Do work
}
finally
{
Interlocked.Exchange(ref isLocked, 0);
Monitor.Exit(mylock);
}
}
}
public bool IsLocked
{
get { return Interlocked.Read(ref isLocked)==0; }
}

Detecting a Thread is already running in C# .net?

I am using following code.
public void runThread(){
if (System.Diagnostics.Process.GetProcessesByName("myThread").Length == 0)
{
Thread t = new Thread(new ThreadStart(go));
t.IsBackground = true;
t.Name = "myThread";
t.Start();
}
else
{
System.Diagnostics.Debug.WriteLine("myThreadis already Running.");
}
}
public void go()
{
//My work goes here
}
I am calling runThread() function many time but i want thread only start when thread is not running. How is it possible?
GetProcessesByName will not look for threads in your application but for processes in your machine. In fact there is no good way to get query for the threads in your own application (a matter aside is writing a debugger).
For what you want you could create a wrapper class for your threads in such way that you could query if they are running. Or keep track of the threads yourself by other means.
You could also consider to have a Lazy<Thread> field that will be initialized when needed, and you can query to see if the thread is till alive. After testing Lazy<Thread> is not a good idea.
Derived from Simon's answer:
private int running;
public void runThread()
{
if (Interlocked.CompareExchange(ref running, 1, 0) == 0)
{
Thread t = new Thread
(
() =>
{
try
{
go();
}
catch
{
//Without the catch any exceptions will be unhandled
//(Maybe that's what you want, maybe not*)
}
finally
{
//Regardless of exceptions, we need this to happen:
running = 0;
}
}
);
t.IsBackground = true;
t.Name = "myThread";
t.Start();
}
else
{
System.Diagnostics.Debug.WriteLine("myThreadis already Running.");
}
}
public void go()
{
//My work goes here
}
*: Gotta catch'em all
Wajid and Segey are right. You could just have a Thread field. Allow me to provide the example:
private Thread _thread;
public void runThread()
{
var thread = _thread;
//Prevent optimization from not using the local variable
Thread.MemoryBarrier();
if
(
thread == null ||
thread.ThreadState == System.Threading.ThreadState.Stopped
)
{
var newThread = new Thread(go);
newThread.IsBackground = true;
newThread.Name = "myThread";
newThread.Start();
//Prevent optimization from setting the field before calling Start
Thread.MemoryBarrier();
_thread = newThread;
}
else
{
System.Diagnostics.Debug.WriteLine("myThreadis already Running.");
}
}
public void go()
{
//My work goes here
}
Note: It is better to use the first alternative (the one derived from Simon's answer) because it is thread-safe. That is, if there are various thread calling the method runThread simultaneously there is no risk of more than one thread being created.
One easy way is that you could have a flag that indicates if it's running or not. You maybe have to use some lock if it's some conflicts.
public static bool isThreadRunning = false;
public void runThread()
{
if (!isThreadRunning)
{
Thread t = new Thread(new ThreadStart(go));
t.IsBackground = true;
t.Name = "myThread";
t.Start();
}
else
{
System.Diagnostics.Debug.WriteLine("myThreadis already Running.");
}
}
public void go()
{
isThreadRunning = true;
//My work goes here
isThreadRunning = false;
}
You can use Thread.IsAlive to check whether prevoius thread is running or not.This is to give the thread status.You can put this check before mythread.Start().
Do you create the thread only in run thread method? If it is so hold it as field of the class that holds runThread method and ask t.IsAlive.
Maybe this can help you
static bool isRunning = false;
public void RunThread(){
if (!isRunning)
{
Thread t = new Thread(()=> { go(); isRunning = true;});
t.IsBackground = true;
t.Name = "myThread";
t.Start();
}
else
{
System.Diagnostics.Debug.WriteLine("myThread is already Running.");
}
}
public void go()
{
//My work goes here
}

Synchronization across threads / atomic checks?

I need to create an method invoker that any thread (Thread B for example sake) can call, which will execute on the main executing thread (Thead A) at a specific given point in its execution.
Example usage would be as follows:
static Invoker Invoker = new Invoker();
static void ThreadA()
{
new Thread(ThreadB).Start();
Thread.Sleep(...); // Hypothetic Alpha
Invoker.Invoke(delegate { Console.WriteLine("Action"); }, true);
Console.WriteLine("Done");
Console.ReadLine();
}
static void ThreadB()
{
Thread.Sleep(...); // Hypothetic Beta
Invoker.Execute();
}
The Invoker class looks like this:
public class Invoker
{
private Queue<Action> Actions { get; set; }
public Invoker()
{
this.Actions = new Queue<Action>();
}
public void Execute()
{
while (this.Actions.Count > 0)
{
this.Actions.Dequeue()();
}
}
public void Invoke(Action action, bool block = true)
{
ManualResetEvent done = new ManualResetEvent(!block);
this.Actions.Enqueue(delegate
{
action();
if (block) done.Set();
});
if (block)
{
done.WaitOne();
}
}
}
This works fine in most cases, although it won't if, for any reason, the execution (and therefore the Set) is done before the WaitOne, in which case it will just freeze (it allows for the thread to proceed, then blocks). That could be reproduced if Alpha >> Beta.
I can use booleans and whatnot, but I'm never getting a real atomic safety here. I tried some fixes, but they wouldn't work in the case where Beta >> Alpha.
I also thought of locking around both the Invoker.Execute and Invoker.Invoke methods so that we are guaranteed that the execution does not occur between enqueing and waiting. However, the problem is that the lock also englobes the WaitOne, and therefore never finishes (deadlock).
How should I go about getting absolute atomic safety in this paradigm?
Note: It really is a requirement that I work with this design, from external dependencies. So changing design is not a real option.
EDIT: I did forget to mention that I want a blocking behaviour (based on bool block) until the delegate is executed on the Invoke call.
Use a Semaphore(Slim) instead of the ManualResetEvent.
Create a semaphore with an maximum count of 1, call WaitOne() in the calling thread, and call Release() in the delegate.
If you've already called Release(), WaitOne() should return immediately.
Make sure to Dispose() it when you're done, preferably in a using block.
If block is false, you shouldn't create it in the first place (although for SemaphoreSlim, that's not so bad).
You can use my technique:
public void BlockingInvoke(Action action)
{
volatile bool isCompleted = false;
volatile bool isWaiting = false;
ManualResetEventSlim waiter = new ManualResetEventSlim();
this.Actions.Enqueue(delegate
{
action();
isCompleted = true;
Thread.MemoryBarrier();
if (!isWaiting)
waiter.Dispose();
else
waiter.Set();
});
isWaiting = true;
Thread.MemoryBarrier();
if (!isCompleted)
waiter.Wait();
waiter.Dispose();
}
Untested
I'm answering only to show the implementation SLaks described and my solution to ensure proper and unique disposal with locks. It's open to improvement and criticism, but it actually works.
public class Invoker
{
private Queue<Action> Actions { get; set; }
public Invoker()
{
this.Actions = new Queue<Action>();
}
public void Execute()
{
while (this.Actions.Count > 0)
{
this.Actions.Dequeue()();
}
}
public void Invoke(Action action, bool block = true)
{
if (block)
{
SemaphoreSlim semaphore = new SemaphoreSlim(1);
bool disposed = false;
this.Actions.Enqueue(delegate
{
action();
semaphore.Release();
lock (semaphore)
{
semaphore.Dispose();
disposed = true;
}
});
lock (semaphore)
{
if (!disposed)
{
semaphore.Wait();
semaphore.Dispose();
}
}
}
else
{
this.Actions.Enqueue(action);
}
}
}

C# once the main thread sleep, all thread stopped

I have a class running the Producer-Consumer model like this:
public class SyncEvents
{
public bool waiting;
public SyncEvents()
{
waiting = true;
}
}
public class Producer
{
private readonly Queue<Delegate> _queue;
private SyncEvents _sync;
private Object _waitAck;
public Producer(Queue<Delegate> q, SyncEvents sync, Object obj)
{
_queue = q;
_sync = sync;
_waitAck = obj;
}
public void ThreadRun()
{
lock (_sync)
{
while (true)
{
Monitor.Wait(_sync, 0);
if (_queue.Count > 0)
{
_sync.waiting = false;
}
else
{
_sync.waiting = true;
lock (_waitAck)
{
Monitor.Pulse(_waitAck);
}
}
Monitor.Pulse(_sync);
}
}
}
}
public class Consumer
{
private readonly Queue<Delegate> _queue;
private SyncEvents _sync;
private int count = 0;
public Consumer(Queue<Delegate> q, SyncEvents sync)
{
_queue = q;
_sync = sync;
}
public void ThreadRun()
{
lock (_sync)
{
while (true)
{
while (_queue.Count == 0)
{
Monitor.Wait(_sync);
}
Delegate query = _queue.Dequeue();
query.DynamicInvoke(null);
count++;
Monitor.Pulse(_sync);
}
}
}
}
/// <summary>
/// Act as a consumer to the queries produced by the DataGridViewCustomCell
/// </summary>
public class QueryThread
{
private SyncEvents _syncEvents = new SyncEvents();
private Object waitAck = new Object();
private Queue<Delegate> _queryQueue = new Queue<Delegate>();
Producer queryProducer;
Consumer queryConsumer;
public QueryThread()
{
queryProducer = new Producer(_queryQueue, _syncEvents, waitAck);
queryConsumer = new Consumer(_queryQueue, _syncEvents);
Thread producerThread = new Thread(queryProducer.ThreadRun);
Thread consumerThread = new Thread(queryConsumer.ThreadRun);
producerThread.IsBackground = true;
consumerThread.IsBackground = true;
producerThread.Start();
consumerThread.Start();
}
public bool isQueueEmpty()
{
return _syncEvents.waiting;
}
public void wait()
{
lock (waitAck)
{
while (_queryQueue.Count > 0)
{
Monitor.Wait(waitAck);
}
}
}
public void Enqueue(Delegate item)
{
_queryQueue.Enqueue(item);
}
}
The code run smoothly but the wait() function.
In some case I want to wait until all the function in the queue were finished running so I made the wait() function.
The producer will fire the waitAck pulse at suitable time.
However, when the line "Monitor.Wait(waitAck);" is ran in the wait() function, all thread stop, includeing the producer and consumer thread.
Why would this happen and how can I solve it? thanks!
It seems very unlikely that all the threads will actually stop, although I should point out that to avoid false wake-ups you should probably have a while loop instead of an if statement:
lock (waitAck)
{
while(queryProducer.secondQueue.Count > 0)
{
Monitor.Wait(waitAck);
}
}
The fact that you're calling Monitor.Wait means that waitAck should be released so it shouldn't prevent the consumer threads from locking...
Could you give more information about the way in which the producer/consumer threads are "stopping"? Does it look like they've just deadlocked?
Is your producer using Notify or NotifyAll? You've got an extra waiting thread now, so if you only use Notify it's only going to release a single thread... it's hard to see whether or not that's a problem without the details of your Producer and Consumer classes.
If you could show a short but complete program to demonstrate the problem, that would help.
EDIT: Okay, now you've posted the code I can see a number of issues:
Having so many public variables is a recipe for disaster. Your classes should encapsulate their functionality so that other code doesn't have to go poking around for implementation bits and pieces. (For example, your calling code here really shouldn't have access to the queue.)
You're adding items directly to the second queue, which means you can't efficiently wake up the producer to add them to the first queue. Why do you even have multiple queues?
You're always waiting on _sync in the producer thread... why? What's going to notify it to start with? Generally speaking the producer thread shouldn't have to wait, unless you have a bounded buffer
You have a static variable (_waitAck) which is being overwritten every time you create a new instance. That's a bad idea.
You also haven't shown your SyncEvents class - is that meant to be doing anything interesting?
To be honest, it seems like you've got quite a strange design - you may well be best starting again from scratch. Try to encapsulate the whole producer/consumer queue in a single class, which has Produce and Consume methods, as well as WaitForEmpty (or something like that). I think you'll find the synchronization logic a lot easier that way.
Here is my take on your code:
public class ProducerConsumer
{
private ManualResetEvent _ready;
private Queue<Delegate> _queue;
private Thread _consumerService;
private static Object _sync = new Object();
public ProducerConsumer(Queue<Delegate> queue)
{
lock (_sync)
{
// Note: I would recommend that you don't even
// bother with taking in a queue. You should be able
// to just instantiate a new Queue<Delegate>()
// and use it when you Enqueue. There is nothing that
// you really need to pass into the constructor.
_queue = queue;
_ready = new ManualResetEvent(false);
_consumerService = new Thread(Run);
_consumerService.IsBackground = true;
_consumerService.Start();
}
}
public override void Enqueue(Delegate value)
{
lock (_sync)
{
_queue.Enqueue(value);
_ready.Set();
}
}
// The consumer blocks until the producer puts something in the queue.
private void Run()
{
Delegate query;
try
{
while (true)
{
_ready.WaitOne();
lock (_sync)
{
if (_queue.Count > 0)
{
query = _queue.Dequeue();
query.DynamicInvoke(null);
}
else
{
_ready.Reset();
continue;
}
}
}
}
catch (ThreadInterruptedException)
{
_queue.Clear();
return;
}
}
protected override void Dispose(bool disposing)
{
lock (_sync)
{
if (_consumerService != null)
{
_consumerService.Interrupt();
}
}
base.Dispose(disposing);
}
}
I'm not exactly sure what you're trying to achieve with the wait function... I'm assuming you're trying to put some type of a limit to the number of items that can be queued. In that case simply throw an exception or return a failure signal when you have too many items in the queue, the client that is calling Enqueue will keep retrying until the queue can take more items. Taking an optimistic approach will save you a LOT of headaches and it simply helps you get rid of a lot of complex logic.
If you REALLY want to have the wait in there, then I can probably help you figure out a better approach. Let me know what are you trying to achieve with the wait and I'll help you out.
Note: I took this code from one of my projects, modified it a little and posted it here... there might be some minor syntax errors, but the logic should be correct.
UPDATE: Based on your comments I made some modifications: I added another ManualResetEvent to the class, so when you call BlockQueue() it gives you an event which you can wait on and sets a flag to stop the Enqueue function from queuing more elements. Once all the queries in the queue are serviced, the flag is set to true and the _wait event is set so whoever is waiting on it gets the signal.
public class ProducerConsumer
{
private bool _canEnqueue;
private ManualResetEvent _ready;
private Queue<Delegate> _queue;
private Thread _consumerService;
private static Object _sync = new Object();
private static ManualResetEvent _wait = new ManualResetEvent(false);
public ProducerConsumer()
{
lock (_sync)
{
_queue = new Queue<Delegate> _queue;
_canEnqueue = true;
_ready = new ManualResetEvent(false);
_consumerService = new Thread(Run);
_consumerService.IsBackground = true;
_consumerService.Start();
}
}
public bool Enqueue(Delegate value)
{
lock (_sync)
{
// Don't allow anybody to enqueue
if( _canEnqueue )
{
_queue.Enqueue(value);
_ready.Set();
return true;
}
}
// Whoever is calling Enqueue should try again later.
return false;
}
// The consumer blocks until the producer puts something in the queue.
private void Run()
{
try
{
while (true)
{
// Wait for a query to be enqueued
_ready.WaitOne();
// Process the query
lock (_sync)
{
if (_queue.Count > 0)
{
Delegate query = _queue.Dequeue();
query.DynamicInvoke(null);
}
else
{
_canEnqueue = true;
_ready.Reset();
_wait.Set();
continue;
}
}
}
}
catch (ThreadInterruptedException)
{
_queue.Clear();
return;
}
}
// Block your queue from enqueuing, return null
// if the queue is already empty.
public ManualResetEvent BlockQueue()
{
lock(_sync)
{
if( _queue.Count > 0 )
{
_canEnqueue = false;
_wait.Reset();
}
else
{
// You need to tell the caller that they can't
// block your queue while it's empty. The caller
// should check if the result is null before calling
// WaitOne().
return null;
}
}
return _wait;
}
protected override void Dispose(bool disposing)
{
lock (_sync)
{
if (_consumerService != null)
{
_consumerService.Interrupt();
// Set wait when you're disposing the queue
// so that nobody is left with a lingering wait.
_wait.Set();
}
}
base.Dispose(disposing);
}
}

Categories

Resources