A value larger than ULong? Computing 100! - c#

I'm trying to compute 100! and there doesn't seem to be a built-in factorial function. So, I've written:
Protected Sub ComputeFactorial(ByVal n As ULong)
Dim factorial As ULong = 1
Dim i As Integer
For i = 1 To n
factorial = factorial * i
Next
lblAnswer.Text = factorial
End Sub
Unfortunately, running this with the value of 100 for n rseults in
Value was either too large or too
small for a UInt64.
So, is there a larger data type for holding numbers? Am i mistaken in my methods? Am I helpless?

Sounds like Project Euler.
.NET 4.0 has System.Numerics.BigInteger, or you can pick up a pretty sweet implementation here:
C# BigInteger Class
Edit: treed :(
I'll add - the version at CodeProject has additional features like integer square root, a primality test, Lucas sequence generation. Also, you don't have direct access to the buffer in the .NET implementation which was annoying for a couple things I was trying.

Until you can use System.Numerics.BigInteger you are going to be stuck using a non-Microsoft implementation like BigInteger on Code Project.

Hint: use an array to store the digits of the number. You can tell by inspection that the result will not have more than 200 digits.

You need an implementation of "BigNums". These are integers that dynamically allocate memory so that they can hold their value.
A version was actually cut from the BCL.
The J# library has an implementation of java.math.BigInteger that you can use from any language.
Alternatively, if precision/accuracy are not a concern (you only care about order of magnitude), you can just use 64-bit floats.

decimal will handle 0 through +/-79,228,162,514,264,337,593,543,950,335 with no decimal point(scale of zero)

Related

Calculators working with larger numbers than 18446744073709551615

When I Initialize a ulong with the value 18446744073709551615 and then add a 1 to It and display to the Console It displays a 0 which is totally expected.
I know this question sounds stupid but I have to ask It. if my Computer has a 64-bit architecture CPU how is my calculator able to work with larger numbers than 18446744073709551615?
I suppose floating-point has a lot to do here.
I would like to know exactly how this happens.
Thank you.
working with larger numbers than 18446744073709551615
"if my Computer has a 64-bit architecture CPU" --> The architecture bit size is largely irrelevant.
Consider how you are able to add 2 decimal digits whose sum is more than 9. There is a carry generated and then used when adding the next most significant decimal place.
The CPU can do the same but with base 18446744073709551616 instead of base 10. It uses a carry bit as well as a sign and overflow bit to perform extended math.
I suppose floating-point has a lot to do here.
This is nothing to do with floating point.
; you say you're using ulong, which means your using unsigned 64-but arithmetic. The largest value you can store is therefore "all ones", for 64 bits - aka UInt64.MaxValue, which as you've discovered: https://learn.microsoft.com/en-us/dotnet/api/system.uint64.maxvalue
If you want to store arbitrarily large numbers: there are APIs for that - for example BigInteger. However, arbitrary size cones at a cost, so it isn't the default, and certainly isn't what you get when you use ulong (or double, or decimal, etc - all the compiler-level numeric types have fixed size).
So: consider using BigInteger
You either way have a 64 bits architecture processor and limited to doing 64 bits math - your problem is a bit hard to explain without taking an explicit example of how this is solved with BigInteger in System.Numerics namespace, available in .NET Framework 4.8 for example. The basis is to 'decompose' the number into an array representation.
mathematical expression 'decompose' here meaning :
"express (a number or function) as a combination of simpler components."
Internally BigInteger uses an internal array (actually multiple internal constructs) and a helper class called BigIntegerBuilder. In can implicitly convert an UInt64 integer without problem, for even bigger numbers you can use the + operator for example.
BigInteger bignum = new BigInteger(18446744073709551615);
bignum += 1;
You can read about the implicit operator here:
https://referencesource.microsoft.com/#System.Numerics/System/Numerics/BigInteger.cs
public static BigInteger operator +(BigInteger left, BigInteger right)
{
left.AssertValid();
right.AssertValid();
if (right.IsZero) return left;
if (left.IsZero) return right;
int sign1 = +1;
int sign2 = +1;
BigIntegerBuilder reg1 = new BigIntegerBuilder(left, ref sign1);
BigIntegerBuilder reg2 = new BigIntegerBuilder(right, ref sign2);
if (sign1 == sign2)
reg1.Add(ref reg2);
else
reg1.Sub(ref sign1, ref reg2);
return reg1.GetInteger(sign1);
}
In the code above from ReferenceSource you can see that we use the BigIntegerBuilder to add the left and right parts, which are also BigInteger constructs.
Interesting, it seems to keep its internal structure into an private array called "_bits", so that is the answer to your question. BigInteger keeps track of an array of 32-bits valued integer array and is therefore able to handle big integers, even beyond 64 bits.
You can drop this code into a console application or Linqpad (which has the .Dump() method I use here) and inspect :
BigInteger bignum = new BigInteger(18446744073709551615);
bignum.GetType().GetField("_bits",
BindingFlags.NonPublic | BindingFlags.Instance).GetValue(bignum).Dump();
A detail about BigInteger is revealed in a comment in the source code of BigInteger on Reference Source. So for integer values, BigInteger stores the value in the _sign field, for other values the field _bits is used.
Obviously, the internal array needs to be able to be converted into a representation in the decimal system (base-10) so humans can read it, the ToString() method converts the BigInteger to a string representation.
For a better in-depth understanding here, consider doing .NET source stepping to step way into the code how you carry out the mathematics here. But for a basic understanding, the BigInteger uses an internal representation of which is composed with 32 bits array which is transformed into a readable format which allows bigger numbers, bigger than even Int64.
// For values int.MinValue < n <= int.MaxValue, the value is stored in sign
// and _bits is null. For all other values, sign is +1 or -1 and the bits are in _bits

Math with very large numbers using strings

I'm trying to use strings to do math with very large numbers using strings, and without external libraries.
I have tried looking online with no success, and I need functions for addition, subtraction, multiplication, and division (if possible, and limited to a specified number of decimal places.)
example: add 9,900,000,000
and 100,000,020
should be 10,000,000,020.
EDIT: Im sorry I diddn't be specific enough, but I can only use Strings. no Long, bigInt, anything.
just the basic string and if nessecary, int32.
This is NOT a homework question!
Have you looked at BigInteger ?
If you're using .NET Framework 4, you can make use of the new System.Numerics.BigInteger class, which is an integer that can hold any whole number at all, until you run out of memory.
(The examples you provide, by the way, can be computed using long or System.UInt64.)
You have to convert the value in bits first & then apply the operation which you wish. After operation, you should convert back the bits to the number.

Is there a Math API for Pow(decimal, decimal)

Is there a library for decimal calculation, especially the Pow(decimal, decimal) method? I can't find any.
It can be free or commercial, either way, as long as there is one.
Note: I can't do it myself, can't use for loops, can't use Math.Pow, Math.Exp or Math.Log, because they all take doubles, and I can't use doubles. I can't use a serie because it would be as precise as doubles.
One of the multipliyers is a rate : 1/rate^(days/365).
The reason there is no decimal power function is because it would be pointless to use decimal for that calculation. Use double.
Remember, the point of decimal is to ensure that you get exact arithmetic on values that can be exactly represented as short decimal numbers. For reasonable values of rate and days, the values of any of the other subexpressions are clearly not going to be exactly represented as short decimal values. You're going to be dealing with inexact values, so use a type designed for fast calculations of slightly inexact values, like double.
The results when computed in doubles are going to be off by a few billionths of a penny one way or the other. Who cares? You'll round out the error later. Do the rate calculation in doubles. Once you have a result that needs to be turned back into a currency again, multiply the result by ten thousand, round it off to the nearest integer, convert that to a decimal, and then divide it out by ten thousand again, and you'll have a result accurate to four decimal places, which ought to be plenty for a financial calculation.
Here is what I used.
output = (decimal)Math.Pow((double)var1, (double)var2);
Now I'm just learning but this did work but I don't know if I can explain it correctly.
what I believe this does is take the input of var1 and var2 and cast them to doubles to use as the argument for the math.pow method. After that have (decimal) in front of math.pow take the value back to a decimal and place the value in the output variable.
I hope someone can correct me if my explination is wrong but all I know is that it worked for me.
I know this is an old thread but I'm putting this here in case someone finds it when searching for a solution.
If you don't want to mess around with casting and doing you own custom implementation you can install the NuGet DecimalMath.DecimalEx and use it like DecimalEx.Pow(number,power).
Well, here is the Wikipedia page that lists current C# numerics libraries. But TBH I don't think there is a lot of support for decimals
http://en.wikipedia.org/wiki/List_of_numerical_libraries
It's kind of inappropriate to use decimals for this kind of calculation in general. It's high precision yes - but it's also low range. As the MSDN docs state it's for financial/monetary calculations - where there isn't much call for POW unfortunately!
Of course you might have a specific problem domain that needs super high precision and all numbers are within 10(28) - 10(-28). But in that case you will probably just need to write your own series calculator such as the one linked to in the comments to the question.
Not using decimal. Use double instead. According to this thread, the Math.Pow(double, double) is called directly from CLR.
How is Math.Pow() implemented in .NET Framework?
Here is what .NET Framework 4 has (2 lines only)
[SecuritySafeCritical]
public static extern double Pow(double x, double y);
64-bit decimal is not native in this 32-bit CLR yet. Maybe on 64-bit Framework in the future?
wait, huh? why can't you use doubles? you could always cast if you're using ints or something:
int a = 1;
int b = 2;
int result = (int)Math.Pow(a,b);

long/large numbers and modulus in .NET

I'm currently writing a quick custom encoding method where I take a stamp a key with a number to verify that it is a valid key.
Basically I was taking whatever number that comes out of the encoding and multiplying it by a key.
I would then multiply those numbers to the deploy to the user/customer who purchases the key. I wanted to simply use (Code % Key == 0) to verify that the key is valid, but for large values the mod function does not seem to function as expected.
Number = 468721387;
Key = 12345678;
Code = Number * Key;
Using the numbers above:
Code % Key == 11418772
And for smaller numbers it would correctly return 0. Is there a reliable way to check divisibility for a long in .NET?
Thanks!
EDIT:
Ok, tell me if I'm special and missing something...
long a = DateTime.Now.Ticks;
long b = 12345;
long c = a * b;
long d = c % b;
d == 10001 (Bad)
and
long a = DateTime.Now.Ticks;
long b = 12;
long c = a * b;
long d = c % b;
d == 0 (Good)
What am I doing wrong?
As others have said, your problem is integer overflow. You can make this more obvious by checking "Check for arithmetic overflow/underflow" in the "Advanced Build Settings" dialog. When you do so, you'll get an OverflowException when you perform *DateTime.Now.Ticks * 12345*.
One simple solution is just to change "long" to "decimal" (or "double") in your code.
In .NET 4.0, there is a new BigInteger class.
Finally, you say you're "... writing a quick custom encoding method ...", so a simple homebrew solution may be satisfactory for your needs. However, if this is production code, you might consider more robust solutions involving cryptography or something from a third-party who specializes in software licensing.
The answers that say that integer overflow is the likely culprit are almost certainly correct; you can verify that by putting a "checked" block around the multiplication and seeing if it throws an exception.
But there is a much larger problem here that everyone seems to be ignoring.
The best thing to do is to take a large step back and reconsider the wisdom of this entire scheme. It appears that you are attempting to design a crypto-based security system but you are clearly not an expert on cryptographic arithmetic. That is a huge red warning flag. If you need a crypto-based security system DO NOT ATTEMPT TO ROLL YOUR OWN. There are plenty of off-the-shelf crypto systems that are built by experts, heavily tested, and readily available. Use one of them.
If you are in fact hell-bent on rolling your own crypto, getting the math right in 64 bits is the least of your worries. 64 bit integers are way too small for this crypto application. You need to be using a much larger integer size; otherwise, finding a key that matches the code is trivial.
Again, I cannot emphasize strongly enough how difficult it is to construct correct crypto-based security code that actually protects real users from real threats.
Integer Overflow...see my comment.
The value of the multiplication you're doing overflows the int data type and causes it to wrap (int values fall between +/-2147483647).
Pick a more appropriate data type to hold a value as large as 5786683315615386 (the result of your multiplication).
UPDATE
Your new example changes things a little.
You're using long, but now you're using System.DateTime.Ticks which on Mono (not sure about the MS platform) is returning 633909674610619350.
When you multiply that by a large number, you are now overflowing a long just like you were overflowing an int previously. At that point, you'll probably need to use a double to work with the values you want (decimal may work as well, depending on how large your multiplier gets).
Apparently, your Code fails to fit in the int data type. Try using long instead:
long code = (long)number * key;
The (long) cast is necessary. Without the cast, the multiplication will be done in 32-bit integer form (assuming number and key variables are typed int) and the result will be casted to long which is not what you want. By casting one of the operands to long, you tell the compiler to perform the multiplication on two long numbers.

High precision integer math in C#?

I have a very large number I need to calculate, and none of the inbuilt datatypes in C# can handle such a large number.
Basicly I want to solve this:
Project Euler 16:
2^15 = 32768 and the sum of its digits
is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the
number 2^1000?
I have already written the code, but, as said before, the number is too large for c# datatypes. The code has been tested and verified with small numbers (such as 2^15) and it works perfectly.
using System;
namespace _16_2E1000
{
class Program
{
static void Main(string[] args)
{
ulong sum = 0;
ulong i = 1 << 1000;
string s = i.ToString();
foreach (char c in s)
{
sum += (ulong) Convert.ToInt64(c.ToString());
}
Console.WriteLine(sum);
Console.ReadLine();
}
}
}
You can use BigInteger from the J# classes. First question in this article tells you how. It's a bit of pain b/c then you have to provide the J# redistributable when you roll out tho.
First to answerer you exact question, look for a BigInt or BigNum type
Second, from what I know of Project Euler, there will be a cool, tricky way to do it that is much easier.
As a first guess I'd compute the answerer for 2^1 -> 2^n (for whatever n you can get to work) and look for patterns. Also look for patterns in the sequences
V(0) = 2^p
V(n) = floor(V(n - 1) / 10)
D(n) = V(n) % 10
I hope this is not a homework problem, but to get to the answer of 2^1000, you'll have to divide it into smaller chunks,
try something like,
2^1000 = 2 * 2^999 = 2^999 + 2^999 = 2^ 998 + 2^ 998 + 2^ 998 + 2^ 998
breaking into smaller bits till you get to solvable a problem,
complete solution to project Euler is on following links.
http://blog.functionalfun.net/2008/07/project-euler-problem-16-calculating.html
http://code.msdn.microsoft.com/projecteuler
It is not necessary to have Big Integer capabilities in order to solve this problem.
One could just use the property that:
2^n = 2^(n-1) + 2^(n-1)
If Big Integer is really necessary for other tasks, I have been using the BigInt class from F# in my C# programs and am happy with it.
The necessary steps:
Install the F# CTP
In your C# (or other .NET language) application add a reference to the FSharp.Core dll.
Add: using Microsoft.FSharp.Math;
In the "Class View" window familiarize yourself with the members of the two classes: BigInt and BigNum
After executing these steps one is basically ready to use the BigInt class.
One last hint:
To avoid declaring variables with improper names to hold constants that makes the code unreadable, I am using a name that starts with _ (underscore), followed by the integer constant. In this way one will have expressions like:
N = _2 * N;
clearly much more readable than:
N = Two * N;
Here's a BigInteger (source code is available) that you can use; though, as already mentioned, there are more efficient ways to do this than brute force.
BigInteger on codeplex
Actually, while a biginteger utility might be of interest here, you don't need it, even for this. Yes, it looks like it does, but you don't. In fact, use of a biginteger form may even slow things down.
Since I don't want to solve the problem for you, I'll just suggest you think about this in a modular way.

Categories

Resources