ReaderWriterLock vs lock{} - c#

Please explain what are the main differences and when should I use what.
The focus on web multi-threaded applications.

lock allows only one thread to execute the code at the same time. ReaderWriterLock may allow multiple threads to read at the same time or have exclusive access for writing, so it might be more efficient. If you are using .NET 3.5 ReaderWriterLockSlim is even faster. So if your shared resource is being read more often than being written, use ReaderWriterLockSlim. A good example for using it is a file that you read very often (on each request) and you update the contents of the file rarely. So when you read from the file you enter a read lock so that many requests can open it for reading and when you decide to write you enter a write lock. Using a lock on the file will basically mean that you can serve one request at a time.

Consider using ReaderWriterLock if you have lots of threads that only need to read the data and these threads are getting blocked waiting for the lock and and you don’t often need to change the data.
However ReaderWriterLock may block a thread that is waiting to write for a long time.
Therefore only use ReaderWriterLock after you have confirmed you get high contention for the lock in “real life” and you have confirmed you can’t redesign your locking design to reduce how long the lock is held for.
Also consider if you can't rather store the shared data in a database and let it take care of all the locking, as this is a lot less likely to give you a hard time tracking down bugs, iff a database is fast enough for your application.
In some cases you may also be able to use the Aps.net cache to handle shared data, and just remove the item from the cache when the data changes. The next read can put a fresh copy in the cache.
Remember
"The best kind of locking is the
locking you don't need (i.e. don't
share data between threads)."

Monitor and the underlying "syncblock" that can be associated with any reference object—the underlying mechanism under C#'s lock—support exclusive execution. Only one thread can ever have the lock. This is simple and efficient.
ReaderWriterLock (or, in V3.5, the better ReaderWriterLockSlim) provide a more complex model. Avoid unless you know it will be more efficient (i.e. have performance measurements to support yourself).
The best kind of locking is the locking you don't need (i.e. don't share data between threads).

ReaderWriterLock allows you to have multiple threads hold the ReadLock at the same time... so that your shared data can be consumed by many threads at once. As soon as a WriteLock is requested no more ReadLocks are granted and the code waiting for the WriteLock is blocked until all the threads with ReadLocks have released them.
The WriteLock can only ever be held by one thread, allow your 'data updates' to appear atomic from the point of view of the consuming parts of your code.
The Lock on the other hand only allows one thread to enter at a time, with no allowance for threads that are simply trying to consume the shared data.
ReaderWriterLockSlim is a new more performant version of ReaderWriterLock with better support for recursion and the ability to have a thread move from a Lock that is essentially a ReadLock to the WriteLock smoothly (UpgradeableReadLock).

ReaderWriterLock/Slim is specifically designed to help you efficiently lock in a multiple consumer/ single producer scenario. Doing so with the lock statement is possible, but not efficient. RWL/S gets the upper hand by being able to aggressively spinlock to acquire the lock. That also helps you avoid lock convoys, a problem with the lock statement where a thread relinquishes its thread quantum when it cannot acquire the lock, making it fall behind because it won't be rescheduled for a while.

It is true that ReaderWriterLockSlim is FASTER than ReaderWriterLock. But the memory consumption by ReaderWriterLockSlim is outright outrageous. Try attaching a memory profiler and see for yourself. I would pick ReaderWriterLock anyday over ReaderWriterLockSlim.

I would suggest looking through http://www.albahari.com/threading/part4.aspx#_Reader_Writer_Locks. It talks about ReaderWriterLockSlim (which you want to use instead of ReaderWriterLock).

Related

Preventing Threads from Unnecessarily Executing Costly Task

I want to protect access to a resource in the following manner:
All threads can read concurrently, except during update (if the update is not atomic).
Only one thread can be assigned the task of updating, until next time an
update is required.
This may seem like a simple question of using a proper lock, or possibly making all operations atomic, but that is not it, I think.
If I just have a write-lock for updating (i.e. ReaderWriterLockSlim), or use non-locking code, nothing prevents more than one thread from running the update procedure (or queuing up to do so). If I use locking to block threads before checking if the resource need updating, they can't execute concurrently but are effectively serialized.
I could have specific threads performing all of the checking and updating of the resource, and utilize something like a ManualResetEvent to put other reading threads on hold until updating is finished. (Or if the updating is implemented as an atomic operation, just settle for having specific update threads.)
However, I'm uncertain about best practice, and I would like to ask if you think that the requirements may be met with less effort, or if I'm way off in any of my assumptions.
I think you are looking for a ReaderWriterLockSlim. Use the exclusive lock mode for writing.

Does locking ensure reads and writes are flushed from caches? If so, how?

I was reading this MSDN article on lockless thread syncing. The article seems to infer that as long as you enter a lock before accessing shared variables, then those variables will be up to date (in .Net 2.0 at least).
I got to thinking how this was possible? A lock in .Net is just some arbitrary object that all threads check before accessing memory, but the lock itself has no knowledge of the memory locations that are being accessed.
If I have a thread updating a variable, or even a whole chunk of memory, How are those updates guaranteed to be flushed from CPU caches when entering / exiting a lock? Are ALL memory accesses effectively made volatile inside the lock?
Check the work of Eric Lippert: http://blogs.msdn.com/b/ericlippert/archive/2011/06/16/atomicity-volatility-and-immutability-are-different-part-three.aspx
Locks guarantee that memory read or modified inside the lock is observed to be consistent, locks guarantee that only one thread accesses a given hunk of memory at a time, and so on.
So yes, as long as you lock each time before accessing shared resources, you can be pretty sure its up to date
EDIT look up the following post for more information and a very usefull overview: http://igoro.com/archive/volatile-keyword-in-c-memory-model-explained/
Well, the article explains it:
Reads cannot move before entering a lock.
Writes cannot move after exiting a lock.
And more explanation from the same article:
When a thread exits the lock, the third rule ensures that any writes made while the lock was held are visible to all processors. Before the memory is accessed by another thread, the reading thread will enter a lock and the second rule ensures that the reads happen logically after the lock was taken.
Not all c# memory reads and writes are volatile, no. (imagine if that was the case performance-wise!)
But.
How are those updates guaranteed to be flushed from CPU caches when entering / exiting a lock
CPU caches are CPU specific, however they all have some form of memory coherence protocol. That is to say, when you access some memory from a core, if it is present in another core cache, the protocol the CPU uses will ensure that the data gets delivered to the local core.
What Petar Ivanov alludes to in his answer is however very relevant. You should check out memory consistency model if you want to understand more what his point is.
Now, how C# guarantees that the memory is up-to-date is up to the C# implementers, and Eric Lippert's blog is certainly a good place to understand the underlying issues.
I’m not sure about the state of affairs in .NET, but in Java it is clearly stated that any two threads cooperating in such a way must use the same object for locking in order to benefit from what you say in your introductory statement, not just any lock. This is a crucial distinction to make.
A lock doesn’t need to “know” what it protects; it just needs to make sure that everything that has been written by the previous locker is made available to another locker before letting it proceed.

Optimized ReaderWriterLock Read Access

So it's my understanding that on a ReaderWriterLock (or ReaderWriterLockSlim more specifically), both the read and write need acquire a mutex to take the lock. I'd like to optimize the read access of the lock, such that if there are no writes pending, no lock need be acquired. (And I'm willing to sacrifice the performance of writes, add some constraints to the reads, make the first read slow and second fast, etc.. if necessary, as long as the vast majority of the reads are as fast as possible.)
So, how would one do this, or even better, is there a framework or "standard" implementation one could point me to? (Or if I've misunderstood and it's supported already, great!)
So for my piece:
It would seem that if one were to have a counter for the number of readers/writers (protected by Interlocked.Increment), that would be enough for the reader to check if the writer count was non-zero, and only acquire the lock then. (And increment within the lock if acquired.)
Writers would always increment, acquire the lock, spin till the reader count went to 0 (willing to assume readers always finish quickly, or even bypass the reader count entirely in an optimistic scenario), and finally decrement. (It'd be nice to throw in some form priority too when we do block, or potentially clear all pending readers/writers in one pass since I'm only protecting one value, but I'll forgo that for now..)
So.. anyone seen anything similar or have a suggestion? If there's nothing out there after a bit, I'd be happy to throw together an initial implementation and talk more concretely.
What you've described is, at a basic level, already how the reader/writer locks work. They don't need to take a mutex out as the reader/writer lock controls access by using an internal count of readers and writers (and, indeed, a mutex would imply that readers would block each other, whereas in fact multiple concurrent readers are allowed -- that's the whole point of the lock type!).
So yes, there is a framework/standard implementation for this: ReaderWriterLockSlim. I really doubt you'll be able to write a reader/writer lock with better performance than this. In any case -- are you sure that this lock is the root of your performance problems?
I am afraid you are wrong, since ReaderWriterLockSlim is based on spin locking, not on mutexes (you can see this in Reflector).

When should each thread synchronization objects be used?

Under what circumstances should each of the following synchronization objects be used?
ReaderWriter lock
Semaphore
Mutex
Since wait() will return once for each time post() is called, semaphores are a basic producer-consumer model - the simplest form of inter-thread message except maybe signals. They are used so one thread can tell another thread that something has happened that it's interested in (and how many times), and for managing access to resources which can have at most a fixed finite number of users. They offer ordering guarantees needed for multi-threaded code.
Mutexes do what they say on the tin - "mutual exclusion". They ensure that the right to access some resource is "held" by only on thread at a time. This gives guarantees of atomicity and ordering needed for multi-threaded code. On most OSes, they also offer reasonably sophisticated waiter behaviour, in particular to avoid priority inversion.
Note that a semaphore can easily be used to implement mutual exclusion, but that because a semaphore does not have an "owner thread", you don't get priority inversion avoidance with semaphores. So they are not suitable for all uses which require a "lock".
ReaderWriter locks are an optimisation over mutexes, in cases where you will have a lot of contention, most accesses are read-only, and simultaneous reads are permissible for the data structure being protected. In such cases, exclusion is required only when a writer is involved - readers don't need to be excluded from each other. To promote a reader to writer all other readers must finish (or abort and start waiting to retry if they also wish to become writers) before the writer lock is acquired. ReaderWriter locks are likely to be slower in cases where they aren't faster, due to the additional book-keeping they do over mutexes.
Condition variables are for allowing threads to wait on certain facts or combinations of facts being true, where the condition in question is more complex than just "it has been poked" as for semaphores, or "nobody else is using it" for mutexes and the writer part of reader-writer locks, or "no writers are using it" for the reader part of reader-writer locks. They are also used where the triggering condition is different for different waiting threads, but depends on some or all of the same state (memory locations or whatever).
Spin locks are for when you will be waiting a very short period of time (like a few cycles) on one processor or core, while another core (or piece of hardware such as an I/O bus) simultaneously does some work that you care about. In some cases they give a performance enhancement over other primitives such as semaphores or interrupts, but must be used with extreme care (since lock-free algorithms are difficult in modern memory models) and only when proven necessary (since bright ideas to avoid system primitives are often premature optimisation).
Btw, these answers aren't C# specific (hence for example the comment about "most OSes"). Richard makes the excellent point that in C# you should be using plain old locks where appropriate. I believe Monitors are a mutex/condition variable pair rolled into one object.
I would say each of them can be "the best" - depends on the use case ;-)
Simple answer: almost never.
The best type of locking is to not need a lock (no shared mutable state).
If you do need a lock, try and use a Monitor (via a lock statement), unless you have specific needs for something different (in which case see Onebyone's answer
Additionally, prefer ReaderWriteLockSlim to ReaderWriterLock (except in the extremely rare case of requiring the latter's fairness).

lock keyword in C#

I understand the main function of the lock key word from MSDN
lock Statement (C# Reference)
The lock keyword marks a statement
block as a critical section by
obtaining the mutual-exclusion lock
for a given object, executing a
statement, and then releasing the
lock.
When should the lock be used?
For instance it makes sense with multi-threaded applications because it protects the data. But is it necessary when the application does not spin off any other threads?
Is there performance issues with using lock?
I have just inherited an application that is using lock everywhere, and it is single threaded and I want to know should I leave them in, are they even necessary?
Please note this is more of a general knowledge question, the application speed is fine, I want to know if that is a good design pattern to follow in the future or should this be avoided unless absolutely needed.
When should the lock be used?
A lock should be used to protect shared resources in multithreaded code. Not for anything else.
But is it necessary when the application does not spin off any other threads?
Absolutely not. It's just a time waster. However do be sure that you're not implicitly using system threads. For example if you use asynchronous I/O you may receive callbacks from a random thread, not your original thread.
Is there performance issues with using lock?
Yes. They're not very big in a single-threaded application, but why make calls you don't need?
...if that is a good design pattern to follow in the future[?]
Locking everything willy-nilly is a terrible design pattern. If your code is cluttered with random locking and then you do decide to use a background thread for some work, you're likely to run into deadlocks. Sharing a resource between multiple threads requires careful design, and the more you can isolate the tricky part, the better.
All the answers here seem right: locks' usefulness is to block threads from acessing locked code concurrently. However, there are many subtleties in this field, one of which is that locked blocks of code are automatically marked as critical regions by the Common Language Runtime.
The effect of code being marked as critical is that, if the entire region cannot be entirely executed, the runtime may consider that your entire Application Domain is potentially jeopardized and, therefore, unload it from memory. To quote MSDN:
For example, consider a task that attempts to allocate memory while holding a lock. If the memory allocation fails, aborting the current task is not sufficient to ensure stability of the AppDomain, because there can be other tasks in the domain waiting for the same lock. If the current task is terminated, other tasks could be deadlocked.
Therefore, even though your application is single-threaded, this may be a hazard for you. Consider that one method in a locked block throws an exception that is eventually not handled within the block. Even if the exception is dealt as it bubbles up through the call stack, your critical region of code didn't finish normally. And who knows how the CLR will react?
For more info, read this article on the perils of Thread.Abort().
Bear in mind that there might be reasons why your application is not as single-threaded as you think. Async I/O in .NET may well call-back on a pool thread, for example, as do some of the various timer classes (not the Windows Forms Timer, though).
Generally speaking if your application is single threaded, you're not going to get much use out of the lock statement. Not knowing your application exactly, I don't know if they're useful or not - but I suspect not. Further, if you're application is using lock everywhere I don't know that I would feel all that confident about it working in a multi-threaded environment anyways - did the original developer actually know how to develop multi-threaded code, or did they just add lock statements everywhere in the vague hope that that would do the trick?
lock should be used around the code that modifies shared state, state that is modified by other threads concurrently, and those other treads must take the same lock.
A lock is actually a memory access serializer, the threads (that take the lock) will wait on the lock to enter until the current thread exits the lock, so memory access is serialized.
To answer you question lock is not needed in a single threaded application, and it does have performance side effects. because locks in C# are based on kernel sync objects and every lock you take creates a transition to kernel mode from user mode.
If you're interested in multithreading performance a good place to start is MSDN threading guidelines
You can have performance issues with locking variables, but normally, you'd construct your code to minimize the lengths of time that are spent inside a 'locked' block of code.
As far as removing the locks. It'll depend on what exactly the code is doing. Even though it's single threaded, if your object is implemented as a Singleton, it's possible that you'll have multiple clients using an instance of it (in memory, on a server) at the same time..
Yes, there will be some performance penalty when using lock but it is generally neglible enough to not matter.
Using locks (or any other mutual-exclusion statement or construct) is generally only needed in multi-threaded scenarios where multiple threads (either of your own making or from your caller) have the opportunity to interact with the object and change the underlying state or data maintained. For example, if you have a collection that can be accessed by multiple threads you don't want one thread changing the contents of that collection by removing an item while another thread is trying to read it.
Lock(token) is only used to mark one or more blocks of code that should not run simultaneously in multiple threads. If your application is single-threaded, it's protecting against a condition that can't exist.
And locking does invoke a performance hit, adding instructions to check for simultaneous access before code is executed. It should only be used where necessary.
See the question about 'Mutex' in C#. And then look at these two questions regarding use of the 'lock(Object)' statement specifically.
There is no point in having locks in the app if there is only one thread and yes, it is a performance hit although it does take a fair number of calls for that hit to stack up into something significant.

Categories

Resources