Changing the tint of a bitmap while preserving the overall brightness - c#

I'm trying to write a function that will let me red-shift or blue-shift a bitmap while preserving the overall brightness of the image. Basically, a fully red-shifted bitmap would have the same brightness as the original but be thoroughly red-tinted (i.e. the G and B values would be equal for all pixels). Same for blue-tinting (but with R and G equal). The degree of spectrum shifting needs to vary from 0 to 1.
Thanks in advance.

Here is the effect I was looking for (crappy JPEG, sorry):
alt text http://www.freeimagehosting.net/uploads/d15ff241ca.jpg
The image in the middle is the original, and the side images are fully red-shifted, partially red-shifted, partially blue-shifted and fully blue-shifted, respectively.
And here is the function that produces this effect:
public void RedBlueShift(Bitmap bmp, double factor)
{
byte R = 0;
byte G = 0;
byte B = 0;
byte Rmax = 0;
byte Gmax = 0;
byte Bmax = 0;
double avg = 0;
double normal = 0;
if (factor > 1)
{
factor = 1;
}
else if (factor < -1)
{
factor = -1;
}
for (int x = 0; x < bmp.Width; x++)
{
for (int y = 0; y < bmp.Height; y++)
{
Color color = bmp.GetPixel(x, y);
R = color.R;
G = color.G;
B = color.B;
avg = (double)(R + G + B) / 3;
normal = avg / 255.0; // to preserve overall intensity
if (factor < 0) // red-tinted:
{
if (normal < .5)
{
Rmax = (byte)((normal / .5) * 255);
Gmax = 0;
Bmax = 0;
}
else
{
Rmax = 255;
Gmax = (byte)(((normal - .5) * 2) * 255);
Bmax = Gmax;
}
R = (byte)((double)R - ((double)(R - Rmax) * -factor));
G = (byte)((double)G - ((double)(G - Gmax) * -factor));
B = (byte)((double)B - ((double)(B - Bmax) * -factor));
}
else if (factor > 0) // blue-tinted:
{
if (normal < .5)
{
Rmax = 0;
Gmax = 0;
Bmax = (byte)((normal / .5) * 255);
}
else
{
Rmax = (byte)(((normal - .5) * 2) * 255);
Gmax = Rmax;
Bmax = 255;
}
R = (byte)((double)R - ((double)(R - Rmax) * factor));
G = (byte)((double)G - ((double)(G - Gmax) * factor));
B = (byte)((double)B - ((double)(B - Bmax) * factor));
}
color = Color.FromArgb(R, G, B);
bmp.SetPixel(x, y, color);
}
}
}

You'd use the ColorMatrix class for this. There's a good tutorial available in this project.

Related

Image convolution in spatial domain

I am trying to replicate the outcome of this link using linear convolution in spatial-domain.
Images are first converted to 2d double arrays and then convolved. Image and kernel are of the same size. The image is padded before convolution and cropped accordingly after the convolution.
As compared to the FFT-based convolution, the output is weird and incorrect.
How can I solve the issue?
Note that I obtained the following image output from Matlab which matches my C# FFT output:
.
Update-1: Following #Ben Voigt's comment, I changed the Rescale() function to replace 255.0 with 1 and thus the output is improved substantially. But, still, the output doesn't match the FFT output (which is the correct one).
.
Update-2: Following #Cris Luengo's comment, I have padded the image by stitching and then performed spatial convolution. The outcome has been as follows:
So, the output is worse than the previous one. But, this has a similarity with the 2nd output of the linked answer which means a circular convolution is not the solution.
.
Update-3: I have used the Sum() function proposed by #Cris Luengo's answer. The result is a more improved version of **Update-1**:
But, it is still not 100% similar to the FFT version.
.
Update-4: Following #Cris Luengo's comment, I have subtracted the two outcomes to see the difference:
,
1. spatial minus frequency domain
2. frequency minus spatial domain
Looks like, the difference is substantial which means, spatial convolution is not being done correctly.
.
Source Code:
(Notify me if you need more source code to see.)
public static double[,] LinearConvolutionSpatial(double[,] image, double[,] mask)
{
int maskWidth = mask.GetLength(0);
int maskHeight = mask.GetLength(1);
double[,] paddedImage = ImagePadder.Pad(image, maskWidth);
double[,] conv = Convolution.ConvolutionSpatial(paddedImage, mask);
int cropSize = (maskWidth/2);
double[,] cropped = ImageCropper.Crop(conv, cropSize);
return conv;
}
static double[,] ConvolutionSpatial(double[,] paddedImage1, double[,] mask1)
{
int imageWidth = paddedImage1.GetLength(0);
int imageHeight = paddedImage1.GetLength(1);
int maskWidth = mask1.GetLength(0);
int maskHeight = mask1.GetLength(1);
int convWidth = imageWidth - ((maskWidth / 2) * 2);
int convHeight = imageHeight - ((maskHeight / 2) * 2);
double[,] convolve = new double[convWidth, convHeight];
for (int y = 0; y < convHeight; y++)
{
for (int x = 0; x < convWidth; x++)
{
int startX = x;
int startY = y;
convolve[x, y] = Sum(paddedImage1, mask1, startX, startY);
}
}
Rescale(convolve);
return convolve;
}
static double Sum(double[,] paddedImage1, double[,] mask1, int startX, int startY)
{
double sum = 0;
int maskWidth = mask1.GetLength(0);
int maskHeight = mask1.GetLength(1);
for (int y = startY; y < (startY + maskHeight); y++)
{
for (int x = startX; x < (startX + maskWidth); x++)
{
double img = paddedImage1[x, y];
double msk = mask1[x - startX, y - startY];
sum = sum + (img * msk);
}
}
return sum;
}
static void Rescale(double[,] convolve)
{
int imageWidth = convolve.GetLength(0);
int imageHeight = convolve.GetLength(1);
double maxAmp = 0.0;
for (int j = 0; j < imageHeight; j++)
{
for (int i = 0; i < imageWidth; i++)
{
maxAmp = Math.Max(maxAmp, convolve[i, j]);
}
}
double scale = 1.0 / maxAmp;
for (int j = 0; j < imageHeight; j++)
{
for (int i = 0; i < imageWidth; i++)
{
double d = convolve[i, j] * scale;
convolve[i, j] = d;
}
}
}
public static Bitmap ConvolveInFrequencyDomain(Bitmap image1, Bitmap kernel1)
{
Bitmap outcome = null;
Bitmap image = (Bitmap)image1.Clone();
Bitmap kernel = (Bitmap)kernel1.Clone();
//linear convolution: sum.
//circular convolution: max
uint paddedWidth = Tools.ToNextPow2((uint)(image.Width + kernel.Width));
uint paddedHeight = Tools.ToNextPow2((uint)(image.Height + kernel.Height));
Bitmap paddedImage = ImagePadder.Pad(image, (int)paddedWidth, (int)paddedHeight);
Bitmap paddedKernel = ImagePadder.Pad(kernel, (int)paddedWidth, (int)paddedHeight);
Complex[,] cpxImage = ImageDataConverter.ToComplex(paddedImage);
Complex[,] cpxKernel = ImageDataConverter.ToComplex(paddedKernel);
// call the complex function
Complex[,] convolve = Convolve(cpxImage, cpxKernel);
outcome = ImageDataConverter.ToBitmap(convolve);
outcome = ImageCropper.Crop(outcome, (kernel.Width/2)+1);
return outcome;
}
Your current output looks more like the auto-correlation function than the convolution of Lena with herself. I think the issue might be in your Sum function.
If you look at the definition of the convolution sum, you'll see that the kernel (or the image, doesn't matter) is mirrored:
sum_m( f[n-m] g[m] )
For the one function, m appears with a plus sign, and for the other it appears with a minus sign.
You'll need to modify your Sum function to read the mask1 image in the right order:
static double Sum(double[,] paddedImage1, double[,] mask1, int startX, int startY)
{
double sum = 0;
int maskWidth = mask1.GetLength(0);
int maskHeight = mask1.GetLength(1);
for (int y = startY; y < (startY + maskHeight); y++)
{
for (int x = startX; x < (startX + maskWidth); x++)
{
double img = paddedImage1[x, y];
double msk = mask1[maskWidth - x + startX - 1, maskHeight - y + startY - 1];
sum = sum + (img * msk);
}
}
return sum;
}
The other option is to pass a mirrored version of mask1 to this function.
I have found the solution from this link. The main clue was to introduce an offset and a factor.
factor is the sum of all values in the kernel.
offset is an arbitrary value to fix the output further.
.
#Cris Luengo's answer also raised a valid point.
.
The following source code is supplied in the given link:
private void SafeImageConvolution(Bitmap image, ConvMatrix fmat)
{
//Avoid division by 0
if (fmat.Factor == 0)
return;
Bitmap srcImage = (Bitmap)image.Clone();
int x, y, filterx, filtery;
int s = fmat.Size / 2;
int r, g, b;
Color tempPix;
for (y = s; y < srcImage.Height - s; y++)
{
for (x = s; x < srcImage.Width - s; x++)
{
r = g = b = 0;
// Convolution
for (filtery = 0; filtery < fmat.Size; filtery++)
{
for (filterx = 0; filterx < fmat.Size; filterx++)
{
tempPix = srcImage.GetPixel(x + filterx - s, y + filtery - s);
r += fmat.Matrix[filtery, filterx] * tempPix.R;
g += fmat.Matrix[filtery, filterx] * tempPix.G;
b += fmat.Matrix[filtery, filterx] * tempPix.B;
}
}
r = Math.Min(Math.Max((r / fmat.Factor) + fmat.Offset, 0), 255);
g = Math.Min(Math.Max((g / fmat.Factor) + fmat.Offset, 0), 255);
b = Math.Min(Math.Max((b / fmat.Factor) + fmat.Offset, 0), 255);
image.SetPixel(x, y, Color.FromArgb(r, g, b));
}
}
}

Adaptive Thresholding Technique to live videos from webcam C#

I am trying to detect light from 2 LED lights (red and blue) I did that using Bernsen thresholding technique. However, I applied that to an image. Now I want to apply that same technique but to a live video from my webcam. Is there anyway I could simply edit the code for this technique on the image to make it work on a video from the webcam? I will add below the code I used for this thresholding technique.
private ArrayList getNeighbours(int xPos, int yPos, Bitmap bitmap)
{
//This goes around the image in windows of 5
ArrayList neighboursList = new ArrayList();
int xStart, yStart, xFinish, yFinish;
int pixel;
xStart = xPos - 5;
yStart = yPos - 5;
xFinish = xPos + 5;
yFinish = yPos + 5;
for (int y = yStart; y <= yFinish; y++)
{
for (int x = xStart; x <= xFinish; x++)
{
if (x < 0 || y < 0 || x > (bitmap.Width - 1) || y > (bitmap.Height - 1))
{
continue;
}
else
{
pixel = bitmap.GetPixel(x, y).R;
neighboursList.Add(pixel);
}
}
}
return neighboursList;
}
private void button5_Click_1(object sender, EventArgs e)
{
//The input image
Bitmap image = new Bitmap(pictureBox2.Image);
progressBar1.Minimum = 0;
progressBar1.Maximum = image.Height - 1;
progressBar1.Value = 0;
Bitmap result = new Bitmap(pictureBox2.Image);
int iMin, iMax, t, c, contrastThreshold, pixel;
contrastThreshold = 180;
ArrayList list = new ArrayList();
for (int y = 0; y < image.Height; y++)
{
for (int x = 0; x < image.Width; x++)
{
list.Clear();
pixel = image.GetPixel(x, y).R;
list = getNeighbours(x, y, image);
list.Sort();
iMin = Convert.ToByte(list[0]);
iMax = Convert.ToByte(list[list.Count - 1]);
// These are the calculations to test whether the
current pixel is light or dark
t = ((iMax + iMin) / 2);
c = (iMax - iMin);
if (c < contrastThreshold)
{
pixel = ((t >= 160) ? 0 : 255);
}
else
{
pixel = ((pixel >= t) ? 0 : 255);
}
result.SetPixel(x, y, Color.FromArgb(pixel, pixel, pixel));
}
progressBar1.Value = y;
}
pictureBox3.Image =result;
}

Performance issue while converting Rgb image to grayscale C# Code

I am writing a .Net wrapper for Tesseract Ocr and if I use a grayscale image instead of rgb image as an input file to it then results are pretty good.
So I was searching the web for C# solution to convert a Rgb image to grayscale image and I found this code.
This performs 3 operations to increase the accuracy of tesseract.
Resize the image
then convert into grayscale image and remove noise from image
Now this converted image gives almost 90% accurate results.
//Resize
public Bitmap Resize(Bitmap bmp, int newWidth, int newHeight)
{
Bitmap temp = (Bitmap)bmp;
Bitmap bmap = new Bitmap(newWidth, newHeight, temp.PixelFormat);
double nWidthFactor = (double)temp.Width / (double)newWidth;
double nHeightFactor = (double)temp.Height / (double)newHeight;
double fx, fy, nx, ny;
int cx, cy, fr_x, fr_y;
Color color1 = new Color();
Color color2 = new Color();
Color color3 = new Color();
Color color4 = new Color();
byte nRed, nGreen, nBlue;
byte bp1, bp2;
for (int x = 0; x < bmap.Width; ++x)
{
for (int y = 0; y < bmap.Height; ++y)
{
fr_x = (int)Math.Floor(x * nWidthFactor);
fr_y = (int)Math.Floor(y * nHeightFactor);
cx = fr_x + 1;
if (cx >= temp.Width)
cx = fr_x;
cy = fr_y + 1;
if (cy >= temp.Height)
cy = fr_y;
fx = x * nWidthFactor - fr_x;
fy = y * nHeightFactor - fr_y;
nx = 1.0 - fx;
ny = 1.0 - fy;
color1 = temp.GetPixel(fr_x, fr_y);
color2 = temp.GetPixel(cx, fr_y);
color3 = temp.GetPixel(fr_x, cy);
color4 = temp.GetPixel(cx, cy);
// Blue
bp1 = (byte)(nx * color1.B + fx * color2.B);
bp2 = (byte)(nx * color3.B + fx * color4.B);
nBlue = (byte)(ny * (double)(bp1) + fy * (double)(bp2));
// Green
bp1 = (byte)(nx * color1.G + fx * color2.G);
bp2 = (byte)(nx * color3.G + fx * color4.G);
nGreen = (byte)(ny * (double)(bp1) + fy * (double)(bp2));
// Red
bp1 = (byte)(nx * color1.R + fx * color2.R);
bp2 = (byte)(nx * color3.R + fx * color4.R);
nRed = (byte)(ny * (double)(bp1) + fy * (double)(bp2));
bmap.SetPixel(x, y, System.Drawing.Color.FromArgb(255, nRed, nGreen, nBlue));
}
}
//here i included the below to functions logic without the for loop to remove repetitive use of for loop but it did not work and taking the same time.
bmap = SetGrayscale(bmap);
bmap = RemoveNoise(bmap);
return bmap;
}
//SetGrayscale
public Bitmap SetGrayscale(Bitmap img)
{
Bitmap temp = (Bitmap)img;
Bitmap bmap = (Bitmap)temp.Clone();
Color c;
for (int i = 0; i < bmap.Width; i++)
{
for (int j = 0; j < bmap.Height; j++)
{
c = bmap.GetPixel(i, j);
byte gray = (byte)(.299 * c.R + .587 * c.G + .114 * c.B);
bmap.SetPixel(i, j, Color.FromArgb(gray, gray, gray));
}
}
return (Bitmap)bmap.Clone();
}
//RemoveNoise
public Bitmap RemoveNoise(Bitmap bmap)
{
for (var x = 0; x < bmap.Width; x++)
{
for (var y = 0; y < bmap.Height; y++)
{
var pixel = bmap.GetPixel(x, y);
if (pixel.R < 162 && pixel.G < 162 && pixel.B < 162)
bmap.SetPixel(x, y, Color.Black);
}
}
for (var x = 0; x < bmap.Width; x++)
{
for (var y = 0; y < bmap.Height; y++)
{
var pixel = bmap.GetPixel(x, y);
if (pixel.R > 162 && pixel.G > 162 && pixel.B > 162)
bmap.SetPixel(x, y, Color.White);
}
}
return bmap;
}
But the problem is it takes lot of time to convert it
So I included SetGrayscale(Bitmap bmap)
RemoveNoise(Bitmap bmap) function logic inside the Resize() method to remove repetitive use of for loop
but it did not solve my problem.
The Bitmap class's GetPixel() and SetPixel() methods are notoriously slow for multiple read/writes. A much faster way to access and set individual pixels in a bitmap is to lock it first.
There's a good example here on how to do that, with a nice class LockedBitmap to wrap around the stranger Marshaling code.
Essentially what it does is use the LockBits() method in the Bitmap class, passing a rectangle for the region of the bitmap you want to lock, and then copy those pixels from its unmanaged memory location to a managed one for easier access.
Here's an example on how you would use that example class with your SetGrayscale() method:
public Bitmap SetGrayscale(Bitmap img)
{
LockedBitmap lockedBmp = new LockedBitmap(img.Clone());
lockedBmp.LockBits(); // lock the bits for faster access
Color c;
for (int i = 0; i < lockedBmp.Width; i++)
{
for (int j = 0; j < lockedBmp.Height; j++)
{
c = lockedBmp.GetPixel(i, j);
byte gray = (byte)(.299 * c.R + .587 * c.G + .114 * c.B);
lockedBmp.SetPixel(i, j, Color.FromArgb(gray, gray, gray));
}
}
lockedBmp.UnlockBits(); // remember to release resources
return lockedBmp.Bitmap; // return the bitmap (you don't need to clone it again, that's already been done).
}
This wrapper class has saved me a ridiculous amount of time in bitmap processing. Once you've implemented this in all your methods, preferably only calling LockBits() once, then I'm sure your application's performance will improve tremendously.
I also see that you're cloning the images a lot. This probably doesn't take up as much time as the SetPixel()/GetPixel() thing, but its time can still be significant especially with larger images.
The easiest way would be to redraw the image onto itself using DrawImage and passing a suitable ColorMatrix. Google for ColorMatrix and gray scale and you'll find a ton of examples, this one for example: http://www.codeproject.com/Articles/3772/ColorMatrix-Basics-Simple-Image-Color-Adjustment

Correctly executing bicubic resampling

I've been experimenting with the image bicubic resampling algorithm present in the AForge framework with the idea of introducing something similar into my image processing solution. See the original algorithm here and interpolation kernel here
Unfortunately I've hit a wall. It looks to me like somehow I am calculating the sample destination position incorrectly, probably due to the algorithm being designed for Format24bppRgb images where as I am using a Format32bppPArgb format.
Here's my code:
public Bitmap Resize(Bitmap source, int width, int height)
{
int sourceWidth = source.Width;
int sourceHeight = source.Height;
Bitmap destination = new Bitmap(width, height, PixelFormat.Format32bppPArgb);
destination.SetResolution(source.HorizontalResolution, source.VerticalResolution);
using (FastBitmap sourceBitmap = new FastBitmap(source))
{
using (FastBitmap destinationBitmap = new FastBitmap(destination))
{
double heightFactor = sourceWidth / (double)width;
double widthFactor = sourceHeight / (double)height;
// Coordinates of source points
double ox, oy, dx, dy, k1, k2;
int ox1, oy1, ox2, oy2;
// Width and height decreased by 1
int maxHeight = height - 1;
int maxWidth = width - 1;
for (int y = 0; y < height; y++)
{
// Y coordinates
oy = (y * widthFactor) - 0.5;
oy1 = (int)oy;
dy = oy - oy1;
for (int x = 0; x < width; x++)
{
// X coordinates
ox = (x * heightFactor) - 0.5f;
ox1 = (int)ox;
dx = ox - ox1;
// Destination color components
double r = 0;
double g = 0;
double b = 0;
double a = 0;
for (int n = -1; n < 3; n++)
{
// Get Y cooefficient
k1 = Interpolation.BiCubicKernel(dy - n);
oy2 = oy1 + n;
if (oy2 < 0)
{
oy2 = 0;
}
if (oy2 > maxHeight)
{
oy2 = maxHeight;
}
for (int m = -1; m < 3; m++)
{
// Get X cooefficient
k2 = k1 * Interpolation.BiCubicKernel(m - dx);
ox2 = ox1 + m;
if (ox2 < 0)
{
ox2 = 0;
}
if (ox2 > maxWidth)
{
ox2 = maxWidth;
}
Color color = sourceBitmap.GetPixel(ox2, oy2);
r += k2 * color.R;
g += k2 * color.G;
b += k2 * color.B;
a += k2 * color.A;
}
}
destinationBitmap.SetPixel(
x,
y,
Color.FromArgb(a.ToByte(), r.ToByte(), g.ToByte(), b.ToByte()));
}
}
}
}
source.Dispose();
return destination;
}
And the kernel which should represent the given equation on Wikipedia
public static double BiCubicKernel(double x)
{
if (x < 0)
{
x = -x;
}
double bicubicCoef = 0;
if (x <= 1)
{
bicubicCoef = (1.5 * x - 2.5) * x * x + 1;
}
else if (x < 2)
{
bicubicCoef = ((-0.5 * x + 2.5) * x - 4) * x + 2;
}
return bicubicCoef;
}
Here's the original image at 500px x 667px.
And the image resized to 400px x 543px.
Visually it appears that the image is over reduced and then the same pixels are repeatedly applied once we hit a particular point.
Can anyone give me some pointers here to solve this?
Note FastBitmap is a wrapper for Bitmap that uses LockBits to manipulate pixels in memory. It works well with everything else I apply it to.
Edit
As per request here's the methods involved in ToByte
public static byte ToByte(this double value)
{
return Convert.ToByte(ImageMaths.Clamp(value, 0, 255));
}
public static T Clamp<T>(T value, T min, T max) where T : IComparable<T>
{
if (value.CompareTo(min) < 0)
{
return min;
}
if (value.CompareTo(max) > 0)
{
return max;
}
return value;
}
You are limiting your ox2 and oy2 to destination image dimensions, instead of source dimensions.
Change this:
// Width and height decreased by 1
int maxHeight = height - 1;
int maxWidth = width - 1;
to this:
// Width and height decreased by 1
int maxHeight = sourceHeight - 1;
int maxWidth = sourceWidth - 1;
Well, I've met a very strange thing, which might be or might be not a souce of the problem.
I've started to try implementing convolution matrix by myself and encountered strange behaviour. I was testing code on a small image 4x4 pixels. The code is following:
var source = Bitmap.FromFile(#"C:\Users\Public\Pictures\Sample Pictures\Безымянный.png");
using (FastBitmap sourceBitmap = new FastBitmap(source))
{
for (int TY = 0; TY < 4; TY++)
{
for (int TX = 0; TX < 4; TX++)
{
Color color = sourceBitmap.GetPixel(TX, TY);
Console.Write(color.B.ToString().PadLeft(5));
}
Console.WriteLine();
}
}
Althought I'm printing out only blue channel value, it's still clearly incorrect.
On the other hand, your solution partitially works, what makes the thing I've found kind of irrelevant. One more guess I have: what is your system's DPI?
From what I have found helpfull, here are some links:
C++ implementation of bicubic interpolation on
matrix
C# implemetation of bicubic interpolation, lacking the part about rescaling
Thread on gamedev.net which has almost working solution
That's my answer so far, but I will try further.

Draw rotated sine image

I'm working with 2D Fourier transforms, and I have a method that will output the following result:
The code looks like this:
private Bitmap PaintSin(int s, int n)
{
Data = new int[Width, Height];
Bitmap buffer = new Bitmap(Width, Height);
double inner = (2 * Math.PI * s) / n;
BitmapData originalData = buffer.LockBits(
new Rectangle(0, 0, buffer.Width, buffer.Height),
ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
for (int i = 0; i < buffer.Width; i++)
{
for (int j = 0; j < buffer.Height; j++)
{
double val;
int c = 0;
if (j == 0)
{
val = Math.Sin(inner * i);
val += 1;
val *= 128;
val = val > 255 ? 255 : val;
c = (int)val;
Color col = Color.FromArgb(c, c, c);
SetPixel(originalData, i, j, col);
}
else
SetPixel(originalData, i, j, GetColor(originalData, i, 0));
Data[i, j] = c;
}
}
buffer.UnlockBits(originalData);
return buffer;
}
Now, I'm trying to think of a formula that will accept an angle and will out put an image where the solid lines are at the given angle.
For example, if I inputted 45 Degrees, the result would be:
Thank you for any help!
Here is the SetPixel code if that is needed:
private unsafe void SetPixel(BitmapData originalData, int x, int y, Color color)
{
//set the number of bytes per pixel
int pixelSize = 3;
//get the data from the original image
byte* oRow = (byte*)originalData.Scan0 + (y * originalData.Stride);
//set the new image's pixel to the grayscale version
oRow[x * pixelSize] = color.B; //B
oRow[x * pixelSize + 1] = color.G; //G
oRow[x * pixelSize + 2] = color.R; //R
}
This should be possible by using a rotated coordinate system. Transformation of i and j is as following:
x = i * cos(angle) - j * sin(angle);
y = j * cos(angle) + i * sin(angle);
Note: I'm not sure about degree/radians here, so adjust angle so it fits to the unit that cos and sin do need. Also, you might have to negate the angle depending on your desired rotation direction.
In fact, you only need x which replaces your use of i. We'll precompute sin(angle) and cos(angle) because these are quite costy operations we don't want in inner loops. Additionaly, your optimization is removed as we can't draw only one line and repeat it:
[...]
// double angle = ...
double cos_angle = cos(angle);
double sin_angle = sin(angle);
for (int i = 0; i < buffer.Width; i++)
{
for (int j = 0; j < buffer.Height; j++)
{
double val;
double x;
int c = 0;
x = i * cos_angle - j * sin_angle;
val = Math.Sin(inner * x);
val += 1;
val *= 128;
val = val > 255 ? 255 : val;
c = (int)val;
Color col = Color.FromArgb(c, c, c);
SetPixel(originalData, i, j, col);
Data[i, j] = c;
}
}
You can write a simple function rotate(x,y,angle) and use its result in SetPixel. You can google for rotation matrix.
A call with angle = 0, should produce default output.

Categories

Resources