I'm making a Tetris Clone in C# with XNA, and I'm unsure of how to actually implement the blocks.
I don't think that making the shapes as images will work (because parts are removed when lines are formed), so I Have blocks to make up the pieces like This.
Unfortunately, I don't know how to actually define the blocks to make the pieces, nor do I know how to manipulate them to make them rotate, etc.
Edit: I would also need assistance in learning how to make the Tetris Grid too.
I haven't created tetris before, but after some thinking, I believe that I would use a simple matrix to create my pieces. For example, your whole game board would be one big matrix. A subset of that matrix, say a 4x4 block of it, would be a game piece. Which parts of that 4x4 block would be filled would be determined by which particular piece you want to create. Each part of the matrix can have a boolean flag that would indicate if it's filled or not. This is a very simplistic view of it, but I think it's a viable solution.
Use a boolean matrix to model the state of the screen. Each piece is itself another smaller boolean matrix.
Rotating a piece is as simple as playing with the coordinates a little bit (I left this to you).
About how to render, just draw a piece tile for each true value in your matrix ored with the current falling piece shifted and rotated.
For the blocks, I would strongly suggest working in 3D. You can still make the game look like 2D by locking the camera etc, but you will benefit a lot from working in vector graphics. Your blocks will be simple cubes (flat or with some depth) that you rotate and move around the screen.
For the grid, look at #fortran's and #aaron's answers, a boolean matrix will do the trick.
Maybe this link to Coding4Fun will help. It's in german, but you should be able to get the source code and take a look on how about the problem is solved here.
Just to be sure, here the direct download link.
Related
Edit: Bad angle picture was due to Depth Testing. Still need the 'right' way to do 3d text rendering though!
I got 2D text rendering in OpenTK working. It's very simple, I use .NET Graphics class methods to draw a string to Bitmap, which I can load into GPU via OpenTK. Ok great, but how about 3D?
I'm thinking about this in terms of a cylinder. What is a cylinder? It's just a circle stretched out over a certain height. That's EXACTLY what I want to do here! I researched a bunch...but surprisingly there isn't all that much info readily available IMO for such a basic task.
Here's what I've tried:
1) Rendering the bitmap 100 times from Z = 0.0f to 1.0f. This actually works pretty well! For certain rotations anyway.
2) Drawing 16x16x16 Voxels (well, I think I'm drawing voxels). Basically the idea is, use the typical GL.TexCoord3 and GL.Vertex3 methods for drawing the SURFACE of a cube, but because we are drawing so freakin many of them, I figured it would actually give depth to my text. It sort of does, but the results are actually worse than attempt 1.
I want to get this working with a really simple solution, if one exists. I'm using Immediate mode, and if possible I'd like to keep using that.
This is what solution 1 looks like at a good angle:
Bad Angle:
I know that my method is inherently flawed because these bitmaps dont actually have a depth when I draw them, which is why at some critical angles either the text becomes flat looking, or disappears from view.
Since I don't have 10 reputation to post an image, I am going to leave a link of the game picture. http://thinkfun.com/mathcounts/play-rush-hour
This is what I want to create. A game where a rectangle must pass through other rectangles through the hole to win the game. The main rectangle can only move forward and other rectangles can move either right, left, up or down depending on their position. You must move the other rectangles in a way that they could make a way for the main rectangle to pass.
Here is my plan how I am going to create this game:
Create all the forms, import all the images and graphics to get ready to work with them.
Write code for 1 rectangle that would be able to move around.
Write an algorithm that wouldn't allow for rectangles to go through each other.
Make a winning hole.
Code other rectangles, make a full game.
Make fancy animations.
Import statistics : score, move counter and etc.
Here are my questions that I wanted to ask before trying to develop this game.
(Oh, and by the way, I am using Visual Studio C# form )
I assume that these rectangles are not going to be buttons, then what kind of a "button" (or whatever you call those extra features ) should I use?
How do I make a skin for those rectangles? So I can make it look like wood and make a nice skin for the main rectangle.
These are all my questions so far. I would like to know how to overcome those problems and I would like to hear some extra tips. Thank you very much for your time!
Use Graphics to draw your rectangles. Else make an object to hold info for it and you can import an Image as your "skin".
See number 1.
First off: Do you want to create a game or learn winForms? If the answer is create a game. Chose a Game Engine (Unity is nice, and uses c#) and work with that instead.
If you want to learn winForms you'd probably want a PictureBox, then add your code your code in OnMouseUp, OnMouseDown, etc. Good luck :)
I'm making a game in C# and XNA, and I was trying to come up with a method to render massive terrains without using a tremendous amount of memory or passing the poly limit hard-coded into XNA.
My solution so far is to create a massive heightmap, and that heightmap is loaded into memory at the beginning of the game in the initialization phase. Then, terrain is only generated nearest to the camera. This is accomplished by projecting a triangle whose vertex is the character and the other two endpoints extend to the sides of the character's viewing area. Then, all the pixels inside that triangle on the heightmap are rendered and drawn into the game, thus only rendering what is seen.
The problem is, I've successfully found (I think, can't test until I get terrain rendering) the three vertices of the triangle. Now I need to find a list of the coordinates for every single pixel inside that triangle - whole numbers only, because I just need a list of pixels to render.
I know it sounds a little confusing, so here's the gist of it:
I have an image, and I project a triangle onto that image. The only thing I know about that triangle are the three vertices. I need a list of the pixels inside that triangle.
I've been Googling around for maybe 20 minutes now, and I figured I midas well go ahead and post something here due to the fact that what I'm trying to do isn't all that common. If I find an answer, I'll be sure to post it here.
But until then, can anyone tell me how to accomplish this?
Edit: A formula, please. If you can provide a formula or algorithm, and an explanation, that would be just perfect.
Edit: I've posted a new question, as I've ditched this method of rendering large terrains. The question is here.
Start here:
http://mathworld.wolfram.com/TriangleInterior.html
One of the non-trivial problems, not mentioned there, that you have to deal with is the pixelization along the boundary.
I am making a WPF program with the possibility to modify data graphically in 3D. In order to give the user the option to select multiple graphical objects at the same time, I want to implement a selection rectangle. (Just like the one in windows explorer.) A common functionality in programs like this one is to have 2 different functions for the selection rectangle, and that the user can somehow choose which of the methods should be used.
Any object that is partially or completely inside the rectangle is selected.
Only objects that are completely inside the rectangle are selected.
The 2nd method is straight forward by using the bounding box of each object, and check if it is inside the rectangle. The 1st one on the other hand, seems to be quite some work. All my graphical objects are complicated 3D figures, and can be rotated by the user in any way. At the moment I am unable to find any other way than checking if any of the triangles in the mesh of any of the objects cross my 2D rectangle, and that can be quite time consuming.
I have little experience with WPF 3D, but I have done this before in OpenGL. Then I could tell OpenGL to draw a specific area of the screen, and the collect a list of objects that was visible in the specific area. All I needed to get the functionality I wanted was about 5 lines of code.
I guess my question is this:
Is there a way to do this with WPF 3D, similar to the OpenGL approach?
If not, is there any other smart way to find all objects (Visual3D) in a viewport that is partially behind a 2D rectangle?
I refuse to believe I am the only one with this kind of problem, so I hope a clever mind can point me in the right direction.
Regards,
Sverre
Thank you for your answer!
The 2D-rectangle is just in front of the camera and extending infinitely forward. I want to get any object that is partially or completely inside that frustum.
The camera we are using is an orthographic or perspective projection camera (System.Windows.Media.Media3D.ProjectionCamera). The reason we are not using the matrix camera is that we are using a 3rd party tool that does not support the matrix camera. But I am sure there is a way to get the matrix from a projection camera as well, so that is hopefully not the problem.
In theory your solution sounds like just what we need, but I am not sure how to proceed. Do you have any links to sample-code, or can you give some more hints on how to actually implement this?
Btw: Since we are working with WPF, we do not have direct access to DirectX. At least that’s what we have concluded after some research. You mention use of the z-buffer, which we haven’t been able to access through WPF. If you know a way to access the z-buffer, it’s greatly appreciated! This is of-topic, but we have struggled to disable the z-buffer for some time, but have given up…
Best regards,
Sverre
Is your intersection region a 2d rectangle or a frustrum based at a 2d rectangle and extending infinitely forward (or perhaps to some clipping limit)? If it can be construed as a viewing frustrum, then you can leverage the existing capabilities of the graphics system to render the scene using a Camera View and Projection that corresponds to your originating rectangle, with all lighting and shading disabled and colors chosen specifically to 'tag' the different objects in your scene. This means you can use the graphics hardware to perform the clipping/projection as a 'rendering' operation, then simply enumerate the pixel values as 'tags' to determine the objects present in the rectangular view.
If you need to restrict selection to an actual 2d slice (or a very shallow frustrum), you can use the Z-buffer (if you can get access to it) to exclude tagged pixels that are outside the Z range of your desired selection frustrum.
The nice thing about this approach is that you probably already have the Camera matrix (it's the same matrix used for your window for selection) and only need to change the Projection matrix to be a sub-set of the viewing window.
A 'smart' way would be to transform the rectangle into a box using the Camera's matrix
And then do a intersection of all the objects and the box.
I am programming various simulation tools in C#/.NET
What I am looking for is a high level visualization library; create a scene, with a camera with some standard controls, and render a few hunderd thousand spheres to it, or some wireframes. That kind of thing. If it takes more than one line to initialize a context, it deviates from my ideal.
Ive looked at slimDX, but its way lower level than im looking for (at least the documented parts, but I dont really care for any other). WPF perspective looked cool, but it seems targeted at static XAML defined scenes, and that doesnt really suit me either.
Basically, im looking for the kind of features languages like blitzbasic used to provide. Does that exist at all?
I'm also interested in this (as I'm also developing simulation tools) and ended up hacking together some stuff in XNA. It's definitely a lot more work than you've described, however. Note that anything you can do in WPF via XAML can also be done via code, as XAML is merely a representation of an object hierarchy and its relationships. I think that may be your best bet, though I don't have any metrics on what kind of performance you could expect with a few hundred thousand spheres (you're absolutely going to need some culling in that case and the culling itself may be expensive if you don't use optimizations like grid partitioning.)
EDIT: If you really need to support 100K entities and they can all be rendered as spheres, I would recommend that you bypass the 3d engine entirely and only use XNA for math. I would imagine an approach like the following:
Use XNA to set up Camera (View) and Perspective matrices. It has some handy Matrix static functions that make this easy.
Compute the Projection matrix and project all of your 'sphere' origin points to the viewing frustrum. This will give you X,Y screen coordinates and Z depth in the frustrum. You can either express this as 100K individual matrix multiplications or multiplication of the Projection matrix by a single 3 x 100K element matrix. In the former case, this is a great candidate for parallelism using the new .NET 4 Parallel functionality.
If you find that the 100K matrix multplications are a problem, you can reduce this significantly by performing culling of points before transformation if you know that only a small subset of them will be visible at a given time. For instance, you can invert the Projection matrix to find the bounds of your frustrum in your original space and create an axis-aligned bounding box for the frustrum. You can then exclude all points outside this box (simple comparison tests in X, Y and Z.) You only need to recompute this bounding box when the Projection matrix changes, so if it changes infrequently, this can be a reasonable optimization.
Once you have your transformed points, clip any outside the frustum (Z < 0, Z > maxDist, X<0, Y<0, X>width, Y>height). You can now render each point by drawing a filled circle, with its radius proportional to Z (Z=0 would have largest radius and Z=maxDist would probably fade to a single point.) If you want to provide a sense of shading/depth, you can render with a shaded brush to very loosely emulate lighting on spheres. This works because everything in your scene is a sphere and you're presumably not worried about things like shadows. All of this would be fairly easy to do in WPF (including the Shaded Brush), but be sure to use DrawingVisual classes and not framework elements. Also, you'll need to make sure you draw in the correct Z order, so it helps if you store the transformed points in a data structure that sorts as you add.
If you're still having performance problems, there are further optimizations you can pursue. For instance, if you know that only a subset of your points are moving, you can cache the transformed locations for the immobile points. It really depends on the nature of your data set and how it evolves.
Since your data set is so large, you might consider changing the way you visualize it. Instead of rendering 100K points, partition your working space into a volumetric grid and record the number (density) of points inside each grid cube. You can Project only the center of the grid and render it as a 'sphere' with some additional feedback (like color, opacity or brush texture) to indicate the point density. You can combine this technique with the traditional rendering approach, by rendering near points as 'spheres' and far points as 'cluster' objects with some brush patterning to match the density. One simple algorithm is to consider a bounding sphere around the camera; all points inside the sphere will be transformed normally; beyond the sphere, you will only render using the density grid.
Maybe the XNA Game studio is what you are looking for.
Also take a look at DirectX.
WPF perspective looked cool, but it seems targeted at static XAML defined scenes
Look again, WPF can be as dynamic as you will ever need.
You can write any WPF program, including 3D, totally without XAML.
Do you have to use C#/.Net or would MonoDevelop be good enough? I can recomend http://unity3d.com/ if you want a powerful 3D-engine.