Queue a thread in .net - c#

I have 2 functions that needs to be executed one after the other. In this function, async calls are made. How do I go about executing the second function after the async call is completed?
For eg.
public void main()
{
executeFn("1");
executeFn("2"); //I want this to be executed after 1 has finished.
}
private bool executeFn(string someval)
{
runSomeAsyncCode(); //This is some async uploading function that is yet to be defined.
}

You can use Thread.Join.
But then I do not see the point of async execution of those 2 functions as they become sequential.

Let runSomeAsyncCode() return an IAsyncResult and implement the BeginX EndX methods similar to the CLR Asynchronous Programming Model. Use the EndX method to wait for the code to finish executing.

Your async method you're calling must have something to notify the caller when it's completed am I correct? (otherwise it would be just execute and forget, which is unlikely) If so, you simply have to wait for the notification to come up and execute the second method.

try this:
public void main()
{
executeFn("1");
executeFn("2");
}
List<string> QueuedCalls = new List<string>(); // contains the queued items
bool isRunning = false; // indicates if there is an async operation running
private bool executeFn(string someval)
{
if(isRunning) { QueuedCalls.Add(someval); return; } // if there is an operation running, queue the call
else { isRunning = true; } // if there is not an operation running, then update the isRunning property and run the code
runSomeAsyncCode(); //undefined async operation here<-
isRunning = false; //get here when the async is completed, (updates the app telling it this operation is done)
if(QueuedCalls.Count != 0)//check if there is anything in the queue
{
//there is something in the queue, so remove it from the queue and execute it.
string val = QueuedCalls[0];
QueuedCalls.RemoveAt(0);
executeFn(val);
}
}
this way will not block any threads, and will simply execute the queued call when the first finnishs,which is what i believe you want! happy coding! now id recommend running the last section, at where it sets the isRunning to false, inside your async operation, or trigger it with an event or something, the only catch is that peice of code has to be executed when your async operation is completed, so however you want to do that is up to you

You can consider using Generic delegates execute the first method async then in the call back execute the other method async. If you are really worried executing them sync with respect to each other.

One simple way is to use a custom threadpool
http://www.codeplex.com/smartthreadpool
You can instantiate a separate threadpool, Set the threadpool size to 1, and queue the workers

Related

Wait() method of a task bloks the Task

I am working in Xamarin where I have a Task that I start at the first menupage, go through several other menupages, and then want to wait for it's completion when opening an endpage. To do this I save the task in a static field when starting it:
private static Task myTask;
public static void sync(User user)
{
if (myTask== null || myTask.IsCompleted) {
myTaskStarted = true;
//Note: do not trust on the variable being filled in immediately after the start of the task. It takes a minute. Use the flag
myTask= AsyncMyTask(user);
}
}
And then later I call a method from another page that is simply supposed to wait for myTask to finnish by calling myTask.Wait() after doing some checks on myTask having been started and not being null. But I see that once I call myTask.Wait() myTask is stuck and no longer progresses in the debugger. It's stuck. If I replace myTask.Wait() by myTask.Wait(1000) myTask is frozen for the duration of the timeout. After the timeout it continues. This is not the behaviour that is described in the documentation. Can anyone explain why the AsyncMyTask method is blocked when you call myTask.Wait() from the UI thread?
As requested: the AwaitMyTask method:
public async static Task<Boolean> AwaitMyTask()
{
if(!myTaskStarted && myTask== null)
{
return false;
} else
{
while (myTask== null)
{
Task.Delay(10);
}
}
//Stuck on the line below
myTask.Wait();
myTaskStarted = false;
return myTask.IsCompleted;
}
Task.Wait is a synchronously awaiting the task which blocks the thread. Unless you can point to a documentation stating something else, I'd say that it's expected behavior as described in https://msdn.microsoft.com/en-us/library/dd235635(v=vs.110).aspx
Wait is a synchronization method that causes the calling thread to wait until the current task has completed. ...

Should/Could this "recursive Task" be expressed as a TaskContinuation?

In my application I have the need to continually process some piece(s) of Work on some set interval(s). I had originally written a Task to continually check a given Task.Delay to see if it was completed, if so the Work would be processed that corresponded to that Task.Delay. The draw back to this method is the Task that checks these Task.Delays would be in a psuedo-infinite loop when no Task.Delay is completed.
To solve this problem I found that I could create a "recursive Task" (I am not sure what the jargon for this would be) that processes the work at the given interval as needed.
// New Recurring Work can be added by simply creating
// the Task below and adding an entry into this Dictionary.
// Recurring Work can be removed/stopped by looking
// it up in this Dictionary and calling its CTS.Cancel method.
private readonly object _LockRecurWork = new object();
private Dictionary<Work, Tuple<Task, CancellationTokenSource> RecurringWork { get; set; }
...
private Task CreateRecurringWorkTask(Work workToDo, CancellationTokenSource taskTokenSource)
{
return Task.Run(async () =>
{
// Do the Work, then wait the prescribed amount of time before doing it again
DoWork(workToDo);
await Task.Delay(workToDo.RecurRate, taskTokenSource.Token);
// If this Work's CancellationTokenSource is not
// cancelled then "schedule" the next Work execution
if (!taskTokenSource.IsCancellationRequested)
{
lock(_LockRecurWork)
{
RecurringWork[workToDo] = new Tuple<Task, CancellationTokenSource>
(CreateRecurringWorkTask(workToDo, taskTokenSource), taskTokenSource);
}
}
}, taskTokenSource.Token);
}
Should/Could this be represented with a chain of Task.ContinueWith? Would there be any benefit to such an implementation? Is there anything majorly wrong with the current implementation?
Yes!
Calling ContinueWith tells the Task to call your code as soon as it finishes. This is far faster than manually polling it.

asnychronous callback

I am new to asynchronous programming. I have a C# dll with an asynchronous method that gets called, takes a function pointer (delegate) and calls this callback function after "result" is calculated.
public delegate void CreatedDelegate(Foo result);
public void CreateAsync(CreatedDelegate createdCallback)
{
Task t = Task.Factory.StartNew(() =>
{
Foo result = ...
createdCallback(result);
});
}
The delegate callback of type "CreatedDelegate" is (in my case) a function pointer to a C++/CLI method that works with the result.
void CreatedCallback(Foo^ result)
{
// do something with result
}
So this asynchronous concept seems to work quite well in most cases, but sometimes I encounter some errors. How can I achieve it if the function "CreateAsync" is called multiple times with different computation effort, that the resulting calls to "CreatedCallback" just happen in the same order as originally "CreateAsync" was called? To make it clearer: The first call to "CreateAsync" should result in the first call to "CreatedCallback" even if a succeeding call of "CreateAsync" is faster and would actually call the callback earlier.
Maybe this can be done by allowing only one active new thread in the asynchronous "CreateAsync" at a time?
To process the callbacks in order, you'll need to implement some queueing of work items. The easiest way is probably to use BlockingCollection type (see MSDN documentation).
Instead of calling the callback, your CreateAsync method would add the task (together with the callback) to the queue:
// Queue to keep tasks and their callbacks
private BlockingCollection<Tuple<Task<Foo>, CreatedDelegate>>
queue = new BlockingCollection<Tuple<Task<Foo>, CreatedDelegate>>()
public void CreateAsync(CreatedDelegate createdCallback) {
Task<Foo> t = Task.Factory.StartNew(() => {
Foo result = ...
return result; });
queue.Add(Tuple.Create(t, createdCallback));
// ..
}
This will only add tasks and callbacks to the queue - to actually call the callback, you'll need another task that waits for the tasks in the queue (in the order in which they were added) and calls the callback:
Task.Factory.StartNew(() => {
while(true) { // while you keep calling 'CreateAsync'
// Get next task (in order) and its callback
Tuple<Task<Foo>, CreatedDelegate> op = queue.Take();
// Wait for the result and give it to callback
op.Item2(op.Item1.Result);
}
}
If order is important, then using Threads might be better:
thread queue = empty
for each task
{
if there are no free 'cpu'
wait on first thread in queue
remove thread from queue
call delegate
create thread
add thread to queue
}
while queue has threads
wait on first thread in queue
remove thread from queue
call delegate

IAsyncResult.AsyncWaitHandle.WaitOne() completes ahead of callback

Here is the code:
class LongOp
{
//The delegate
Action longOpDelegate = LongOp.DoLongOp;
//The result
string longOpResult = null;
//The Main Method
public string CallLongOp()
{
//Call the asynchronous operation
IAsyncResult result = longOpDelegate.BeginInvoke(Callback, null);
//Wait for it to complete
result.AsyncWaitHandle.WaitOne();
//return result saved in Callback
return longOpResult;
}
//The long operation
static void DoLongOp()
{
Thread.Sleep(5000);
}
//The Callback
void Callback(IAsyncResult result)
{
longOpResult = "Completed";
this.longOpDelegate.EndInvoke(result);
}
}
Here is the test case:
[TestMethod]
public void TestBeginInvoke()
{
var longOp = new LongOp();
var result = longOp.CallLongOp();
//This can fail
Assert.IsNotNull(result);
}
If this is run the test case can fail. Why exactly?
There is very little documentation on how delegate.BeginInvoke works. Does anyone have any insights they would like to share?
Update
This is a subtle race-condition that is not well documented in MSDN or elsewhere. The problem, as explained in the accepted answer, is that when the operation completes the Wait Handle is signalled, and then the Callback is executed. The signal releases the waiting main thread and now the Callback execution enters the "race". Jeffry Richter's suggested implementation shows what's happening behind the scenes:
// If the event exists, set it
if (m_AsyncWaitHandle != null) m_AsyncWaitHandle.Set();
// If a callback method was set, call it
if (m_AsyncCallback != null) m_AsyncCallback(this);
For a solution refer to Ben Voigt's answer. That implementation does not incur the additional overhead of a second wait handle.
The ASyncWaitHandle.WaitOne() is signaled when the asynchronous operation completes. At the same time CallBack() is called.
This means that the the code after WaitOne() is run in the main thread and the CallBack is run in another thread (probably the same that runs DoLongOp()). This results in a race condition where the value of longOpResult essentially is unknown at the time it is returned.
One could have expected that ASyncWaitHandle.WaitOne() would have been signaled when the CallBack was finished, but that is just not how it works ;-)
You'll need another ManualResetEvent to have the main thread wait for the CallBack to set longOpResult.
As others have said, result.WaitOne just means that the target of BeginInvoke has finished, and not the callback. So just put the post-processing code into the BeginInvoke delegate.
//Call the asynchronous operation
Action callAndProcess = delegate { longOpDelegate(); Callafter(); };
IAsyncResult result = callAndProcess.BeginInvoke(r => callAndProcess.EndInvoke(r), null);
//Wait for it to complete
result.AsyncWaitHandle.WaitOne();
//return result saved in Callafter
return longOpResult;
What is happening
Since your operation DoLongOp has completed, control resumes within CallLongOp and the function completes before the Callback operation has completed. Assert.IsNotNull(result); then executes before longOpResult = "Completed";.
Why? AsyncWaitHandle.WaitOne() will only wait for your async operation to complete, not your Callback
The callback parameter of BeginInvoke is actually an AsyncCallback delegate, which means your callback is called asynchronously. This is by design, as the purpose is to process the operation results asynchronously (and is the whole purpose of this callback parameter).
Since the BeginInvoke function actually calls your Callback function the IAsyncResult.WaitOne call is just for the operation and does not influence the callback.
See the Microsoft documentation (section Executing a Callback Method When an Asynchronous Call Completes). There is also a good explanation and example.
If the thread that initiates the asynchronous call does not need to be the thread that processes the results, you can execute a callback method when the call completes. The callback method is executed on a ThreadPool thread.
Solution
If you want to wait for both the operation and the callback, you need to handle the signalling yourself. A ManualReset is one way of doing it which certainly gives you the most control (and it's how Microsoft has done it in their docs).
Here is amended code using ManualResetEvent.
public class LongOp
{
//The delegate
Action longOpDelegate = LongOp.DoLongOp;
//The result
public string longOpResult = null;
// Declare a manual reset at module level so it can be
// handled from both your callback and your called method
ManualResetEvent waiter;
//The Main Method
public string CallLongOp()
{
// Set a manual reset which you can reset within your callback
waiter = new ManualResetEvent(false);
//Call the asynchronous operation
IAsyncResult result = longOpDelegate.BeginInvoke(Callback, null);
// Wait
waiter.WaitOne();
//return result saved in Callback
return longOpResult;
}
//The long operation
static void DoLongOp()
{
Thread.Sleep(5000);
}
//The Callback
void Callback(IAsyncResult result)
{
longOpResult = "Completed";
this.longOpDelegate.EndInvoke(result);
waiter.Set();
}
}
For the example you have given, you would be better not using a callback and instead handling the result in your CallLongOp function, in which case your WaitOne on the operation delegate will work fine.
The callback is executed after the CallLongOp method. Since you only set the variable value in the callback, it stands to reason that it would be null.
Read this :link text
I had the same issue recently, and I figured another way to solve it, it worked in my case. Bacially if the timeout doesn't borther you, re-check the flag IsCompleted when Wait Handle is timeout. In my case, the wait handle is signaled before blocking the thread, and right after the if condition, so recheck it after timeout will do the trick.
while (!AsyncResult.IsCompleted)
{
if (AsyncWaitHandle.WaitOne(10000))
break;
}

What's the new C# await feature do? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
Can anyone explain what the await function does?
They just talked about this at PDC yesterday!
Await is used in conjunction with Tasks (parallel programming) in .NET. It's a keyword being introduced in the next version of .NET. It more or less lets you "pause" the execution of a method to wait for the Task to complete execution. Here's a brief example:
//create and run a new task
Task<DataTable> dataTask = new Task<DataTable>(SomeCrazyDatabaseOperation);
//run some other code immediately after this task is started and running
ShowLoaderControl();
StartStoryboard();
//this will actually "pause" the code execution until the task completes. It doesn't lock the thread, but rather waits for the result, similar to an async callback
// please so also note, that the task needs to be started before it can be awaited. Otherwise it will never return
dataTask.Start();
DataTable table = await dataTask;
//Now we can perform operations on the Task result, as if we're executing code after the async operation completed
listBoxControl.DataContext = table;
StopStoryboard();
HideLoaderControl();
Basically, the async and await keywords allow you to specify that execution of a method should stop at all usages of await, which mark asynchronous method calls, and then resume once the asynchronous operation is complete. This allows you to call a method in an app's main thread and handle complex work asynchronously, without the need to explicitly define threads and joins or blocking the app's main thread.
Think of it as being somewhat similar to a yield return statement in a method producing an IEnumerable. When the runtime hits the yield, it will basically save the method's current state, and return the value or reference being yielded. The next time IEnumerator.MoveNext() is called on the return object (which is generated internally by the runtime), the method's old state is restored to the stack and execution continues with the next line after the yield return as if we'd never left the method. Without this keyword, an IEnumerator type must be custom-defined to store state and handle the iteration requests, with methods that can become VERY complex indeed.
Similarly, a method marked as async must have at least one await. On an await, the runtime will save the current thread's state and call stack, make the asynchronous call, and unwind back to the runtime's message loop to handle the next message and keep the app responsive. When the asynchronous operation is complete, at the next scheduling opportunity, the call stack to up the async operation is pushed back in and continued as if the call was synchronous.
So, these two new keywords basically simplify the coding of asynchronous processes, much like yield return simplified the generation of custom enumerables. With a couple keywords and a little background knowledge, you can skip all the confusing and often error-prone details of a traditional asynchronous pattern. This will be INVALUABLE in pretty much any event-driven GUI app like Winforms, WPF of Silverlight.
The currently accepted answer is misleading.
await is not pausing anything.
First of all it can be used only in methods or lambdas marked as async and returning Task or void if you don't care having Task instance running in this method.
Here is an illustration:
internal class Program
{
private static void Main(string[] args)
{
var task = DoWork();
Console.WriteLine("Task status: " + task.Status);
Console.WriteLine("Waiting for ENTER");
Console.ReadLine();
}
private static async Task DoWork()
{
Console.WriteLine("Entered DoWork(). Sleeping 3");
// imitating time consuming code
// in a real-world app this should be inside task,
// so method returns fast
Thread.Sleep(3000);
await Task.Run(() =>
{
for (int i = 0; i < 10; i++)
{
Console.WriteLine("async task iteration " + i);
// imitating time consuming code
Thread.Sleep(1000);
}
});
Console.WriteLine("Exiting DoWork()");
}
}
Output:
Entered DoWork(). Sleeping 3
async task iteration 0
Task status: WaitingForActivation
Waiting for ENTER
async task iteration 1
async task iteration 2
async task iteration 3
async task iteration 4
async task iteration 5
async task iteration 6
async task iteration 7
async task iteration 8
async task iteration 9
Exiting DoWork()
For anyone new to asynchronous programming in .NET, here's a (totally fake) analogy in a scenario you may be more familiar with - AJAX calls using JavaScript/jQuery. A simple jQuery AJAX post looks like this:
$.post(url, values, function(data) {
// AJAX call completed, do something with returned data here
});
The reason we process the results in a callback function is so we don't block the current thread while waiting for the AJAX call to return. Only when the response is ready will the callback get fired, freeing the current thread to do other things in the mean time.
Now, if JavaScript supported the await keyword (which of course it doesn't (yet!)), you could achieve the same with this:
var data = await $.post(url, values);
// AJAX call completed, do something with returned data here
That's a lot cleaner, but it sure looks like we introduced synchronous, blocking code. But the (fake) JavaScript compiler would have taken everything after await and wired it into a callback, so at runtime the second example would behave just like the first.
It may not seem like it's saving you much work, but when it comes to things like exception handling and synchronization contexts, the compiler is actually doing a lot of heavy lifting for you. For more, I'd recommend the FAQs followed by Stephen Cleary's blog series.
If I had to implement it in Java it would look some thing like this:
/**
* #author Ilya Gazman
*/
public abstract class SynchronizedTask{
private ArrayList<Runnable> listeners = new ArrayList<Runnable>();
private static final ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(6, 6, 0, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<Runnable>(1000));
public final void await(Runnable listener){
synchronized (this) {
listeners.add(listener);
}
}
public void excecute(){
onExcecute();
for (int i = listeners.size() - 1; i >= 0; i--) {
Runnable runnable;
synchronized (this) {
runnable = listeners.remove(i);
}
threadPoolExecutor.execute(runnable);
}
}
protected abstract void onExcecute();
}
Your application would use it like this:
public class Test{
private Job job = new Job();
public Test() {
craeteSomeJobToRunInBackground();
methode1();
methode2();
}
private void methode1(){
System.out.println("Running methode 1");
job.await(new Runnable() {
#Override
public void run() {
System.out.println("Continue to running methode 1");
}
});
}
private void methode2(){
System.out.println("Running methode 2");
}
private void craeteSomeJobToRunInBackground() {
new Thread(new Runnable() {
#Override
public void run() {
job.excecute();
}
}).start();
}
private class Job extends SynchronizedTask{
#Override
protected void onExcecute() {
try {
Thread.sleep(1000);
}
catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("Job is done");
}
}
}

Categories

Resources