C#, how to handle constant tables - c#

It seems strange that the language apparently includes no suitable functionality.
I find myself with data that would best be expressed as a multi-dimensional array but it's utterly constant, there is no way anyone could want to change it without also changing the associated code. Faced with such stuff in Delphi the answer is obvious--a constant whose value is the table. However, C# doesn't seem to support anything like this.
Google shows many people griping about this, no good answers.
How do people handle this sort of situation?
(And don't say that constants don't belong in code--the last one I bumped into was all possible permutations of 4 items. Unless the very nature of spacetime changes this is set in stone.)
What happened?? There was an answer that came pretty close, I was asking about a detail and it vanished! Simply declaring an array sort of does the job--the only problem is that the array allocation is going to run every time. The one in front of me contains 96 values--how do I get it to initialize only once? Do I just have to accept scoping it far wider than it should be? (As it stands it's in one 3-line routine that's inside what amounts to an O(n^3) routine.)

ReadOnlyCollection

There's a page in in the C# FAQ about this specific thing.
They suggest using a static readonly array:
static readonly int[,] constIntArray = new int[,] { { 1, 2, 3 }, { 4, 5, 6 }};
However, be aware that this is only sort of constant - you can still reassign individual elements within the array. Also, this has to be specified on the class level since it's a static, but it will work fairly well.

You could use a readonly Hashtable. The only downside is that readonly does not prevent you from changing the value of a particular item in the Hashtable. So it is not truly const.
readonly Hashtable table = new Hashtable(){{1,"One"},{2,"Two"}};
Or an array
public readonly string[,] arry = new string[,]{{"1","2"},{"2","4"}};
Yes, you will need to declare the variable in the appropriate scope so it does not get initialized more than once.

Like they say, just add another layer of indirection. C# doesn't need to provide a specialized data structure as a language primitive, although one does, at times, wish there was a way to make any class immutable, but that's another discussion.
Now you didn't mention if you need to store different things in there. In fact you didn't mention anything other than multi-dimensional and no ability to change the values or the arrays. I don't even know if the access pattern (a single int,int,int indexer) is appropriate.
But in general, for a 3-dimensional jagged array, the following works (but it isn't pretty).
One caveat is the type you construct it with also needs to be immutable, but that's your problem. You can just create your own read-only wrapper.
public static readonly ReadOnlyThreeDimensions<int> MyGlobalThree
= new ReadOnlyThreeDimensions<int>(IntInitializer);
public class ReadOnlyThreeDimensions<T>
{
private T[][][] _arrayOfT;
public ReadOnlyThreeDimensions(Func<T[][][]> initializer)
{
_arrayOfT = initializer();
}
public ReadOnlyThreeDimensions(T[][][] arrayOfT)
{
_arrayOfT = arrayOfT;
}
public T this [int x, int y, int z]
{
get
{
return _arrayOfT[x][y][z];
}
}
}
And then you just need to provide some initializer method, or assign it in a static constructor.
public static int[][][] IntInitializer()
{
return xyz // something that constructs a [][][]
}

Enumerations, surely.

Well, I've taken the approach of the following, it's a little nasty to read but easy to edit.
public struct Something
{
public readonly int Number;
public readonly string Name;
public Something(int num, string name) { this.Number = num; this.Name = name; }
}
public readonly Something[] GlobalCollection = new Something[]
{
new Something(1, "One"),
new Something(2, "Two"),
};

Related

How to properly Clear a Queue containing structs?

I have declared a basic struct like this
private struct ValLine {
public string val;
public ulong linenum;
}
and declared a Queue like this
Queue<ValLine> check = new Queue<ValLine>();
Then in a using StreamReader setup where I'm reading through the lines of an input file using ReadLine in a while loop, among other things, I'm doing this to populate the Queue:
check.Enqueue(new ValLine { val = line, linenum = linenum });
("line" is a string containing the text of each line, "linenum" is just a counter that is initialized at 0 and is incremented each time through the loop.)
The purpose of the "check" Queue is that if a particular line meets some criteria, then I store that line in "check" along with the line number that it occurs on in the input file.
After I've finished reading through the input file, I use "check" for various things, but then when I'm finished using it I clear it out in the obvious manner:
check.Clear();
(Alternatively, in my final loop through "check" I could just use .Dequeue(), instead of foreach'ing it.)
But then I got to thinking - wait a minute, what about all those "new ValLine" I generated when populating the Queue in the first place??? Have I created a memory leak? I've pretty new to C#, so it's not coming clear to me how to deal with this - or even if it should be dealt with (perhaps .Clear() or .Dequeue() deals with the now obsoleted structs automatically?). I've spent over an hour with our dear friend Google, and just not finding any specific discussion of this kind of example in regard to the clearing of a collection of structs.
So... In C# do we need to deal with wiping out the individual structs before clearing the queue (or as we are dequeueing), or not? And if so, then what is the proper way to do this?
(Just in case it's relevant, I'm using .NET 4.5 in Visual Studio 2013.)
UPDATE: This is for future reference (you know, like if this page comes up in a Google search) in regard to proper coding. To make the struct immutable as per recommendation, this is what I've ended up with:
private struct ValLine {
private readonly string _val;
private readonly ulong _linenum;
public string val { get { return _val; } }
public ulong linenum { get { return _linenum; } }
public ValLine(string x, ulong n) { _val = x; _linenum = n; }
}
Corresponding to that change, the queue population line is now this:
check.Enqueue(new ValLine(line,linenum));
Also, though not strictly necessary, I did get rid of my foreach on the queue (and the check.Clear();, and changed it to this
while (check.Count > 0) {
ValLine ll = check.Dequeue();
writer.WriteLine("[{0}] {1}", ll.linenum, ll.val);
}
so that the queue is emptied out as the information is output.
UPDATE 2: Okay, yes, I'm still a C# newbie (less than a year). I learn a lot from the Internet, but of course, I'm often looking at examples from more than a year ago. I have changed my struct so now it looks like this:
private struct ValLine {
public string val { get; private set; }
public ulong linenum { get; private set; }
public ValLine(string x, ulong n): this()
{ this.val = x; this.linenum = n; }
}
Interestingly enough, I had actually tried exactly this off the top of my head before coming up with what's in the first update (above), but got a compile error (because I did not have the : this() with the constructor). Upon further suggestion, I checked further and found a recent example showing that : this() for making it work like I tried before, plugged that in, and - Wa La! - clean compile. I like the cleaner look of the code. What the private variables are called is irrelevant to me.
No, you won't have created a memory leak. Calling Clear or Dequeue will clear the memory appropriately - for example, if you had a List<T> then a clear operation might use:
for (int i = 0; i < capacity; i++)
{
array[i] = default(T);
}
I don't know offhand whether Queue<T> is implemented with a circular buffer built on an array, or a linked list - but either way, you'll be fine.
Having said that, I would strongly recommend against using mutable structs as you're doing here, along with mutable fields. While it's not causing the particular problem you're envisaging, they can behave in confusing ways.

Make a list readonly in c#

I have this example code. What I want to do is to make it so that the "Nums" value can only be written to using the "AddNum" method.
namespace ConsoleApplication1
{
public class Person
{
string myName = "N/A";
int myAge = 0;
List<int> _nums = new List<int>();
public List<int> Nums
{
get
{
return _nums;
}
}
public void AddNum(int NumToAdd)
{
_nums.Add(NumToAdd);
}
public string Name { get; set; }
public int Age { get; set; }
}
}
Somehow, I've tried a bunch of things regarding AsReadOnly() and the readonly keyword, but I can't seem to get it to do what I want it to do.
Here is the sample of the code I have to access the property.
Person p1 = new Person();
p1.Nums.Add(25); //access 1
p1.AddNum(37); //access 2
Console.WriteLine("press any key");
Console.ReadLine();
I really want "access 1" to fail, and "access 2" to be the ONLY way that the value can be set. Thanks in advance for the help.
√ DO use ReadOnlyCollection, a subclass of ReadOnlyCollection,
or in rare cases IEnumerable for properties or return values
representing read-only collections.
The quote from this article.
You should have something like this:
List<int> _nums = new List<int>();
public ReadOnlyCollection<int> Nums
{
get
{
return _nums.AsReadOnly();
}
}
In general, collection types make poor properties because even when a collection is wrapped in ReadOnlyCollection, it's inherently unclear what:
IEnumerable<int> nums = myPerson.Nums;
myPerson.AddNum(23);
foreach(int i in nums) // Should the 23 be included!?
...
is supposed to mean. Is the object returned from Nums a snapshot of the numbers that existed when it called, is it a live view?
A cleaner approach is to have a method called something like GetNumsAsArray which returns a new array each time it's called; it may also be helpful in some cases to have a GetNumsAsList variant depending upon what the caller will want to do with the numbers. Some methods only work with arrays, and some only work with lists, so if only one of the above is provided some callers will have to call it and then convert the returned object to the required type.
If performance-sensitive callers will be needing to use this code a lot, it may be helpful to have a more general-purpose method:
int CopyNumsIntoArray(int sourceIndex, int reqCount, ref int[] dest,
int destIndex, CopyCountMode mode);
where CopyCountMode indicates what the code should do the number of items available starting at sourceIndex is greater or less than reqCount; the method should either return the number of items that were available, or throw an exception if it violated the caller's stated expectations. Some callers might start by create and passing in a 10-item array but be prepared to have the method replace it with a bigger array if there are more than ten items to be returned; others might expect that there will be exactly 23 items and be unprepared to handle any other number. Using a parameter to specify the mode will allow one method to service many kinds of callers.
Although many collection authors don't bother including any method that fits the above pattern, such methods can greatly improve efficiency in cases where code wants to work with a significant minority of a collection (e.g. 1,000 items out of a collection of 50,000). In the absence of such methods, code wishing to work with such a range must either ask for a copy of the whole thing (very wasteful) or request thousands of items individually (also wasteful). Allowing the caller to supply the destination array would improve efficiency in the case where the same method makes many queries, especially if the destination array would be large enough to be put on the large object heap.

How to implement a SearchByID?

Good afternoon all!
As a part of getting a better grip on some of the most aspects of object based programming, I've started to attempt something far larger than I have done in the past. Hereby I'm trying to learn about inheritance, code reuse, using classes far more extensively, and so on.
For this purpose I am trying to piece together all the parts required for a basic RPG/dungeon crawler.
I know this has been done a billion times before, but I find that actually trying to code something like it takes you through a lot more problems than you might think, which is a great way to learn (I think).
For now I have only loaded up a WPF application, since my interest is 95% on being able to piece together the working classes, routines, functions, etc. And not so much interested in how it will look. I am actually reading up on XNA, but since I am mostly trying to get a grip on the basic workings, I don't want to complicate those aspects with the graphical side of things just yet.
The problem I am now facing is that when I would a character to attack or defend, it should know from which other character it came, or to which one it should be pointed. I figured I could either use a GUID, or a manually appointed ID. But the problem is that I don't really know how I can implement such a thing.
The thing that I figured was that I could maybe add a reference to an array (Character[]), and have a SearchByID function loop through them to find the right one, and return it. Like so:
internal Character SearchByID(string _ID)
{
foreach(Character charToFind in Character[])
{
if(charToFind.ID == _ID)
return charToFind;
}
}
This of course has to be altered a bit due to the return at the moment, but just to give you an idea.
What I am stuck on is how to create the appropriate array outside of the "Character"-class? I can fill it up just fine, but how do I go about having it added above class level?
The way the "Character"-class is built up is that every new character instantiates from the Character class. The constructor then loads the appropriate values. But other than this, I see no possibility to initialize an array outside of this.
If it is preferable to post the entire code that I have, that will be no problem at all!
Thanks for any insights you may provide me with.
I think you can just use the Character-class and pass other Characters to it, for example:
public class Character
{
public string Name { get; private set; }
public int HitPoints { get; private set; }
public int Offense { get; private set; }
public int Defense { get; private set; }
public Character(string name, int hitPoints, int offense, int defense)
{
Name = name;
HitPoints = hitPoints;
Offense = offense;
Defense = defense;
}
public void Defend(Character source)
{
HitPoints = HitPoints - (source.Offense - Defense);
if (HitPoints <= 0)
{
Console.WriteLine("{0} died", Name);
}
}
public void Attack(Character target)
{
// Here you can call the other character's defend with this char as an attacker
target.Defend(this);
if (target.HitPoints <= 0)
{
Console.WriteLine("{0} killed {1}", Name, target.Name);
}
}
}
The thing with object oriented programming is that you have to start thinking in objects. Objects are like boxes when they're concrete. You can make new ones and give them some properties, like a name, height, width, hitpoints, whatever. You can also let these objects perform actions. Now a simple box won't do much itself, but a character can do various things, so it makes sense to put these actions in the Character-class.
Besides having Characters, you might have a Game-class which manages the game-state, characters, monsters, treasure chests etc...
Now this simple example may cause you to gain HitPoints when your defense is higher than the attacker's offense, but that's details, I'll leave the exact implementation up to you.
I guess you want a way to insert characters in an array when they are instantiated..
You can make a static array or list
So,your class in my opinion should be
class Character
{
static List<Character> characterList=new List<Character>();//all characters are here
public Character(string id,...)
{
//initialize your object
characterList.Add(this);//store them in the list as and when created
}
internal Character SearchByID(string _ID)
{
foreach(Character charToFind in characterList)
{
if(charToFind.ID == _ID)
return charToFind;
}
}
}
As you may be knowing static members are associated with the class not with the object.So,when you create a new character object it would be automatically added to the characterList
Unless you are dealing with seperate processes, e.g. client-server, you probably don't want to use "Id"s at all.
Whereever you are passing string _ID around, pass the actual Character instead. This saves you looking up in an array or whatever.
Post more code, and I can show you what I mean.
You could use a dictionary, instantiated in your controller class:
Dictionary<Guid, Character> _characterList = new Dictionary<Guid, Character>();
Initialise:
var someCharacter = new Character() { stats = something };
var otherCharacter = new Character() { stats = anotherThing };
var char1Id = Guid.NewGuid();
var char2Id = Guid.NewGuid();
_characterList.Add(char1Id, someCharacter);
_characterList.Add(char2Id, otherCharacter);
then, to access characters:
var charToFind = _characterList[char1Id];
or
var charToFind = _characterList.Single(c => c.Name = "Fred The Killer");
or whatever else...
Check out keyed collection
KeyedCollection
It is like a dictionary where the key is a property of class.
You will be able to reference a Character with
Characters[id]
Syntax
On your Character class overrite GetHashCode and Equals for performance.
If you use Int32 for the ID then you will get a perfect hash.
Very fast and O(1).

What is the need Indexers in C#

Today I've gone through what indexers are, but I am bit confused. Is there really a need for indexers? What are the advantages of using an indexer..... thanks in advance
I guess the simplest answer is to look at how you'd use (say) List<T> otherwise. Would you rather write:
string foo = list[10];
or
string foo = list.Get(10);
Likewise for dictionaries, would you rather use:
map["foo"] = "bar";
or
map.Put("foo", "bar");
?
Just like properties, there's no real need for them compared with just named methods following a convention... but they make code easier to understand, in my view - and that's one of the most important things a feature can do.
Indexers let you get a reference to an object in a collection without having to traverse the whole collections.
Say you have several thousands of objects, and you need the one before last. Instead of iterating over all of the items in the collection, you simply use the index of the object you want.
Indexers do no have to be integers, so you can use a string, for example, (though you can use any object, so long as the collection supports it) as an indexer - this lets you "name" objects in a collection for later retrieval, also quite useful.
I think zedo got closest to the real reason IMHO that they have added this feature. It's for convenience in the same way that we have properties.
The code is easer to type and easier to read, with a simple abstraction to help you understand.
For instance:
string[] array;
string value = array[0];
List<string> list;
string value = list[0]; //Abstracts the list lookup to a call similar to array.
Dictionary<string, int> map;
int value = map["KeyName"]; //Overloaded with string lookup.
Indexers allow you to reference your class in the same way as an array which is useful when creating a collection class, but giving a class array-like behavior can be useful in other situations as well, such as when dealing with a large file or abstracting a set of finite resources.
yes , they are very use of
you can use indexers to get the indexed object.
Taken from MSDN
Indexers are most frequently implemented in types whose primary purpose is to encapsulate an internal collection or array.
Full Story
for some reason, use indexer can let you create meaningful index to store or map your data. then you can get it from other side by the meaningful index.
using System;
/* Here is a simple program. I think this will help you to understand */
namespace Indexers
{
class Demo
{
int[] a = new int[10];
public int Lengths
{
get
{
return a.Length;
}
}
public int this[int index]
{
get
{
return a[index];
}
set
{
a[index] = value;
}
}
}
class Program
{
static void Main(string[] args)
{
Demo d = new Demo(); // Notice here, this is a simple object
//but you can use this like an array
for (int i = 0; i < d.Lengths; i++)
{
d[i] = i;
}
for (int i = 0; i < d.Lengths; i++)
{
Console.WriteLine(d[i]);
}
Console.ReadKey();
}
}
}
/*Output:
0
1
2
3
4
5
6
7
8
9
*/

How to initialize a List<T> to a given size (as opposed to capacity)?

.NET offers a generic list container whose performance is almost identical (see Performance of Arrays vs. Lists question). However they are quite different in initialization.
Arrays are very easy to initialize with a default value, and by definition they already have certain size:
string[] Ar = new string[10];
Which allows one to safely assign random items, say:
Ar[5]="hello";
with list things are more tricky. I can see two ways of doing the same initialization, neither of which is what you would call elegant:
List<string> L = new List<string>(10);
for (int i=0;i<10;i++) L.Add(null);
or
string[] Ar = new string[10];
List<string> L = new List<string>(Ar);
What would be a cleaner way?
EDIT: The answers so far refer to capacity, which is something else than pre-populating a list. For example, on a list just created with a capacity of 10, one cannot do L[2]="somevalue"
EDIT 2: People wonder why I want to use lists this way, as it is not the way they are intended to be used. I can see two reasons:
One could quite convincingly argue that lists are the "next generation" arrays, adding flexibility with almost no penalty. Therefore one should use them by default. I'm pointing out they might not be as easy to initialize.
What I'm currently writing is a base class offering default functionality as part of a bigger framework. In the default functionality I offer, the size of the List is known in advanced and therefore I could have used an array. However, I want to offer any base class the chance to dynamically extend it and therefore I opt for a list.
List<string> L = new List<string> ( new string[10] );
I can't say I need this very often - could you give more details as to why you want this? I'd probably put it as a static method in a helper class:
public static class Lists
{
public static List<T> RepeatedDefault<T>(int count)
{
return Repeated(default(T), count);
}
public static List<T> Repeated<T>(T value, int count)
{
List<T> ret = new List<T>(count);
ret.AddRange(Enumerable.Repeat(value, count));
return ret;
}
}
You could use Enumerable.Repeat(default(T), count).ToList() but that would be inefficient due to buffer resizing.
Note that if T is a reference type, it will store count copies of the reference passed for the value parameter - so they will all refer to the same object. That may or may not be what you want, depending on your use case.
EDIT: As noted in comments, you could make Repeated use a loop to populate the list if you wanted to. That would be slightly faster too. Personally I find the code using Repeat more descriptive, and suspect that in the real world the performance difference would be irrelevant, but your mileage may vary.
Use the constructor which takes an int ("capacity") as an argument:
List<string> = new List<string>(10);
EDIT: I should add that I agree with Frederik. You are using the List in a way that goes against the entire reasoning behind using it in the first place.
EDIT2:
EDIT 2: What I'm currently writing is a base class offering default functionality as part of a bigger framework. In the default functionality I offer, the size of the List is known in advanced and therefore I could have used an array. However, I want to offer any base class the chance to dynamically extend it and therefore I opt for a list.
Why would anyone need to know the size of a List with all null values? If there are no real values in the list, I would expect the length to be 0. Anyhow, the fact that this is cludgy demonstrates that it is going against the intended use of the class.
Create an array with the number of items you want first and then convert the array in to a List.
int[] fakeArray = new int[10];
List<int> list = fakeArray.ToList();
If you want to initialize the list with N elements of some fixed value:
public List<T> InitList<T>(int count, T initValue)
{
return Enumerable.Repeat(initValue, count).ToList();
}
Why are you using a List if you want to initialize it with a fixed value ?
I can understand that -for the sake of performance- you want to give it an initial capacity, but isn't one of the advantages of a list over a regular array that it can grow when needed ?
When you do this:
List<int> = new List<int>(100);
You create a list whose capacity is 100 integers. This means that your List won't need to 'grow' until you add the 101th item.
The underlying array of the list will be initialized with a length of 100.
This is an old question, but I have two solutions. One is fast and dirty reflection; the other is a solution that actually answers the question (set the size not the capacity) while still being performant, which none of the answers here do.
Reflection
This is quick and dirty, and should be pretty obvious what the code does. If you want to speed it up, cache the result of GetField, or create a DynamicMethod to do it:
public static void SetSize<T>(this List<T> l, int newSize) =>
l.GetType().GetField("_size", BindingFlags.NonPublic | BindingFlags.Instance).SetValue(l, newSize);
Obviously a lot of people will be hesitant to put such code into production.
ICollection<T>
This solution is based around the fact that the constructor List(IEnumerable<T> collection) optimizes for ICollection<T> and immediately adjusts the size to the correct amount, without iterating it. It then calls the collections CopyTo to do the copy.
The code for the List<T> constructor is as follows:
public List(IEnumerable<T> collection) {
....
ICollection<T> c = collection as ICollection<T>;
if (collection is ICollection<T> c)
{
int count = c.Count;
if (count == 0)
{
_items = s_emptyArray;
}
else {
_items = new T[count];
c.CopyTo(_items, 0);
_size = count;
}
}
So we can completely optimally pre-initialize the List to the correct size, without any extra copying.
How so? By creating an ICollection<T> object that does nothing other than return a Count. Specifically, we will not implement anything in CopyTo which is the only other function called.
private struct SizeCollection<T> : ICollection<T>
{
public SizeCollection(int size) =>
Count = size;
public void Add(T i){}
public void Clear(){}
public bool Contains(T i)=>true;
public void CopyTo(T[]a, int i){}
public bool Remove(T i)=>true;
public int Count {get;}
public bool IsReadOnly=>true;
public IEnumerator<T> GetEnumerator()=>null;
IEnumerator IEnumerable.GetEnumerator()=>null;
}
public List<T> InitializedList<T>(int size) =>
new List<T>(new SizeCollection<T>(size));
We could in theory do the same thing for AddRange/InsertRange for an existing array, which also accounts for ICollection<T>, but the code there creates a new array for the supposed items, then copies them in. In such case, it would be faster to just empty-loop Add:
public void SetSize<T>(this List<T> l, int size)
{
if(size < l.Count)
l.RemoveRange(size, l.Count - size);
else
for(size -= l.Count; size > 0; size--)
l.Add(default(T));
}
Initializing the contents of a list like that isn't really what lists are for. Lists are designed to hold objects. If you want to map particular numbers to particular objects, consider using a key-value pair structure like a hash table or dictionary instead of a list.
You seem to be emphasizing the need for a positional association with your data, so wouldn't an associative array be more fitting?
Dictionary<int, string> foo = new Dictionary<int, string>();
foo[2] = "string";
The accepted answer (the one with the green check mark) has an issue.
The problem:
var result = Lists.Repeated(new MyType(), sizeOfList);
// each item in the list references the same MyType() object
// if you edit item 1 in the list, you are also editing item 2 in the list
I recommend changing the line above to perform a copy of the object. There are many different articles about that:
String.MemberwiseClone() method called through reflection doesn't work, why?
https://code.msdn.microsoft.com/windowsdesktop/CSDeepCloneObject-8a53311e
If you want to initialize every item in your list with the default constructor, rather than NULL, then add the following method:
public static List<T> RepeatedDefaultInstance<T>(int count)
{
List<T> ret = new List<T>(count);
for (var i = 0; i < count; i++)
{
ret.Add((T)Activator.CreateInstance(typeof(T)));
}
return ret;
}
You can use Linq to cleverly initialize your list with a default value. (Similar to David B's answer.)
var defaultStrings = (new int[10]).Select(x => "my value").ToList();
Go one step farther and initialize each string with distinct values "string 1", "string 2", "string 3", etc:
int x = 1;
var numberedStrings = (new int[10]).Select(x => "string " + x++).ToList();
string [] temp = new string[] {"1","2","3"};
List<string> temp2 = temp.ToList();
After thinking again, I had found the non-reflection answer to the OP question, but Charlieface beat me to it. So I believe that the correct and complete answer is https://stackoverflow.com/a/65766955/4572240
My old answer:
If I understand correctly, you want the List<T> version of new T[size], without the overhead of adding values to it.
If you are not afraid the implementation of List<T> will change dramatically in the future (and in this case I believe the probability is close to 0), you can use reflection:
public static List<T> NewOfSize<T>(int size) {
var list = new List<T>(size);
var sizeField = list.GetType().GetField("_size",BindingFlags.Instance|BindingFlags.NonPublic);
sizeField.SetValue(list, size);
return list;
}
Note that this takes into account the default functionality of the underlying array to prefill with the default value of the item type. All int arrays will have values of 0 and all reference type arrays will have values of null. Also note that for a list of reference types, only the space for the pointer to each item is created.
If you, for some reason, decide on not using reflection, I would have liked to offer an option of AddRange with a generator method, but underneath List<T> just calls Insert a zillion times, which doesn't serve.
I would also like to point out that the Array class has a static method called ResizeArray, if you want to go the other way around and start from Array.
To end, I really hate when I ask a question and everybody points out that it's the wrong question. Maybe it is, and thanks for the info, but I would still like an answer, because you have no idea why I am asking it. That being said, if you want to create a framework that has an optimal use of resources, List<T> is a pretty inefficient class for anything than holding and adding stuff to the end of a collection.
A notice about IList:
MSDN IList Remarks:
"IList implementations fall into three categories: read-only, fixed-size, and variable-size. (...). For the generic version of this interface, see
System.Collections.Generic.IList<T>."
IList<T> does NOT inherits from IList (but List<T> does implement both IList<T> and IList), but is always variable-size.
Since .NET 4.5, we have also IReadOnlyList<T> but AFAIK, there is no fixed-size generic List which would be what you are looking for.
This is a sample I used for my unit test. I created a list of class object. Then I used forloop to add 'X' number of objects that I am expecting from the service.
This way you can add/initialize a List for any given size.
public void TestMethod1()
{
var expected = new List<DotaViewer.Interface.DotaHero>();
for (int i = 0; i < 22; i++)//You add empty initialization here
{
var temp = new DotaViewer.Interface.DotaHero();
expected.Add(temp);
}
var nw = new DotaHeroCsvService();
var items = nw.GetHero();
CollectionAssert.AreEqual(expected,items);
}
Hope I was of help to you guys.
A bit late but first solution you proposed seems far cleaner to me : you dont allocate memory twice.
Even List constrcutor needs to loop through array in order to copy it; it doesn't even know by advance there is only null elements inside.
1.
- allocate N
- loop N
Cost: 1 * allocate(N) + N * loop_iteration
2.
- allocate N
- allocate N + loop ()
Cost : 2 * allocate(N) + N * loop_iteration
However List's allocation an loops might be faster since List is a built-in class, but C# is jit-compiled sooo...

Categories

Resources