Related
Is it possible to define an implicit conversion of enums in c#?
something that could achieve this?
public enum MyEnum
{
one = 1, two = 2
}
MyEnum number = MyEnum.one;
long i = number;
If not, why not?
There is a solution. Consider the following:
public sealed class AccountStatus
{
public static readonly AccountStatus Open = new AccountStatus(1);
public static readonly AccountStatus Closed = new AccountStatus(2);
public static readonly SortedList<byte, AccountStatus> Values = new SortedList<byte, AccountStatus>();
private readonly byte Value;
private AccountStatus(byte value)
{
this.Value = value;
Values.Add(value, this);
}
public static implicit operator AccountStatus(byte value)
{
return Values[value];
}
public static implicit operator byte(AccountStatus value)
{
return value.Value;
}
}
The above offers implicit conversion:
AccountStatus openedAccount = 1; // Works
byte openedValue = AccountStatus.Open; // Works
This is a fair bit more work than declaring a normal enum (though you can refactor some of the above into a common generic base class). You can go even further by having the base class implement IComparable & IEquatable, as well as adding methods to return the value of DescriptionAttributes, declared names, etc, etc.
I wrote a base class (RichEnum<>) to handle most fo the grunt work, which eases the above declaration of enums down to:
public sealed class AccountStatus : RichEnum<byte, AccountStatus>
{
public static readonly AccountStatus Open = new AccountStatus(1);
public static readonly AccountStatus Closed = new AccountStatus(2);
private AccountStatus(byte value) : base (value)
{
}
public static implicit operator AccountStatus(byte value)
{
return Convert(value);
}
}
The base class (RichEnum) is listed below.
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Diagnostics;
using System.Linq;
using System.Reflection;
using System.Resources;
namespace Ethica
{
using Reflection;
using Text;
[DebuggerDisplay("{Value} ({Name})")]
public abstract class RichEnum<TValue, TDerived>
: IEquatable<TDerived>,
IComparable<TDerived>,
IComparable, IComparer<TDerived>
where TValue : struct , IComparable<TValue>, IEquatable<TValue>
where TDerived : RichEnum<TValue, TDerived>
{
#region Backing Fields
/// <summary>
/// The value of the enum item
/// </summary>
public readonly TValue Value;
/// <summary>
/// The public field name, determined from reflection
/// </summary>
private string _name;
/// <summary>
/// The DescriptionAttribute, if any, linked to the declaring field
/// </summary>
private DescriptionAttribute _descriptionAttribute;
/// <summary>
/// Reverse lookup to convert values back to local instances
/// </summary>
private static SortedList<TValue, TDerived> _values;
private static bool _isInitialized;
#endregion
#region Constructors
protected RichEnum(TValue value)
{
if (_values == null)
_values = new SortedList<TValue, TDerived>();
this.Value = value;
_values.Add(value, (TDerived)this);
}
#endregion
#region Properties
public string Name
{
get
{
CheckInitialized();
return _name;
}
}
public string Description
{
get
{
CheckInitialized();
if (_descriptionAttribute != null)
return _descriptionAttribute.Description;
return _name;
}
}
#endregion
#region Initialization
private static void CheckInitialized()
{
if (!_isInitialized)
{
ResourceManager _resources = new ResourceManager(typeof(TDerived).Name, typeof(TDerived).Assembly);
var fields = typeof(TDerived)
.GetFields(BindingFlags.Static | BindingFlags.GetField | BindingFlags.Public)
.Where(t => t.FieldType == typeof(TDerived));
foreach (var field in fields)
{
TDerived instance = (TDerived)field.GetValue(null);
instance._name = field.Name;
instance._descriptionAttribute = field.GetAttribute<DescriptionAttribute>();
var displayName = field.Name.ToPhrase();
}
_isInitialized = true;
}
}
#endregion
#region Conversion and Equality
public static TDerived Convert(TValue value)
{
return _values[value];
}
public static bool TryConvert(TValue value, out TDerived result)
{
return _values.TryGetValue(value, out result);
}
public static implicit operator TValue(RichEnum<TValue, TDerived> value)
{
return value.Value;
}
public static implicit operator RichEnum<TValue, TDerived>(TValue value)
{
return _values[value];
}
public static implicit operator TDerived(RichEnum<TValue, TDerived> value)
{
return value;
}
public override string ToString()
{
return _name;
}
#endregion
#region IEquatable<TDerived> Members
public override bool Equals(object obj)
{
if (obj != null)
{
if (obj is TValue)
return Value.Equals((TValue)obj);
if (obj is TDerived)
return Value.Equals(((TDerived)obj).Value);
}
return false;
}
bool IEquatable<TDerived>.Equals(TDerived other)
{
return Value.Equals(other.Value);
}
public override int GetHashCode()
{
return Value.GetHashCode();
}
#endregion
#region IComparable Members
int IComparable<TDerived>.CompareTo(TDerived other)
{
return Value.CompareTo(other.Value);
}
int IComparable.CompareTo(object obj)
{
if (obj != null)
{
if (obj is TValue)
return Value.CompareTo((TValue)obj);
if (obj is TDerived)
return Value.CompareTo(((TDerived)obj).Value);
}
return -1;
}
int IComparer<TDerived>.Compare(TDerived x, TDerived y)
{
return (x == null) ? -1 :
(y == null) ? 1 :
x.Value.CompareTo(y.Value);
}
#endregion
public static IEnumerable<TDerived> Values
{
get
{
return _values.Values;
}
}
public static TDerived Parse(string name)
{
foreach (TDerived value in _values.Values)
if (0 == string.Compare(value.Name, name, true) || 0 == string.Compare(value.DisplayName, name, true))
return value;
return null;
}
}
}
You can't do implict conversions (except for zero), and you can't write your own instance methods - however, you can probably write your own extension methods:
public enum MyEnum { A, B, C }
public static class MyEnumExt
{
public static int Value(this MyEnum foo) { return (int)foo; }
static void Main()
{
MyEnum val = MyEnum.A;
int i = val.Value();
}
}
This doesn't give you a lot, though (compared to just doing an explicit cast).
One of the main times I've seen people want this is for doing [Flags] manipulation via generics - i.e. a bool IsFlagSet<T>(T value, T flag); method. Unfortunately, C# 3.0 doesn't support operators on generics, but you can get around this using things like this, which make operators fully available with generics.
struct PseudoEnum
{
public const int
INPT = 0,
CTXT = 1,
OUTP = 2;
};
// ...
var arr = new String[3];
arr[PseudoEnum.CTXT] = "can";
arr[PseudoEnum.INPT] = "use";
arr[PseudoEnum.CTXT] = "as";
arr[PseudoEnum.CTXT] = "array";
arr[PseudoEnum.OUTP] = "index";
I adapted Mark's excellent RichEnum generic baseclass.
Fixing
a number of compilation problems due to missing bits from his libraries (notably: the resource dependent display names weren't completely removed; they are now)
initialization wasn't perfect: if the first thing you did was access the static .Values property from the base class, you'd get a NPE. Fixed this by forcing the base class to curiously-recursively (CRTP) force the static construction of TDerived just in time during CheckInitialized
finally moved CheckInitialized logic into a static constructor (to avoid the penalty of checking each time, the race condition on multithreaded initialization; perhaps this was an impossibility solved by my bullet 1.?)
Kudos to Mark for the splendid idea + implementation, here's to you all:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Diagnostics;
using System.Linq;
using System.Reflection;
using System.Resources;
namespace NMatrix
{
[DebuggerDisplay("{Value} ({Name})")]
public abstract class RichEnum<TValue, TDerived>
: IEquatable<TDerived>,
IComparable<TDerived>,
IComparable, IComparer<TDerived>
where TValue : struct, IComparable<TValue>, IEquatable<TValue>
where TDerived : RichEnum<TValue, TDerived>
{
#region Backing Fields
/// <summary>
/// The value of the enum item
/// </summary>
public readonly TValue Value;
/// <summary>
/// The public field name, determined from reflection
/// </summary>
private string _name;
/// <summary>
/// The DescriptionAttribute, if any, linked to the declaring field
/// </summary>
private DescriptionAttribute _descriptionAttribute;
/// <summary>
/// Reverse lookup to convert values back to local instances
/// </summary>
private static readonly SortedList<TValue, TDerived> _values = new SortedList<TValue, TDerived>();
#endregion
#region Constructors
protected RichEnum(TValue value)
{
this.Value = value;
_values.Add(value, (TDerived)this);
}
#endregion
#region Properties
public string Name
{
get
{
return _name;
}
}
public string Description
{
get
{
if (_descriptionAttribute != null)
return _descriptionAttribute.Description;
return _name;
}
}
#endregion
#region Initialization
static RichEnum()
{
var fields = typeof(TDerived)
.GetFields(BindingFlags.Static | BindingFlags.GetField | BindingFlags.Public)
.Where(t => t.FieldType == typeof(TDerived));
foreach (var field in fields)
{
/*var dummy =*/ field.GetValue(null); // forces static initializer to run for TDerived
TDerived instance = (TDerived)field.GetValue(null);
instance._name = field.Name;
instance._descriptionAttribute = field.GetCustomAttributes(true).OfType<DescriptionAttribute>().FirstOrDefault();
}
}
#endregion
#region Conversion and Equality
public static TDerived Convert(TValue value)
{
return _values[value];
}
public static bool TryConvert(TValue value, out TDerived result)
{
return _values.TryGetValue(value, out result);
}
public static implicit operator TValue(RichEnum<TValue, TDerived> value)
{
return value.Value;
}
public static implicit operator RichEnum<TValue, TDerived>(TValue value)
{
return _values[value];
}
public static implicit operator TDerived(RichEnum<TValue, TDerived> value)
{
return value;
}
public override string ToString()
{
return _name;
}
#endregion
#region IEquatable<TDerived> Members
public override bool Equals(object obj)
{
if (obj != null)
{
if (obj is TValue)
return Value.Equals((TValue)obj);
if (obj is TDerived)
return Value.Equals(((TDerived)obj).Value);
}
return false;
}
bool IEquatable<TDerived>.Equals(TDerived other)
{
return Value.Equals(other.Value);
}
public override int GetHashCode()
{
return Value.GetHashCode();
}
#endregion
#region IComparable Members
int IComparable<TDerived>.CompareTo(TDerived other)
{
return Value.CompareTo(other.Value);
}
int IComparable.CompareTo(object obj)
{
if (obj != null)
{
if (obj is TValue)
return Value.CompareTo((TValue)obj);
if (obj is TDerived)
return Value.CompareTo(((TDerived)obj).Value);
}
return -1;
}
int IComparer<TDerived>.Compare(TDerived x, TDerived y)
{
return (x == null) ? -1 :
(y == null) ? 1 :
x.Value.CompareTo(y.Value);
}
#endregion
public static IEnumerable<TDerived> Values
{
get
{
return _values.Values;
}
}
public static TDerived Parse(string name)
{
foreach (TDerived value in Values)
if (0 == string.Compare(value.Name, name, true))
return value;
return null;
}
}
}
A sample of usage that I ran on mono:
using System.ComponentModel;
using System;
namespace NMatrix
{
public sealed class MyEnum : RichEnum<int, MyEnum>
{
[Description("aap")] public static readonly MyEnum my_aap = new MyEnum(63000);
[Description("noot")] public static readonly MyEnum my_noot = new MyEnum(63001);
[Description("mies")] public static readonly MyEnum my_mies = new MyEnum(63002);
private MyEnum(int value) : base (value) { }
public static implicit operator MyEnum(int value) { return Convert(value); }
}
public static class Program
{
public static void Main(string[] args)
{
foreach (var enumvalue in MyEnum.Values)
Console.WriteLine("MyEnum {0}: {1} ({2})", (int) enumvalue, enumvalue, enumvalue.Description);
}
}
}
Producing the output
[mono] ~/custom/demo # gmcs test.cs richenum.cs && ./test.exe
MyEnum 63000: my_aap (aap)
MyEnum 63001: my_noot (noot)
MyEnum 63002: my_mies (mies)
Note: mono 2.6.7 requires an extra explicit cast that is not required when using mono 2.8.2...
You cannot declare implicit conversions on enum types, because they can't define methods. The C# implicit keyword compiles into a method starting with 'op_', and it wouldn't work in this case.
You probably could, but not for the enum (you can't add a method to it). You could add an implicit conversion to you own class to allow an enum to be converted to it,
public class MyClass {
public static implicit operator MyClass ( MyEnum input ) {
//...
}
}
MyClass m = MyEnum.One;
The question would be why?
In general .Net avoids (and you should too) any implicit conversion where data can be lost.
enums are largely useless for me because of this, OP.
I end up doing pic-related all the time:
the simple solution
classic example problem is the VirtualKey set for detecting keypresses.
enum VKeys : ushort
{
a = 1,
b = 2,
c = 3
}
// the goal is to index the array using predefined constants
int[] array = new int[500];
var x = array[VKeys.VK_LSHIFT];
problem here is you can't index the array with the enum because it can't implicitly convert enum to ushort (even though we even based the enum on ushort)
in this specific context, enums are obsoleted by the following datastructure
. . . .
public static class VKeys
{
public const ushort
a = 1,
b = 2,
c = 3;
}
I found even easier solution taken from here https://codereview.stackexchange.com/questions/7566/enum-vs-int-wrapper-struct I pasted the code below from that link just in case it does not work in the future.
struct Day
{
readonly int day;
public static readonly Day Monday = 0;
public static readonly Day Tuesday = 1;
public static readonly Day Wednesday = 2;
public static readonly Day Thursday = 3;
public static readonly Day Friday = 4;
public static readonly Day Saturday = 5;
public static readonly Day Sunday = 6;
private Day(int day)
{
this.day = day;
}
public static implicit operator int(Day value)
{
return value.day;
}
public static implicit operator Day(int value)
{
return new Day(value);
}
}
I created this utility to help me convert an Enum to PrimitiveEnum and PrimitiveEnum to byte, sbyte, short, ushort, int, uint, long, or ulong.
So, this technically converts any enum to any its primitive value.
public enum MyEnum
{
one = 1, two = 2
}
PrimitiveEnum number = MyEnum.one;
long i = number;
See commit at https://github.com/McKabue/McKabue.Extentions.Utility/blob/master/src/McKabue.Extentions.Utility/Enums/PrimitiveEnum.cs
using System;
namespace McKabue.Extentions.Utility.Enums
{
/// <summary>
/// <see href="https://stackoverflow.com/q/261663/3563013">
/// Can we define implicit conversions of enums in c#?
/// </see>
/// </summary>
public struct PrimitiveEnum
{
private Enum _enum;
public PrimitiveEnum(Enum _enum)
{
this._enum = _enum;
}
public Enum Enum => _enum;
public static implicit operator PrimitiveEnum(Enum _enum)
{
return new PrimitiveEnum(_enum);
}
public static implicit operator Enum(PrimitiveEnum primitiveEnum)
{
return primitiveEnum.Enum;
}
public static implicit operator byte(PrimitiveEnum primitiveEnum)
{
return Convert.ToByte(primitiveEnum.Enum);
}
public static implicit operator sbyte(PrimitiveEnum primitiveEnum)
{
return Convert.ToSByte(primitiveEnum.Enum);
}
public static implicit operator short(PrimitiveEnum primitiveEnum)
{
return Convert.ToInt16(primitiveEnum.Enum);
}
public static implicit operator ushort(PrimitiveEnum primitiveEnum)
{
return Convert.ToUInt16(primitiveEnum.Enum);
}
public static implicit operator int(PrimitiveEnum primitiveEnum)
{
return Convert.ToInt32(primitiveEnum.Enum);
}
public static implicit operator uint(PrimitiveEnum primitiveEnum)
{
return Convert.ToUInt32(primitiveEnum.Enum);
}
public static implicit operator long(PrimitiveEnum primitiveEnum)
{
return Convert.ToInt64(primitiveEnum.Enum);
}
public static implicit operator ulong(PrimitiveEnum primitiveEnum)
{
return Convert.ToUInt64(primitiveEnum.Enum);
}
}
}
If you define the base of the enum as a long then you can perform explicit conversion. I don't know if you can use implicit conversions as enums cannot have methods defined on them.
public enum MyEnum : long
{
one = 1,
two = 2,
}
MyEnum number = MyEnum.one;
long i = (long)number;
Also, be aware with this that an uninitalised enumeration will default to the 0 value, or the first item - so in the situation above it would probably be best to define zero = 0 as well.
I've worked around an issue with sehe's answer when running the code on MS .net (non-Mono). For me specifically the issue occurred on .net 4.5.1 but other versions seem affected, too.
The issue
accessing a public static TDervied MyEnumValue by reflection (via FieldInfo.GetValue(null) does not initialize said field.
The workaround
Instead of assigning names to TDerived instances upon the static initializer of RichEnum<TValue, TDerived> this is done lazily on first access of TDerived.Name. The code:
public abstract class RichEnum<TValue, TDerived> : EquatableBase<TDerived>
where TValue : struct, IComparable<TValue>, IEquatable<TValue>
where TDerived : RichEnum<TValue, TDerived>
{
// Enforcing that the field Name (´SomeEnum.SomeEnumValue´) is the same as its
// instances ´SomeEnum.Name´ is done by the static initializer of this class.
// Explanation of initialization sequence:
// 1. the static initializer of ´RichEnum<TValue, TDerived>´ reflects TDervied and
// creates a list of all ´public static TDervied´ fields:
// ´EnumInstanceToNameMapping´
// 2. the static initializer of ´TDerive´d assigns values to these fields
// 3. The user is now able to access the values of a field.
// Upon first access of ´TDervied.Name´ we search the list
// ´EnumInstanceToNameMapping´ (created at step 1) for the field that holds
// ´this´ instance of ´TDerived´.
// We then get the Name for ´this´ from the FieldInfo
private static readonly IReadOnlyCollection<EnumInstanceReflectionInfo>
EnumInstanceToNameMapping =
typeof(TDerived)
.GetFields(BindingFlags.Static | BindingFlags.GetField | BindingFlags.Public)
.Where(t => t.FieldType == typeof(TDerived))
.Select(fieldInfo => new EnumInstanceReflectionInfo(fieldInfo))
.ToList();
private static readonly SortedList<TValue, TDerived> Values =
new SortedList<TValue, TDerived>();
public readonly TValue Value;
private readonly Lazy<string> _name;
protected RichEnum(TValue value)
{
Value = value;
// SortedList doesn't allow duplicates so we don't need to do
// duplicate checking ourselves
Values.Add(value, (TDerived)this);
_name = new Lazy<string>(
() => EnumInstanceToNameMapping
.First(x => ReferenceEquals(this, x.Instance))
.Name);
}
public string Name
{
get { return _name.Value; }
}
public static implicit operator TValue(RichEnum<TValue, TDerived> richEnum)
{
return richEnum.Value;
}
public static TDerived Convert(TValue value)
{
return Values[value];
}
protected override bool Equals(TDerived other)
{
return Value.Equals(other.Value);
}
protected override int ComputeHashCode()
{
return Value.GetHashCode();
}
private class EnumInstanceReflectionInfo
{
private readonly FieldInfo _field;
private readonly Lazy<TDerived> _instance;
public EnumInstanceReflectionInfo(FieldInfo field)
{
_field = field;
_instance = new Lazy<TDerived>(() => (TDerived)field.GetValue(null));
}
public TDerived Instance
{
get { return _instance.Value; }
}
public string Name { get { return _field.Name; } }
}
}
which - in my case - is based upon EquatableBase<T>:
public abstract class EquatableBase<T>
where T : class
{
public override bool Equals(object obj)
{
if (this == obj)
{
return true;
}
T other = obj as T;
if (other == null)
{
return false;
}
return Equals(other);
}
protected abstract bool Equals(T other);
public override int GetHashCode()
{
unchecked
{
return ComputeHashCode();
}
}
protected abstract int ComputeHashCode();
}
Note
The above code does not incorporate all features of Mark's original answer!
Thanks
Thanks to Mark for providing his RichEnum implementation and thanks to sehe for providing some improvements!
Here's a different flavour based on adminSoftDK's answer.
/// <summary>
/// Based on https://datatracker.ietf.org/doc/html/rfc4346#appendix-A.1
/// </summary>
[DebuggerDisplay("{_value}")]
public struct HandshakeContentType
{
#region Types
public const byte ChangeCipher = 0x14;
public const byte Alert = 0x15;
public const byte Handshake = 0x16;
public const byte ApplicationData = 0x17;
#endregion
byte _value;
private HandshakeContentType(byte value)
{
_value = value;
switch (_value)
{
case ChangeCipher:
case Alert:
case Handshake:
case ApplicationData:
break;
default:
throw new InvalidOperationException($"An invalid handshake content type (${value}) was provided.");
}
}
#region Methods
public static implicit operator byte(HandshakeContentType type) => type._value;
public static implicit operator HandshakeContentType(byte b) => new HandshakeContentType(b);
#endregion
}
This allows you to use this struct with switch statements which I think is pretty awesome.
#BatteryBackupUnit
Hey this sounds like a cool solution but could you explain this part here?
Since im getting with .NET 4.7.2 an "InvalidCastException" out of this sadly :/
_name = new Lazy<string>(
() => EnumInstanceToNameMapping
.First(x => ReferenceEquals(this, x.Instance))
.Name);
I dont know why, i have created a derived type of the RichEnum and initialized as everything u did in the example but i getthis annyoingg exception..
Would be glad of some help to this since i like this approach alot tbh.
I don't have enough rep to add a comment, but I was inspired by the 'struct' comment here:
https://stackoverflow.com/a/39141171/12135042
Here is how I did it:
public enum DaysOfWeek
{
Sunday = 0,
Monday = 1,
Tuesday = 2,
Wednesday = 3,
Thursday = 4,
Friday = 5,
Saturday = 7,
}
public struct Weekends
{
private Weekends(DaysOfWeek day){ Day = day; }
public readonly DaysOfWeek Day;
public static Weekends Sunday = new(DaysOfWeek.Sunday);
public static Weekends Saturday = new(DaysOfWeek.Saturday);
public static implicit operator DaysOfWeek(Weekends value) => value.Mode;
}
I feel this gets the best of both worlds here, since you get your super enum, and easily accessible structs that are statically accessibly acting as subsets of the superenum.
Introducing implicit conversions for enum types would break type safety, so I'd not recommend to do that. Why would you want to do that? The only use case for this I've seen is when you want to put the enum values into a structure with a pre-defined layout. But even then, you can use the enum type in the structure and just tell the Marshaller what he should do with this.
I want to write a generic class that accepts enumerations. Since this class is intended to implement some interfaces, the main aim is to be able to treat enumerations as other objects implementing those interfaces(e.g. for list extensions, etc). Hence, for a sample enum
public enum QEnum : int
{
xlNoValue = 0,
xlSomeValue = 1
}
public static class QEnumExtensions
{
public static string toString(this QEnum xThis)
{
...
}
public static QEnum toEnum(this string xThis)
{
...
}
}
I would like to declare a generic class such as
public class QEnumHolder<T> where T : struct, IConvertible
{
private T mxVal = default(T);
public QEnumHolder()
{
if (!typeof(T).IsEnum) throw new NotSupportedException();
}
public QEnumHolder(T xVal)
{
if (!typeof(T).IsEnum) throw new NotSupportedException();
mxVal = xVal;
}
static public implicit operator QEnumHolder<T>(T xVal)
{
return new QEnumHolder<T>(xVal);
}
static public implicit operator T(QEnumHolder<T> xVal)
{
return (T)xVal.mxVal;
}
public string toString()
{
if (mxVal is QEnum) return ((QEnum)Convert.ToInt32(mxVal)).toString();
...
}
public void fromString(string xString)
{
if (mxVal is QEnum)
mxVal = (???)xString.toEnum(); // problem
}
}
All of the enumerations that we use implement
toString() function which returns a "nice" string that can go into comboBoxes, etc
conversion of string to enumeration, as above
hence the structure of toString/toEnum is pretty much given. The problem is with the last code line marked "problem". I have no idea how to tell the compiler that in this branch, the return type of toEnum() and T will be the same.
I tried to circumvent the problem by declaring mxVal as int and using Convert.ToInt32 everywhere. However, then I run into problem in the operator T where the compiler has objections against converting int to a T (the compiler can't know that T will be enum, hence I can't use none of the "int to enum conversion" discussions here on SO).
A better design would be to use some naming convention, put all your enum extension methods in one and the same static class, and bind these functions inside your holder class static constructor. Something like this:
public static partial class MyEnumExtensions
{
public static MyEnumHolder<T> ToHolder<T>(this T source)
where T : struct, IConvertible
{
return new MyEnumHolder<T>(source);
}
}
public class MyEnumHolder<T> where T : struct, IConvertible
{
static readonly Func<T, string> toStringFunc;
static readonly Func<string, T> toEnumFunc;
static MyEnumHolder()
{
if (!typeof(T).IsEnum) throw new NotSupportedException();
// Use your naming conventions
var name = typeof(T).Name;
toStringFunc = (Func<T, string>)Delegate.CreateDelegate(typeof(Func<T, string>),
typeof(MyEnumExtensions).GetMethod("toString", new[] { typeof(T) }));
toEnumFunc = (Func<string, T>)Delegate.CreateDelegate(typeof(Func<string, T>),
typeof(MyEnumExtensions).GetMethod("to" + name, new[] { typeof(string) }));
}
private T value;
public MyEnumHolder() { value = default(T); }
public MyEnumHolder(T value) { this.value = value; }
static public implicit operator MyEnumHolder<T>(T x) { return new MyEnumHolder<T>(x); }
static public implicit operator T(MyEnumHolder<T> x) { return x.value; }
public string toString()
{
return toStringFunc(value);
}
public void fromString(string xString)
{
value = toEnumFunc(xString);
}
}
Sample enum definitions (could be in separate files, but must be inside the same project):
public enum MyEnumA { A1, A2, A3 }
partial class MyEnumExtensions
{
public static string toString(this MyEnumA x)
{
//...
return x.ToString();
}
public static MyEnumA toMyEnumA(this string x)
{
//...
return (MyEnumA)Enum.Parse(typeof(MyEnumA), x);
}
}
and
public enum MyEnumB { B1, B2, B3 }
partial class MyEnumExtensions
{
public static string toString(this MyEnumB x)
{
//...
return x.ToString();
}
public static MyEnumB toMyEnumB(this string x)
{
//...
return (MyEnumB)Enum.Parse(typeof(MyEnumB), x);
}
}
test:
var a = MyEnumA.A1.ToHolder();
var sA = a.toString();
a.fromString("A2");
var b = MyEnumB.B2.ToHolder();
var sB = b.toString();
b.fromString("B1");
mxVal = (T)(object)xString.toEnum();
I'm working with a class that contains several variants of a private method. Currently, I'm using an enum to select the appropriate one within an exposed method like so.
public class MyClass
{
public enum MyEnum { Type1, Type2, Type3, Type4 };
private MyEnum _type;
public MyClass(MyEnum type)
{
Type = type;
}
public MyEnum Type
{
get { return _type; }
set { _type = value; }
}
public int Function(int x, int y)
{
switch(_type)
{
case MyEnum.Type1:
return Function1(x,y);
case MyEnum.Type2:
return Function2(x,y);
case MyEnum.Type3:
return Function3(x, y);
case MyEnum.Type4:
return Function4(x, y);
}
}
private int Function1(int x, int y)
{
// function variant 1
}
private int Function2(int x, int y)
{
// function variant 2
}
private int Function3(int x, int y)
{
// function variant 3
}
private int Function4(int x, int y)
{
// function variant 4
}
}
This works fine but I'm wondering if I'd be better off going with a private delegate which is updated whenever the enum changes. Especially since, in this case, the public method will be called much more frequently than the enum setter.
public class MyClass
{
public enum MyEnum { Type1, Type2, Type3, Type4 };
private Func<int, int, int> _function;
private MyEnum _type;
public MyClass(MyEnum type)
{
Type = type;
}
public MyEnum Type
{
get { return _type; }
set
{
_type = value;
OnTypeChange();
}
}
private void OnTypeChange()
{
switch (_type)
{
case MyEnum.Type1:
_function = Function1;
return;
case MyEnum.Type2:
_function = Function2;
return;
case MyEnum.Type3:
_function = Function3;
return;
case MyEnum.Type4:
_function = Function4;
return;
}
}
public int Function(int x, int y)
{
return _function(x, y);
}
private int Function1(int x, int y)
{
// function variant 1
}
private int Function2(int x, int y)
{
// function variant 2
}
private int Function3(int x, int y)
{
// function variant 3
}
private int Function4(int x, int y)
{
// function variant 4
}
}
I suppose I'm just looking for some conventional wisdom on the subject. How is this sort of thing typically handled out in the wild?
Your second option is technically better, because you don't have to go through the switch every time the public method is called.
The first is a bit more readable.
In all reality though, switching behavior on an enum is a decent sized red flag. Usually you would subclass MyClass and use polymorphism to get the desired behavior. I would definitely consider doing so in your case. "In the wild", that's probably the approach I would use.
Along the lines of what BradleyDotNET is getting at, there are ways to adhere to the open/closed principle along with good design practices leveraging the power of .NET. Here is a simple example of how you could implement what you are asking for, have it be easily extensible, and easily maintainable.
public enum MyEnum
{
Value1, Value2, Value3, Value4
}
[AttributeUsage(AttributeTargets.Class, Inherited = false)]
public class MyClassHandlerAttribute : Attribute
{
public MyEnum Handles { get; private set; }
public MyClassHandlerAttribute(MyEnum handles) { Handles = handles; }
}
public abstract class MyClass
{
public abstract int Function(int x, int y);
}
public static class MyClassFactory
{
public static MyClass Create(MyEnum type)
{
var handler = Assembly.GetExecutingAssembly().GetTypes().Where(t =>
{
var a = t.GetCustomAttribute<MyClassHandlerAttribute>();
if (a != null && a.Handles == type)
return true;
return false;
}).FirstOrDefault();
if (handler != null)
return Activator.CreateInstance(handler) as MyClass;
return null;
}
}
[MyClassHandler(MyEnum.Value1)]
public sealed class MyClassType1 : MyClass
{
public int Function(int x, int y) { return x * y; }
}
[MyClassHandler(MyEnum.Value2)]
public sealed class MyClassType2 : MyClass
{
public int Function(int x, int y) { return x * x + y; }
}
You could even make the subclasses have internal default constructors so nobody outside of your assembly creates types of any class or subclass.
If you want a walk-through of the code, you have the MyEnum type (which could be moved inside the MyClass, but would violate OCP if you ever had to add to it), so its defined outside the class.
You then have a custom attribute MyClassHandlerAttribute so you can mark handlers to be "auto-discovered" by the factory class.
Then you have the factory which uses type inspection to load handlers for your enum. Its pretty simple, it looks at all the types in the assembly with the custom attribute and if it handles that enum value, it returns it. (Somebody probably has a slicker LINQ query for this but I did this quick)
And then you have your sub classes, easily maintainable, no code smell, simple short code units.
If you really don't want to subclass, another alternative is to use a lookup table (LUT):
delegate int FunctionDelegate(int x, int y);
enum FunctionName { Function1, Function2, Function3 };
class FunctionItem
{
public FunctionItem(FunctionName functionName, FunctionDelegate del)
{
FunctionName = functionName;
Delegate = del;
}
public FunctionName FunctionName
{
private set;
get;
}
public FunctionDelegate Delegate
{
private set;
get;
}
}
static readonly FunctionItem[] LUT = new FunctionItem[]
{
new FunctionItem(FunctionName.Function1, Method1),
new FunctionItem(FunctionName.Function2, Method2),
new FunctionItem(FunctionName.Function3, Method3)
};
// Fragment of lookup:
FunctionItem f = LUT[function];
Debug.Assert(f.Function == function);
int result = f.Delegate(...); // Invoke delegate
Not complete, but you get the idea. As an extra advantage, you can extend FunctionItem with extra properties like Name, Description, etc. per function.
As for a proper OO alternative, look into the Strategy design pattern (= subclassing).
And it's funny, because subclassing works the same... the vtable is actually a LUT, and FunctionItem becomes an abstract base class.
[Note: This question had the original title "C (ish) style union in C#"
but as Jeff's comment informed me, apparently this structure is called a 'discriminated union']
Excuse the verbosity of this question.
There are a couple of similar sounding questions to mine already in SO but they seem to concentrate on the memory saving benefits of the union or using it for interop.
Here is an example of such a question.
My desire to have a union type thing is somewhat different.
I am writing some code at the moment which generates objects that look a bit like this
public class ValueWrapper
{
public DateTime ValueCreationDate;
// ... other meta data about the value
public object ValueA;
public object ValueB;
}
Pretty complicated stuff I think you will agree. The thing is that ValueA can only be of a few certain types (let's say string, int and Foo (which is a class) and ValueB can be another small set of types. I don't like treating these values as objects (I want the warm snugly feeling of coding with a bit of type safety).
So I thought about writing a trivial little wrapper class to express the fact that ValueA logically is a reference to a particular type. I called the class Union because what I am trying to achieve reminded me of the union concept in C.
public class Union<A, B, C>
{
private readonly Type type;
public readonly A a;
public readonly B b;
public readonly C c;
public A A{get {return a;}}
public B B{get {return b;}}
public C C{get {return c;}}
public Union(A a)
{
type = typeof(A);
this.a = a;
}
public Union(B b)
{
type = typeof(B);
this.b = b;
}
public Union(C c)
{
type = typeof(C);
this.c = c;
}
/// <summary>
/// Returns true if the union contains a value of type T
/// </summary>
/// <remarks>The type of T must exactly match the type</remarks>
public bool Is<T>()
{
return typeof(T) == type;
}
/// <summary>
/// Returns the union value cast to the given type.
/// </summary>
/// <remarks>If the type of T does not exactly match either X or Y, then the value <c>default(T)</c> is returned.</remarks>
public T As<T>()
{
if(Is<A>())
{
return (T)(object)a; // Is this boxing and unboxing unavoidable if I want the union to hold value types and reference types?
//return (T)x; // This will not compile: Error = "Cannot cast expression of type 'X' to 'T'."
}
if(Is<B>())
{
return (T)(object)b;
}
if(Is<C>())
{
return (T)(object)c;
}
return default(T);
}
}
Using this class ValueWrapper now looks like this
public class ValueWrapper2
{
public DateTime ValueCreationDate;
public Union<int, string, Foo> ValueA;
public Union<double, Bar, Foo> ValueB;
}
which is something like what I wanted to achieve but I am missing one fairly crucial element - that is compiler enforced type checking when calling the Is and As functions as the following code demonstrates
public void DoSomething()
{
if(ValueA.Is<string>())
{
var s = ValueA.As<string>();
// .... do somethng
}
if(ValueA.Is<char>()) // I would really like this to be a compile error
{
char c = ValueA.As<char>();
}
}
IMO It is not valid to ask ValueA if it is a char since its definition clearly says it is not - this is a programming error and I would like the compiler to pick up on this. [Also if I could get this correct then (hopefully) I would get intellisense too - which would be a boon.]
In order to achieve this I would want to tell the compiler that the type T can be one of A, B or C
public bool Is<T>() where T : A
or T : B // Yes I know this is not legal!
or T : C
{
return typeof(T) == type;
}
Does anyone have any idea if what I want to achieve is possible? Or am I just plain stupid for writing this class in the first place?
I don't really like the type-checking and type-casting solutions provided above, so here's 100% type-safe union which will throw compilation errors if you attempt to use the wrong datatype:
using System;
namespace Juliet
{
class Program
{
static void Main(string[] args)
{
Union3<int, char, string>[] unions = new Union3<int,char,string>[]
{
new Union3<int, char, string>.Case1(5),
new Union3<int, char, string>.Case2('x'),
new Union3<int, char, string>.Case3("Juliet")
};
foreach (Union3<int, char, string> union in unions)
{
string value = union.Match(
num => num.ToString(),
character => new string(new char[] { character }),
word => word);
Console.WriteLine("Matched union with value '{0}'", value);
}
Console.ReadLine();
}
}
public abstract class Union3<A, B, C>
{
public abstract T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h);
// private ctor ensures no external classes can inherit
private Union3() { }
public sealed class Case1 : Union3<A, B, C>
{
public readonly A Item;
public Case1(A item) : base() { this.Item = item; }
public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
{
return f(Item);
}
}
public sealed class Case2 : Union3<A, B, C>
{
public readonly B Item;
public Case2(B item) { this.Item = item; }
public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
{
return g(Item);
}
}
public sealed class Case3 : Union3<A, B, C>
{
public readonly C Item;
public Case3(C item) { this.Item = item; }
public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
{
return h(Item);
}
}
}
}
I like the direction of the accepted solution but it doesn't scale well for unions of more than three items (e.g. a union of 9 items would require 9 class definitions).
Here is another approach that is also 100% type-safe at compile-time, but that is easy to grow to large unions.
public class UnionBase<A>
{
dynamic value;
public UnionBase(A a) { value = a; }
protected UnionBase(object x) { value = x; }
protected T InternalMatch<T>(params Delegate[] ds)
{
var vt = value.GetType();
foreach (var d in ds)
{
var mi = d.Method;
// These are always true if InternalMatch is used correctly.
Debug.Assert(mi.GetParameters().Length == 1);
Debug.Assert(typeof(T).IsAssignableFrom(mi.ReturnType));
var pt = mi.GetParameters()[0].ParameterType;
if (pt.IsAssignableFrom(vt))
return (T)mi.Invoke(null, new object[] { value });
}
throw new Exception("No appropriate matching function was provided");
}
public T Match<T>(Func<A, T> fa) { return InternalMatch<T>(fa); }
}
public class Union<A, B> : UnionBase<A>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb) { return InternalMatch<T>(fa, fb); }
}
public class Union<A, B, C> : Union<A, B>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
public Union(C c) : base(c) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc) { return InternalMatch<T>(fa, fb, fc); }
}
public class Union<A, B, C, D> : Union<A, B, C>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
public Union(C c) : base(c) { }
public Union(D d) : base(d) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc, Func<D, T> fd) { return InternalMatch<T>(fa, fb, fc, fd); }
}
public class Union<A, B, C, D, E> : Union<A, B, C, D>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
public Union(C c) : base(c) { }
public Union(D d) : base(d) { }
public Union(E e) : base(e) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc, Func<D, T> fd, Func<E, T> fe) { return InternalMatch<T>(fa, fb, fc, fd, fe); }
}
public class DiscriminatedUnionTest : IExample
{
public Union<int, bool, string, int[]> MakeUnion(int n)
{
return new Union<int, bool, string, int[]>(n);
}
public Union<int, bool, string, int[]> MakeUnion(bool b)
{
return new Union<int, bool, string, int[]>(b);
}
public Union<int, bool, string, int[]> MakeUnion(string s)
{
return new Union<int, bool, string, int[]>(s);
}
public Union<int, bool, string, int[]> MakeUnion(params int[] xs)
{
return new Union<int, bool, string, int[]>(xs);
}
public void Print(Union<int, bool, string, int[]> union)
{
var text = union.Match(
n => "This is an int " + n.ToString(),
b => "This is a boolean " + b.ToString(),
s => "This is a string" + s,
xs => "This is an array of ints " + String.Join(", ", xs));
Console.WriteLine(text);
}
public void Run()
{
Print(MakeUnion(1));
Print(MakeUnion(true));
Print(MakeUnion("forty-two"));
Print(MakeUnion(0, 1, 1, 2, 3, 5, 8));
}
}
I wrote some blog posts on this subject that might be useful:
Union Types in C#
Implementing Tic-Tac-Toe Using State Classes
Let's say you have a shopping cart scenario with three states: "Empty", "Active" and "Paid", each with different behavior.
You create have a ICartState interface that all states have in common (and it could just be an empty marker interface)
You create three classes that implement that interface. (The classes do not have to be in an inheritance relationship)
The interface contains a "fold" method, whereby you pass a lambda in for each state or case that you need to handle.
You could use the F# runtime from C# but as a lighter weight alternative, I have written a little T4 template for generating code like this.
Here's the interface:
partial interface ICartState
{
ICartState Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
);
}
And here's the implementation:
class CartStateEmpty : ICartState
{
ICartState ICartState.Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
)
{
// I'm the empty state, so invoke cartStateEmpty
return cartStateEmpty(this);
}
}
class CartStateActive : ICartState
{
ICartState ICartState.Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
)
{
// I'm the active state, so invoke cartStateActive
return cartStateActive(this);
}
}
class CartStatePaid : ICartState
{
ICartState ICartState.Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
)
{
// I'm the paid state, so invoke cartStatePaid
return cartStatePaid(this);
}
}
Now let's say you extend the CartStateEmpty and CartStateActive with an AddItem method which is not implemented by CartStatePaid.
And also let's say that CartStateActive has a Pay method that the other states dont have.
Then here's some code that shows it in use -- adding two items and then paying for the cart:
public ICartState AddProduct(ICartState currentState, Product product)
{
return currentState.Transition(
cartStateEmpty => cartStateEmpty.AddItem(product),
cartStateActive => cartStateActive.AddItem(product),
cartStatePaid => cartStatePaid // not allowed in this case
);
}
public void Example()
{
var currentState = new CartStateEmpty() as ICartState;
//add some products
currentState = AddProduct(currentState, Product.ProductX);
currentState = AddProduct(currentState, Product.ProductY);
//pay
const decimal paidAmount = 12.34m;
currentState = currentState.Transition(
cartStateEmpty => cartStateEmpty, // not allowed in this case
cartStateActive => cartStateActive.Pay(paidAmount),
cartStatePaid => cartStatePaid // not allowed in this case
);
}
Note that this code is completely typesafe -- no casting or conditionals anywhere, and compiler errors if you try to pay for an empty cart, say.
I have written a library for doing this at https://github.com/mcintyre321/OneOf
Install-Package OneOf
It has the generic types in it for doing DUs e.g. OneOf<T0, T1> all the way to
OneOf<T0, ..., T9>. Each of those has a .Match, and a .Switch statement which you can use for compiler safe typed behaviour, e.g.:
```
OneOf<string, ColorName, Color> backgroundColor = getBackground();
Color c = backgroundColor.Match(
str => CssHelper.GetColorFromString(str),
name => new Color(name),
col => col
);
```
I am not sure I fully understand your goal. In C, a union is a structure that uses the same memory locations for more than one field. For example:
typedef union
{
float real;
int scalar;
} floatOrScalar;
The floatOrScalar union could be used as a float, or an int, but they both consume the same memory space. Changing one changes the other. You can achieve the same thing with a struct in C#:
[StructLayout(LayoutKind.Explicit)]
struct FloatOrScalar
{
[FieldOffset(0)]
public float Real;
[FieldOffset(0)]
public int Scalar;
}
The above structure uses 32bits total, rather than 64bits. This is only possible with a struct. Your example above is a class, and given the nature of the CLR, makes no guarantee about memory efficiency. If you change a Union<A, B, C> from one type to another, you are not necessarily reusing memory...most likely, you are allocating a new type on the heap and dropping a different pointer in the backing object field. Contrary to a real union, your approach may actually cause more heap thrashing than you would otherwise get if you did not use your Union type.
char foo = 'B';
bool bar = foo is int;
This results in a warning, not an error. If you're looking for your Is and As functions to be analogs for the C# operators, then you shouldn't be restricting them in that way anyhow.
If you allow multiple types, you cannot achieve type safety (unless the types are related).
You can't and won't achieve any kind of type safety, you could only achieve byte-value-safety using FieldOffset.
It would make much more sense to have a generic ValueWrapper<T1, T2> with T1 ValueA and T2 ValueB, ...
P.S.: when talking about type-safety I mean compile-time type-safety.
If you need a code wrapper (performing bussiness logic on modifications you can use something along the lines of:
public class Wrapper
{
public ValueHolder<int> v1 = 5;
public ValueHolder<byte> v2 = 8;
}
public struct ValueHolder<T>
where T : struct
{
private T value;
public ValueHolder(T value) { this.value = value; }
public static implicit operator T(ValueHolder<T> valueHolder) { return valueHolder.value; }
public static implicit operator ValueHolder<T>(T value) { return new ValueHolder<T>(value); }
}
For an easy way out you could use (it has performance issues, but it is very simple):
public class Wrapper
{
private object v1;
private object v2;
public T GetValue1<T>() { if (v1.GetType() != typeof(T)) throw new InvalidCastException(); return (T)v1; }
public void SetValue1<T>(T value) { v1 = value; }
public T GetValue2<T>() { if (v2.GetType() != typeof(T)) throw new InvalidCastException(); return (T)v2; }
public void SetValue2<T>(T value) { v2 = value; }
}
//usage:
Wrapper wrapper = new Wrapper();
wrapper.SetValue1("aaaa");
wrapper.SetValue2(456);
string s = wrapper.GetValue1<string>();
DateTime dt = wrapper.GetValue1<DateTime>();//InvalidCastException
Here is my attempt. It does compile time checking of types, using generic type constraints.
class Union {
public interface AllowedType<T> { };
internal object val;
internal System.Type type;
}
static class UnionEx {
public static T As<U,T>(this U x) where U : Union, Union.AllowedType<T> {
return x.type == typeof(T) ?(T)x.val : default(T);
}
public static void Set<U,T>(this U x, T newval) where U : Union, Union.AllowedType<T> {
x.val = newval;
x.type = typeof(T);
}
public static bool Is<U,T>(this U x) where U : Union, Union.AllowedType<T> {
return x.type == typeof(T);
}
}
class MyType : Union, Union.AllowedType<int>, Union.AllowedType<string> {}
class TestIt
{
static void Main()
{
MyType bla = new MyType();
bla.Set(234);
System.Console.WriteLine(bla.As<MyType,int>());
System.Console.WriteLine(bla.Is<MyType,string>());
System.Console.WriteLine(bla.Is<MyType,int>());
bla.Set("test");
System.Console.WriteLine(bla.As<MyType,string>());
System.Console.WriteLine(bla.Is<MyType,string>());
System.Console.WriteLine(bla.Is<MyType,int>());
// compile time errors!
// bla.Set('a');
// bla.Is<MyType,char>()
}
}
It could use some prettying-up. Especially, I couldn't figure out how to get rid of the type parameters to As/Is/Set (isn't there a way to specify one type parameter and let C# figure the other one?)
So I've hit this same problem many times, and I just came up with a solution that gets the syntax I want (at the expense of some ugliness in the implementation of the Union type.)
To recap: we want this sort of usage at the call site.
Union<int, string> u;
u = 1492;
int yearColumbusDiscoveredAmerica = u;
u = "hello world";
string traditionalGreeting = u;
var answers = new SortedList<string, Union<int, string, DateTime>>();
answers["life, the universe, and everything"] = 42;
answers["D-Day"] = new DateTime(1944, 6, 6);
answers["C#"] = "is awesome";
We want the following examples to fail to compile, however, so that we get a modicum of type safety.
DateTime dateTimeColumbusDiscoveredAmerica = u;
Foo fooInstance = u;
For extra credit, let's also not take up more space than absolutely needed.
With all that said, here's my implementation for two generic type parameters. The implementation for three, four, and so on type parameters is straight-forward.
public abstract class Union<T1, T2>
{
public abstract int TypeSlot
{
get;
}
public virtual T1 AsT1()
{
throw new TypeAccessException(string.Format(
"Cannot treat this instance as a {0} instance.", typeof(T1).Name));
}
public virtual T2 AsT2()
{
throw new TypeAccessException(string.Format(
"Cannot treat this instance as a {0} instance.", typeof(T2).Name));
}
public static implicit operator Union<T1, T2>(T1 data)
{
return new FromT1(data);
}
public static implicit operator Union<T1, T2>(T2 data)
{
return new FromT2(data);
}
public static implicit operator Union<T1, T2>(Tuple<T1, T2> data)
{
return new FromTuple(data);
}
public static implicit operator T1(Union<T1, T2> source)
{
return source.AsT1();
}
public static implicit operator T2(Union<T1, T2> source)
{
return source.AsT2();
}
private class FromT1 : Union<T1, T2>
{
private readonly T1 data;
public FromT1(T1 data)
{
this.data = data;
}
public override int TypeSlot
{
get { return 1; }
}
public override T1 AsT1()
{
return this.data;
}
public override string ToString()
{
return this.data.ToString();
}
public override int GetHashCode()
{
return this.data.GetHashCode();
}
}
private class FromT2 : Union<T1, T2>
{
private readonly T2 data;
public FromT2(T2 data)
{
this.data = data;
}
public override int TypeSlot
{
get { return 2; }
}
public override T2 AsT2()
{
return this.data;
}
public override string ToString()
{
return this.data.ToString();
}
public override int GetHashCode()
{
return this.data.GetHashCode();
}
}
private class FromTuple : Union<T1, T2>
{
private readonly Tuple<T1, T2> data;
public FromTuple(Tuple<T1, T2> data)
{
this.data = data;
}
public override int TypeSlot
{
get { return 0; }
}
public override T1 AsT1()
{
return this.data.Item1;
}
public override T2 AsT2()
{
return this.data.Item2;
}
public override string ToString()
{
return this.data.ToString();
}
public override int GetHashCode()
{
return this.data.GetHashCode();
}
}
}
And my attempt on minimal yet extensible solution using nesting of Union/Either type.
Also usage of default parameters in Match method naturally enables "Either X Or Default" scenario.
using System;
using System.Reflection;
using NUnit.Framework;
namespace Playground
{
[TestFixture]
public class EitherTests
{
[Test]
public void Test_Either_of_Property_or_FieldInfo()
{
var some = new Some(false);
var field = some.GetType().GetField("X");
var property = some.GetType().GetProperty("Y");
Assert.NotNull(field);
Assert.NotNull(property);
var info = Either<PropertyInfo, FieldInfo>.Of(field);
var infoType = info.Match(p => p.PropertyType, f => f.FieldType);
Assert.That(infoType, Is.EqualTo(typeof(bool)));
}
[Test]
public void Either_of_three_cases_using_nesting()
{
var some = new Some(false);
var field = some.GetType().GetField("X");
var parameter = some.GetType().GetConstructors()[0].GetParameters()[0];
Assert.NotNull(field);
Assert.NotNull(parameter);
var info = Either<ParameterInfo, Either<PropertyInfo, FieldInfo>>.Of(parameter);
var name = info.Match(_ => _.Name, _ => _.Name, _ => _.Name);
Assert.That(name, Is.EqualTo("a"));
}
public class Some
{
public bool X;
public string Y { get; set; }
public Some(bool a)
{
X = a;
}
}
}
public static class Either
{
public static T Match<A, B, C, T>(
this Either<A, Either<B, C>> source,
Func<A, T> a = null, Func<B, T> b = null, Func<C, T> c = null)
{
return source.Match(a, bc => bc.Match(b, c));
}
}
public abstract class Either<A, B>
{
public static Either<A, B> Of(A a)
{
return new CaseA(a);
}
public static Either<A, B> Of(B b)
{
return new CaseB(b);
}
public abstract T Match<T>(Func<A, T> a = null, Func<B, T> b = null);
private sealed class CaseA : Either<A, B>
{
private readonly A _item;
public CaseA(A item) { _item = item; }
public override T Match<T>(Func<A, T> a = null, Func<B, T> b = null)
{
return a == null ? default(T) : a(_item);
}
}
private sealed class CaseB : Either<A, B>
{
private readonly B _item;
public CaseB(B item) { _item = item; }
public override T Match<T>(Func<A, T> a = null, Func<B, T> b = null)
{
return b == null ? default(T) : b(_item);
}
}
}
}
You could throw exceptions once there's an attempt to access variables that haven't been initialized, ie if it's created with an A parameter and later on there's an attempt to access B or C, it could throw, say, UnsupportedOperationException. You'd need a getter to make it work though.
The C# Language Design Team discussed discriminated unions in January 2017 https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-01-10.md#discriminated-unions-via-closed-types
You can vote for the feature request at https://github.com/dotnet/csharplang/issues/113
You can export a pseudo-pattern matching function, like I use for the Either type in my Sasa library. There's currently runtime overhead, but I eventually plan to add a CIL analysis to inline all the delegates into a true case statement.
It's not possible to do with exactly the syntax you've used but with a bit more verbosity and copy/paste it's easy to make overload resolution do the job for you:
// this code is ok
var u = new Union("");
if (u.Value(Is.OfType()))
{
u.Value(Get.ForType());
}
// and this one will not compile
if (u.Value(Is.OfType()))
{
u.Value(Get.ForType());
}
By now it should be pretty obvious how to implement it:
public class Union
{
private readonly Type type;
public readonly A a;
public readonly B b;
public readonly C c;
public Union(A a)
{
type = typeof(A);
this.a = a;
}
public Union(B b)
{
type = typeof(B);
this.b = b;
}
public Union(C c)
{
type = typeof(C);
this.c = c;
}
public bool Value(TypeTestSelector _)
{
return typeof(A) == type;
}
public bool Value(TypeTestSelector _)
{
return typeof(B) == type;
}
public bool Value(TypeTestSelector _)
{
return typeof(C) == type;
}
public A Value(GetValueTypeSelector _)
{
return a;
}
public B Value(GetValueTypeSelector _)
{
return b;
}
public C Value(GetValueTypeSelector _)
{
return c;
}
}
public static class Is
{
public static TypeTestSelector OfType()
{
return null;
}
}
public class TypeTestSelector
{
}
public static class Get
{
public static GetValueTypeSelector ForType()
{
return null;
}
}
public class GetValueTypeSelector
{
}
There are no checks for extracting the value of the wrong type, e.g.:
var u = Union(10);
string s = u.Value(Get.ForType());
So you might consider adding necessary checks and throw exceptions in such cases.
I am currently trying to create a Julia Runtime in .NET. Julia has types like Union{Int, String}... Etc. I am currently trying to simulate this .NET (without doing weird IL that would not be able to be called from c#).
Here is a compile time implementation of a union of structures. I will be creating more unions for object unions, and cross object and struct unions (this will be the most complex case).
public struct Union<T1,T2> where T1 : struct where T2 : struct{
private byte type;
[FieldOffset(1)] private T1 a1;
[FieldOffset(1)] private T2 a2;
public T1 A1 {
get => a1;
set {
a1 = value;
type = 1;
}
}
public T2 A2 {
get => a2;
set {
a2 = value;
type = 2;
}
}
public Union(int _ = 0) {
type = 0;
a1 = default;
a2 = default;
}
public Union(T1 a) : this() => A1 = a;
public Union(T2 a) : this() => A2 = a;
public bool HasValue => type < 1 || type > 2;
public bool IsNull => !HasValue;
public bool IsT1 => type == 1;
public bool IsT2 => type == 2;
public Type GetType() {
switch (type) {
case 1: return typeof(T1);
case 2: return typeof(T2);
default: return null;
}
}
}
You can use the above like the following:
Union<int, long> myUnion(5); \\Set int inside
myUnion.a2 = 5;
Type theTypeInside = myUnion.GetType(); //long
myUnion.a1 = 5;
theTypeInside = myUnion.GetType(); //int
I will also be creating dynamic union generators or aligned unions for the cross object and struct union.
Take a look at:Generated Struct Union Output to see the current compile time unions I am using.
If you want to create a union of any size take a look at Generator for Struct Unions
If anyone has any improvements for the above let me know! Implementing julia into .NET is an extraordinarily hard task!
I use own of Union Type.
Consider an example to make it clearer.
Imagine we have Contact class:
public class Contact
{
public string Name { get; set; }
public string EmailAddress { get; set; }
public string PostalAdrress { get; set; }
}
These are all defined as simple strings, but really are they just strings?
Of course not. The Name can consist of First Name and Last Name. Or is an Email just a set of symbols? I know that at least it should contain # and it is necessarily.
Let's improve us domain model
public class PersonalName
{
public PersonalName(string firstName, string lastName) { ... }
public string Name() { return _fistName + " " _lastName; }
}
public class EmailAddress
{
public EmailAddress(string email) { ... }
}
public class PostalAdrress
{
public PostalAdrress(string address, string city, int zip) { ... }
}
In this classes will be validations during creating and we will eventually have valid models. Consturctor in PersonaName class require FirstName and LastName at the same time. This means that after the creation, it can not have invalid state.
And contact class respectively
public class Contact
{
public PersonalName Name { get; set; }
public EmailAdress EmailAddress { get; set; }
public PostalAddress PostalAddress { get; set; }
}
In this case we have same problem, object of Contact class may be in invalid state. I mean it may have EmailAddress but haven't Name
var contact = new Contact { EmailAddress = new EmailAddress("foo#bar.com") };
Let's fix it and create Contact class with constructor which requires PersonalName, EmailAddress and PostalAddress:
public class Contact
{
public Contact(
PersonalName personalName,
EmailAddress emailAddress,
PostalAddress postalAddress
)
{
...
}
}
But here we have another problem. What if Person have only EmailAdress and haven't PostalAddress?
If we think about it there we realize that there are three possibilities of valid state of Contact class object:
A contact only has an email address
A contact only has a postal address
A contact has both an email address and a postal address
Let's write out domain models. For the beginning we will create Contact Info class which state will be corresponding with above cases.
public class ContactInfo
{
public ContactInfo(EmailAddress emailAddress) { ... }
public ContactInfo(PostalAddress postalAddress) { ... }
public ContactInfo(Tuple<EmailAddress,PostalAddress> emailAndPostalAddress) { ... }
}
And Contact class:
public class Contact
{
public Contact(
PersonalName personalName,
ContactInfo contactInfo
)
{
...
}
}
Let's try use it:
var contact = new Contact(
new PersonalName("James", "Bond"),
new ContactInfo(
new EmailAddress("agent#007.com")
)
);
Console.WriteLine(contact.PersonalName()); // James Bond
Console.WriteLine(contact.ContactInfo().???) // here we have problem, because ContactInfo have three possible state and if we want print it we would write `if` cases
Let's add Match method in ContactInfo class
public class ContactInfo
{
// constructor
public TResult Match<TResult>(
Func<EmailAddress,TResult> f1,
Func<PostalAddress,TResult> f2,
Func<Tuple<EmailAddress,PostalAddress>> f3
)
{
if (_emailAddress != null)
{
return f1(_emailAddress);
}
else if(_postalAddress != null)
{
...
}
...
}
}
In the match method, we can write this code, because the state of the contact class is controlled with constructors and it may have only one of the possible states.
Let's create an auxiliary class, so that each time do not write as many code.
public abstract class Union<T1,T2,T3>
where T1 : class
where T2 : class
where T3 : class
{
private readonly T1 _t1;
private readonly T2 _t2;
private readonly T3 _t3;
public Union(T1 t1) { _t1 = t1; }
public Union(T2 t2) { _t2 = t2; }
public Union(T3 t3) { _t3 = t3; }
public TResult Match<TResult>(
Func<T1, TResult> f1,
Func<T2, TResult> f2,
Func<T3, TResult> f3
)
{
if (_t1 != null)
{
return f1(_t1);
}
else if (_t2 != null)
{
return f2(_t2);
}
else if (_t3 != null)
{
return f3(_t3);
}
throw new Exception("can't match");
}
}
We can have such a class in advance for several types, as is done with delegates Func, Action. 4-6 generic type parameters will be in full for Union class.
Let's rewrite ContactInfo class:
public sealed class ContactInfo : Union<
EmailAddress,
PostalAddress,
Tuple<EmaiAddress,PostalAddress>
>
{
public Contact(EmailAddress emailAddress) : base(emailAddress) { }
public Contact(PostalAddress postalAddress) : base(postalAddress) { }
public Contact(Tuple<EmaiAddress, PostalAddress> emailAndPostalAddress) : base(emailAndPostalAddress) { }
}
Here the compiler will ask override for at least one constructor. If we forget to override the rest of the constructors we can't create object of ContactInfo class with another state. This will protect us from runtime exceptions during Matching.
var contact = new Contact(
new PersonalName("James", "Bond"),
new ContactInfo(
new EmailAddress("agent#007.com")
)
);
Console.WriteLine(contact.PersonalName()); // James Bond
Console
.WriteLine(
contact
.ContactInfo()
.Match(
(emailAddress) => emailAddress.Address,
(postalAddress) => postalAddress.City + " " postalAddress.Zip.ToString(),
(emailAndPostalAddress) => emailAndPostalAddress.Item1.Name + emailAndPostalAddress.Item2.City + " " emailAndPostalAddress.Item2.Zip.ToString()
)
);
That's all.
I hope you enjoyed.
Example taken from the site F# for fun and profit
I've been programming in Java for a while and just got thrown onto a project that's written entirely in C#. I'm trying to come up to speed in C#, and noticed enums used in several places in my new project, but at first glance, C#'s enums seem to be more simplistic than the Java 1.5+ implementation. Can anyone enumerate the differences between C# and Java enums, and how to overcome the differences? (I don't want to start a language flame war, I just want to know how to do some things in C# that I used to do in Java). For example, could someone post a C# counterpart to Sun's famous Planet enum example?
public enum Planet {
MERCURY (3.303e+23, 2.4397e6),
VENUS (4.869e+24, 6.0518e6),
EARTH (5.976e+24, 6.37814e6),
MARS (6.421e+23, 3.3972e6),
JUPITER (1.9e+27, 7.1492e7),
SATURN (5.688e+26, 6.0268e7),
URANUS (8.686e+25, 2.5559e7),
NEPTUNE (1.024e+26, 2.4746e7),
PLUTO (1.27e+22, 1.137e6);
private final double mass; // in kilograms
private final double radius; // in meters
Planet(double mass, double radius) {
this.mass = mass;
this.radius = radius;
}
public double mass() { return mass; }
public double radius() { return radius; }
// universal gravitational constant (m3 kg-1 s-2)
public static final double G = 6.67300E-11;
public double surfaceGravity() {
return G * mass / (radius * radius);
}
public double surfaceWeight(double otherMass) {
return otherMass * surfaceGravity();
}
}
// Example usage (slight modification of Sun's example):
public static void main(String[] args) {
Planet pEarth = Planet.EARTH;
double earthRadius = pEarth.radius(); // Just threw it in to show usage
// Argument passed in is earth Weight. Calculate weight on each planet:
double earthWeight = Double.parseDouble(args[0]);
double mass = earthWeight/pEarth.surfaceGravity();
for (Planet p : Planet.values())
System.out.printf("Your weight on %s is %f%n",
p, p.surfaceWeight(mass));
}
// Example output:
$ java Planet 175
Your weight on MERCURY is 66.107583
Your weight on VENUS is 158.374842
[etc ...]
In C# you can define extension methods on enums, and this makes up for some of the missing functionality.
You can define Planet as an enum and also have extension methods equivalent to surfaceGravity() and surfaceWeight().
I have used custom attributes as suggested by Mikhail, but the same could be achieved using a Dictionary.
using System;
using System.Reflection;
class PlanetAttr: Attribute
{
internal PlanetAttr(double mass, double radius)
{
this.Mass = mass;
this.Radius = radius;
}
public double Mass { get; private set; }
public double Radius { get; private set; }
}
public static class Planets
{
public static double GetSurfaceGravity(this Planet p)
{
PlanetAttr attr = GetAttr(p);
return G * attr.Mass / (attr.Radius * attr.Radius);
}
public static double GetSurfaceWeight(this Planet p, double otherMass)
{
return otherMass * p.GetSurfaceGravity();
}
public const double G = 6.67300E-11;
private static PlanetAttr GetAttr(Planet p)
{
return (PlanetAttr)Attribute.GetCustomAttribute(ForValue(p), typeof(PlanetAttr));
}
private static MemberInfo ForValue(Planet p)
{
return typeof(Planet).GetField(Enum.GetName(typeof(Planet), p));
}
}
public enum Planet
{
[PlanetAttr(3.303e+23, 2.4397e6)] MERCURY,
[PlanetAttr(4.869e+24, 6.0518e6)] VENUS,
[PlanetAttr(5.976e+24, 6.37814e6)] EARTH,
[PlanetAttr(6.421e+23, 3.3972e6)] MARS,
[PlanetAttr(1.9e+27, 7.1492e7)] JUPITER,
[PlanetAttr(5.688e+26, 6.0268e7)] SATURN,
[PlanetAttr(8.686e+25, 2.5559e7)] URANUS,
[PlanetAttr(1.024e+26, 2.4746e7)] NEPTUNE,
[PlanetAttr(1.27e+22, 1.137e6)] PLUTO
}
Enumerations in the CLR are simply named constants. The underlying type must be integral. In Java an enumeration is more like a named instance of a type. That type can be quite complex and - as your example shows - contain multiple fields of various types.
To port the example to C# I would just change the enum to an immutable class and expose static readonly instances of that class:
using System;
using System.Collections.Generic;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
Planet planetEarth = Planet.MERCURY;
double earthRadius = pEarth.Radius; // Just threw it in to show usage
double earthWeight = double.Parse("123");
double earthMass = earthWeight / pEarth.SurfaceGravity();
foreach (Planet p in Planet.Values)
Console.WriteLine($"Your weight on {p} is {p.SurfaceWeight(mass)}");
Console.ReadKey();
}
}
public class Planet
{
public static readonly Planet MERCURY = new Planet("Mercury", 3.303e+23, 2.4397e6);
public static readonly Planet VENUS = new Planet("Venus", 4.869e+24, 6.0518e6);
public static readonly Planet EARTH = new Planet("Earth", 5.976e+24, 6.37814e6);
public static readonly Planet MARS = new Planet("Mars", 6.421e+23, 3.3972e6);
public static readonly Planet JUPITER = new Planet("Jupiter", 1.9e+27, 7.1492e7);
public static readonly Planet SATURN = new Planet("Saturn", 5.688e+26, 6.0268e7);
public static readonly Planet URANUS = new Planet("Uranus", 8.686e+25, 2.5559e7);
public static readonly Planet NEPTUNE = new Planet("Neptune", 1.024e+26, 2.4746e7);
public static readonly Planet PLUTO = new Planet("Pluto", 1.27e+22, 1.137e6);
public static IEnumerable<Planet> Values
{
get
{
yield return MERCURY;
yield return VENUS;
yield return EARTH;
yield return MARS;
yield return JUPITER;
yield return SATURN;
yield return URANUS;
yield return NEPTUNE;
yield return PLUTO;
}
}
public string Name { get; private set; }
public double Mass { get; private set; }
public double Radius { get; private set; }
Planet(string name, double mass, double radius) =>
(Name, Mass, Radius) = (name, mass, radius);
// Wniversal gravitational constant (m3 kg-1 s-2)
public const double G = 6.67300E-11;
public double SurfaceGravity() => G * mass / (radius * radius);
public double SurfaceWeight(double other) => other * SurfaceGravity();
public override string ToString() => name;
}
}
In C# attributes can be used with enums. Good example of this programming pattern with detailed description is here (Codeproject)
public enum Planet
{
[PlanetAttr(3.303e+23, 2.4397e6)]
Mercury,
[PlanetAttr(4.869e+24, 6.0518e6)]
Venus
}
Edit: this question has been recently asked again and answered by Jon Skeet: What's the equivalent of Java's enum in C#?
Private inner classes in C# - why aren't they used more often?
Edit 2: see the accepted answer which extends this approach in a very brilliant way!
Java enums are actually full classes which can have a private constructor and methods etc, whereas C# enums are just named integers. IMO Java's implementation is far superior.
This page should help you a lot while learning c# coming from a java camp. (The link points to the differences about enums (scroll up / down for other things)
Something like this I think:
public class Planets
{
public static readonly Planet MERCURY = new Planet(3.303e+23, 2.4397e6);
public static readonly Planet VENUS = new Planet(4.869e+24, 6.0518e6);
public static readonly Planet EARTH = new Planet(5.976e+24, 6.37814e6);
public static readonly Planet MARS = new Planet(6.421e+23, 3.3972e6);
public static readonly Planet JUPITER = new Planet(1.9e+27, 7.1492e7);
public static readonly Planet SATURN = new Planet(5.688e+26, 6.0268e7);
public static readonly Planet URANUS = new Planet(8.686e+25, 2.5559e7);
public static readonly Planet NEPTUNE = new Planet(1.024e+26, 2.4746e7);
public static readonly Planet PLUTO = new Planet(1.27e+22, 1.137e6);
}
public class Planet
{
public double Mass {get;private set;}
public double Radius {get;private set;}
Planet(double mass, double radius)
{
Mass = mass;
Radius = radius;
}
// universal gravitational constant (m3 kg-1 s-2)
private static readonly double G = 6.67300E-11;
public double SurfaceGravity()
{
return G * Mass / (Radius * Radius);
}
public double SurfaceWeight(double otherMass)
{
return otherMass * SurfaceGravity();
}
}
Or combine the constants into the Planet class as above
we have just made an enum extension for c#
https://github.com/simonmau/enum_ext
It's just a implementation for the typesafeenum, but it works great so we made a package to share - have fun with it
public sealed class Weekday : TypeSafeNameEnum<Weekday, int>
{
public static readonly Weekday Monday = new Weekday(1, "--Monday--");
public static readonly Weekday Tuesday = new Weekday(2, "--Tuesday--");
public static readonly Weekday Wednesday = new Weekday(3, "--Wednesday--");
....
private Weekday(int id, string name) : base(id, name)
{
}
}
Here's another interesting idea which caters for the custom behaviour available in Java. I came up with the following Enumeration base class:
public abstract class Enumeration<T>
where T : Enumeration<T>
{
protected static int nextOrdinal = 0;
protected static readonly Dictionary<int, Enumeration<T>> byOrdinal = new Dictionary<int, Enumeration<T>>();
protected static readonly Dictionary<string, Enumeration<T>> byName = new Dictionary<string, Enumeration<T>>();
protected readonly string name;
protected readonly int ordinal;
protected Enumeration(string name)
: this (name, nextOrdinal)
{
}
protected Enumeration(string name, int ordinal)
{
this.name = name;
this.ordinal = ordinal;
nextOrdinal = ordinal + 1;
byOrdinal.Add(ordinal, this);
byName.Add(name, this);
}
public override string ToString()
{
return name;
}
public string Name
{
get { return name; }
}
public static explicit operator int(Enumeration<T> obj)
{
return obj.ordinal;
}
public int Ordinal
{
get { return ordinal; }
}
}
It's got a type parameter basically just so the ordinal count will work properly across different derived enumerations. Jon Skeet's Operator example from his answer to another question (http://stackoverflow.com/questions/1376312/whats-the-equivalent-of-javas-enum-in-c) above then becomes:
public class Operator : Enumeration<Operator>
{
public static readonly Operator Plus = new Operator("Plus", (x, y) => x + y);
public static readonly Operator Minus = new Operator("Minus", (x, y) => x - y);
public static readonly Operator Times = new Operator("Times", (x, y) => x * y);
public static readonly Operator Divide = new Operator("Divide", (x, y) => x / y);
private readonly Func<int, int, int> op;
// Prevent other top-level types from instantiating
private Operator(string name, Func<int, int, int> op)
:base (name)
{
this.op = op;
}
public int Execute(int left, int right)
{
return op(left, right);
}
}
This gives a few advantages.
Ordinal support
Conversion to string and int which makes switch statements feasible
GetType() will give the same result for each of the values of a derived Enumeration type.
The Static methods from System.Enum can be added to the base Enumeration class to allow the same functionality.
A Java enum is syntactic sugar to present enumerations in an OO manner. They're abstract classes extending the Enum class in Java, and each enum value is like a static final public instance implementation of the enum class. Look at the generated classes, and for an enum "Foo" with 10 values, you'll see "Foo$1" through "Foo$10" classes generated.
I don't know C# though, I can only speculate that an enum in that language is more like a traditional enum in C style languages. I see from a quick Google search that they can hold multiple values however, so they are probably implemented in a similar manner, but with far more restrictions than what the Java compiler allows.
Java enums allow easy typesafe conversions from the name using the compiler-generated valueOf method, i.e.
// Java Enum has generics smarts and allows this
Planet p = Planet.valueOf("MERCURY");
The equivalent for a raw enum in C# is more verbose:
// C# enum - bit of hoop jumping required
Planet p = (Planet)Enum.Parse(typeof(Planet), "MERCURY");
However, if you go down the route sugegsted by Kent, you can easily implement a ValueOf method in your enum class.
I suspect enums in C# are just constants internal to the CLR, but not that familiar with them. I have decompiled some classes in Java and I can tell you want Enums are once you convert.
Java does something sneaky. It treats the enum class as a a normal class with, as close as I can figure, using lots of macros when referencing the enum values. If you have a case statement in a Java class that uses enums, it replaces the enum references to integers. If you need to go to string, it creates an array of strings indexed by an ordinal that it uses in each class. I suspect to save on boxing.
If you download this decompiler you will get to see how it creates its class an integrates it. Rather fascinating to be honest. I used to not use the enum class because I thought it was to bloated for just an array of constants. I like it better than the limited way you can use them in C#.
http://members.fortunecity.com/neshkov/dj.html -- Java decompiler
The enum in Java is much more complex than C# enum and hence more powerful.
Since it is just another compile time syntactical sugar I'm wondering if it was really worth having included the language given its limited usage in real life applications.
Sometimes it's harder keeping stuff out of the language than giving up to the pressure to include a minor feature.
//Review the sample enum below for a template on how to implement a JavaEnum.
//There is also an EnumSet implementation below.
public abstract class JavaEnum : IComparable {
public static IEnumerable<JavaEnum> Values {
get {
throw new NotImplementedException("Enumeration missing");
}
}
public readonly string Name;
public JavaEnum(string name) {
this.Name = name;
}
public override string ToString() {
return base.ToString() + "." + Name.ToUpper();
}
public int CompareTo(object obj) {
if(obj is JavaEnum) {
return string.Compare(this.Name, ((JavaEnum)obj).Name);
} else {
throw new ArgumentException();
}
}
//Dictionary values are of type SortedSet<T>
private static Dictionary<Type, object> enumDictionary;
public static SortedSet<T> RetrieveEnumValues<T>() where T : JavaEnum {
if(enumDictionary == null) {
enumDictionary = new Dictionary<Type, object>();
}
object enums;
if(!enumDictionary.TryGetValue(typeof(T), out enums)) {
enums = new SortedSet<T>();
FieldInfo[] myFieldInfo = typeof(T).GetFields(BindingFlags.Static | BindingFlags.DeclaredOnly | BindingFlags.Public);
foreach(FieldInfo f in myFieldInfo) {
if(f.FieldType == typeof(T)) {
((SortedSet<T>)enums).Add((T)f.GetValue(null));
}
}
enumDictionary.Add(typeof(T), enums);
}
return (SortedSet<T>)enums;
}
}
//Sample JavaEnum
public class SampleEnum : JavaEnum {
//Enum values
public static readonly SampleEnum A = new SampleEnum("A", 1);
public static readonly SampleEnum B = new SampleEnum("B", 2);
public static readonly SampleEnum C = new SampleEnum("C", 3);
//Variables or Properties common to all enums of this type
public int int1;
public static int int2 = 4;
public static readonly int int3 = 9;
//The Values property must be replaced with a call to JavaEnum.generateEnumValues<MyEnumType>() to generate an IEnumerable set.
public static new IEnumerable<SampleEnum> Values {
get {
foreach(var e in JavaEnum.RetrieveEnumValues<SampleEnum>()) {
yield return e;
}
//If this enum should compose several enums, add them here
//foreach(var e in ChildSampleEnum.Values) {
// yield return e;
//}
}
}
public SampleEnum(string name, int int1)
: base(name) {
this.int1 = int1;
}
}
public class EnumSet<T> : SortedSet<T> where T : JavaEnum {
// Creates an enum set containing all of the elements in the specified element type.
public static EnumSet<T> AllOf(IEnumerable<T> values) {
EnumSet<T> returnSet = new EnumSet<T>();
foreach(T item in values) {
returnSet.Add(item);
}
return returnSet;
}
// Creates an enum set with the same element type as the specified enum set, initially containing all the elements of this type that are not contained in the specified set.
public static EnumSet<T> ComplementOf(IEnumerable<T> values, EnumSet<T> set) {
EnumSet<T> returnSet = new EnumSet<T>();
foreach(T item in values) {
if(!set.Contains(item)) {
returnSet.Add(item);
}
}
return returnSet;
}
// Creates an enum set initially containing all of the elements in the range defined by the two specified endpoints.
public static EnumSet<T> Range(IEnumerable<T> values, T from, T to) {
EnumSet<T> returnSet = new EnumSet<T>();
if(from == to) {
returnSet.Add(from);
return returnSet;
}
bool isFrom = false;
foreach(T item in values) {
if(isFrom) {
returnSet.Add(item);
if(item == to) {
return returnSet;
}
} else if(item == from) {
isFrom = true;
returnSet.Add(item);
}
}
throw new ArgumentException();
}
// Creates an enum set initially containing the specified element(s).
public static EnumSet<T> Of(params T[] setItems) {
EnumSet<T> returnSet = new EnumSet<T>();
foreach(T item in setItems) {
returnSet.Add(item);
}
return returnSet;
}
// Creates an empty enum set with the specified element type.
public static EnumSet<T> NoneOf() {
return new EnumSet<T>();
}
// Returns a copy of the set passed in.
public static EnumSet<T> CopyOf(EnumSet<T> set) {
EnumSet<T> returnSet = new EnumSet<T>();
returnSet.Add(set);
return returnSet;
}
// Adds a set to an existing set.
public void Add(EnumSet<T> enumSet) {
foreach(T item in enumSet) {
this.Add(item);
}
}
// Removes a set from an existing set.
public void Remove(EnumSet<T> enumSet) {
foreach(T item in enumSet) {
this.Remove(item);
}
}
}
You could also use a utility class for each enum type which holds a instance with advanced data for each enum value.
public enum Planet
{
MERCURY,
VENUS
}
public class PlanetUtil
{
private static readonly IDictionary<Planet, PlanetUtil> PLANETS = new Dictionary<Planet, PlanetUtil();
static PlanetUtil()
{
PlanetUtil.PLANETS.Add(Planet.MERCURY, new PlanetUtil(3.303e+23, 2.4397e6));
PlanetUtil.PLANETS.Add(Planet.VENUS, new PlanetUtil(4.869e+24, 6.0518e6));
}
public static PlanetUtil GetUtil(Planet planet)
{
return PlanetUtil.PLANETS[planet];
}
private readonly double radius;
private readonly double mass;
public PlanetUtil(double radius, double mass)
{
this.radius = radius;
this.mass = mass;
}
// getter
}