I have a multidimentional array of pointers to integer (of unknown rank) being passed into my function as such:
public unsafe static void MyMethod(Array source, ...)
{
//...
}
Multidimensional arrays of pointers are being constructed outside of the method and being passed in. Here's an example:
int*[,,,] testArray = new int*[10,10,5,5];
MyMethod(testArray);
How can I set a value at an runtime-computed index in the array? Array.SetValue(...) works perfectly fine for non-pointer arrays, but refuses to work for my int* array. Using reflector, I see SetValue reduces down to calling InternalSetValue which takes an object for the value but it's marked as extern and I can't see the implementation. I took a shot in the dark and tried passing in boxed pointer, but no luck.
This works:
unsafe static void MyMethod(int** array)
{
array[10] = (int*)0xdeadbeef;
}
private static unsafe void Main()
{
int*[, , ,] array = new int*[10, 10, 10, 10];
fixed (int** ptr = array)
{
MyMethod(ptr);
}
int* x = array[0, 0, 1, 0]; // == 0xdeadbeef
}
Does that help?
Question to the experts: Is it wrong to assume that the array is allocated consecutively in memory?
This doesn't work because it's not possible to box a pointer in .NET, so you can never call the Array.SetValue and pass an int*.
Can you declare MyMethod to accept int*[,,,] instead?
Edit: for further reading, an interesting recent post from Eric Lippert.
Related
I have the following function in C++ inside a .dll:
extern "C"
{
__declspec(dllexport) void ColorRamps_getColorRampTable(int n, int *table);
}
It takes in an array with n elements and sets the array values.
How do I call this from C#?
I understand that I must first DllImport the function (?):
[DllImport("ColorRamps.dll")]
static extern void ColorRamps_getColorRampTable(int n, int[] table);
public static void getColorRampTable(int[] table)
{
int n = table.Length;
ColorRamps_getColorRampTable(n, table);
}
Is this correct?
When I call getColorRampTable(int[] table) must I pin the array?
How do I do this?
I tried:
int[] table = new int[164];
GCHandle handle = GCHandle.Alloc(table, GCHandleType.Pinned);
getColorRampTable(table);
handle.Free();
You have two options. One is to rely on the .NET marshaller, another is to use unsafe code.
Both are actually quite simple for your case. The marshaller one:
[DllImport("ColorRamps.dll")]
static extern void ColorRamps_getColorRampTable(int n, [In, Out] int[] table);
public static void getColorRampTable(int[] table)
{
int n = table.Length;
ColorRamps_getColorRampTable(n, table);
}
This has a slight overhead in that the marshaller copies the array to unmanaged memory first, and then copies it back into your array again. EDIT: As Xanatos correctly noted, since int[] is a blittable type, the marshaller actually cheats and passes a pointer to your actual array. Or at least that's the documented behaviour.
If this is a performance problem for you (and it's a real, measured problem - don't do this otherwise), you can pass a pointer to the .NET array directly using unsafe code:
[DllImport("ColorRamps.dll")]
static extern void ColorRamps_getColorRampTable(int n, int* table);
public unsafe static void getColorRampTable(int[] table)
{
int n = table.Length;
fixed (int* pTable = &table)
{
ColorRamps_getColorRampTable(n, pTable);
}
}
The class has to be marked with the unsafe keyword, and you have to enable unsafe code in the project settings.
EDIT:
As above, this doesn't actually apply for the int[] case. I'm going to leave it in here because it's true for non-blittable types, but int[] is blittable, and the marshaller should just pass the pointer directly, while handling the pinning for you. You should still use the [In, Out] attribute, though - even though it will usually behave as In/Out by default, the contract should be clearly specified.
The main difference is that in the first case, the C(++) code never has access to any of the managed memory of yours - it always works on copies of the data. By adding the [In, Out] attributes, you're telling the marshaller to not only copy the data in, but also to copy it out after the call is done - otherwise your table array would never change.
On the other hand, the second variant passes a pointer to the actual array you're using on the C# side - this may or may not be faster, depending on way too many things, and it's generally slightly more unsafe (be very careful about specifying the correct length of the array, for example).
Another EDIT:
There's also an option to use IntPtr table in the P/Invoke method declaration, which allows you additional flexibility. The easiest example would be just pinning the array, which is equivalent to the fixed case:
var hTable = GCHandle.Alloc(table, GCHandleType.Pinned);
try
{
ColorRamps_getColorRampTable(n, hTable.AddrOfPinnedObject());
}
finally
{
hTable.Free();
}
And even allowing you to explicitly manage the copying quite easily:
var pTable = Marshal.AllocHGlobal(sizeof(int) * table.Length);
try
{
Marshal.Copy(table, 0, pTable, table.Length);
ColorRamps_getColorRampTable(n, pTable);
Marshal.Copy(pTable, table, 0, table.Length);
}
finally
{
Marshal.FreeHGlobal(pTable);
}
This is a decent workaround if you can't use unsafe code for some reason, but do remember that it's just as "unsafe" as unsafe code in most scenarios. The truth is, since you're interacting with native code, you're always (somewhat) unsafe - a bug in the native code can easily corrupt your whole application.
How do I marshal this C++ type?
The ABS_DATA structure is used to associate an arbitrarily long data block with the length information. The declared length of the Data array is 1, but the actual length is given by the Length member.
typedef struct abs_data {
ABS_DWORD Length;
ABS_BYTE Data[ABS_VARLEN];
} ABS_DATA;
I tried the following code, but it's not working. The data variable is always empty and I'm sure it has data in there.
[System.Runtime.InteropServices.StructLayoutAttribute(System.Runtime.InteropServices.LayoutKind.Sequential, CharSet = System.Runtime.InteropServices.CharSet.Ansi)]
public struct abs_data
{
/// ABS_DWORD->unsigned int
public uint Length;
/// ABS_BYTE[1]
[System.Runtime.InteropServices.MarshalAsAttribute(System.Runtime.InteropServices.UnmanagedType.ByValTStr, SizeConst = 1)]
public string Data;
}
Old question, but I recently had to do this myself and all the existing answers are poor, so...
The best solution for marshaling a variable-length array in a struct is to use a custom marshaler. This lets you control the code that the runtime uses to convert between managed and unmanaged data. Unfortunately, custom marshaling is poorly-documented and has a few bizarre limitations. I'll cover those quickly, then go over the solution.
Annoyingly, you can't use custom marshaling on an array element of a struct or class. There's no documented or logical reason for this limitation, and the compiler won't complain, but you'll get an exception at runtime. Also, there's a function that custom marshalers must implement, int GetNativeDataSize(), which is obviously impossible to implement accurately (it doesn't pass you an instance of the object to ask its size, so you can only go off the type, which is of course variable size!) Fortunately, this function doesn't matter. I've never seen it get called, and it the custom marshaler works fine even if it returns a bogus value (one MSDN example has it return -1).
First of all, here's what I think your native prototype might look like (I'm using P/Invoke here, but it works for COM too):
// Unmanaged C/C++ code prototype (guess)
//void DoThing (ABS_DATA *pData);
// Guess at your managed call with the "marshal one-byte ByValArray" version
//[DllImport("libname.dll")] public extern void DoThing (ref abs_data pData);
Here's the naïve version of how you might have used a custom marshaler (which really ought to have worked). I'll get to the marshaler itself in a bit...
[StructLayout(LayoutKind.Sequential)]
public struct abs_data
{
// Don't need the length as a separate filed; managed arrays know it.
[MarshalAs(UnmanagedType.CustomMarshaler, MarshalTypeRef=typeof(ArrayMarshaler<byte>))]
public byte[] Data;
}
// Now you can just pass the struct but it takes arbitrary sizes!
[DllImport("libname.dll")] public extern void DoThing (ref abs_data pData);
Unfortunately, at runtime, you apparently can't marshal arrays inside data structures as anything except SafeArray or ByValArray. SafeArrays are counted, but they look nothing like the (extremely common) format that you're looking for here. So that won't work. ByValArray, of course, requires that the length be known at compile time, so that doesn't work either (as you ran into). Bizarrely, though, you can use custom marshaling on array parameters, This is annoying because you have to put the MarshalAsAttribute on every parameter that uses this type, instead of just putting it on one field and having that apply everywhere you use the type containing that field, but c'est la vie. It looks like this:
[StructLayout(LayoutKind.Sequential)]
public struct abs_data
{
// Don't need the length as a separate filed; managed arrays know it.
// This isn't an array anymore; we pass an array of this instead.
public byte Data;
}
// Now you pass an arbitrary-sized array of the struct
[DllImport("libname.dll")] public extern void DoThing (
// Have to put this huge stupid attribute on every parameter of this type
[MarshalAs(UnmanagedType.CustomMarshaler, MarshalTypeRef=typeof(ArrayMarshaler<abs_data>))]
// Don't need to use "ref" anymore; arrays are ref types and pass as pointer-to
abs_data[] pData);
In that example, I preserved the abs_data type, in case you want to do something special with it (constructors, static functions, properties, inheritance, whatever). If your array elements consisted of a complex type, you would modify the struct to represent that complex type. However, in this case, abs_data is basically just a renamed byte - it's not even "wrapping" the byte; as far as the native code is concerned it's more like a typedef - so you can just pass an array of bytes and skip the struct entirely:
// Actually, you can just pass an arbitrary-length byte array!
[DllImport("libname.dll")] public extern void DoThing (
// Have to put this huge stupid attribute on every parameter of this type
[MarshalAs(UnmanagedType.CustomMarshaler, MarshalTypeRef=typeof(ArrayMarshaler<byte>))]
byte[] pData);
OK, so now you can see how to declare the array element type (if needed), and how to pass the array to an unmanaged function. However, we still need that custom marshaler. You should read "Implementing the ICustomMarshaler Interface" but I'll cover this here, with inline comments. Note that I use some shorthand conventions (like Marshal.SizeOf<T>()) that require .NET 4.5.1 or higher.
// The class that does the marshaling. Making it generic is not required, but
// will make it easier to use the same custom marshaler for multiple array types.
public class ArrayMarshaler<T> : ICustomMarshaler
{
// All custom marshalers require a static factory method with this signature.
public static ICustomMarshaler GetInstance (String cookie)
{
return new ArrayMarshaler<T>();
}
// This is the function that builds the managed type - in this case, the managed
// array - from a pointer. You can just return null here if only sending the
// array as an in-parameter.
public Object MarshalNativeToManaged (IntPtr pNativeData)
{
// First, sanity check...
if (IntPtr.Zero == pNativeData) return null;
// Start by reading the size of the array ("Length" from your ABS_DATA struct)
int length = Marshal.ReadInt32(pNativeData);
// Create the managed array that will be returned
T[] array = new T[length];
// For efficiency, only compute the element size once
int elSiz = Marshal.SizeOf<T>();
// Populate the array
for (int i = 0; i < length; i++)
{
array[i] = Marshal.PtrToStructure<T>(pNativeData + sizeof(int) + (elSiz * i));
}
// Alternate method, for arrays of primitive types only:
// Marshal.Copy(pNativeData + sizeof(int), array, 0, length);
return array;
}
// This is the function that marshals your managed array to unmanaged memory.
// If you only ever marshal the array out, not in, you can return IntPtr.Zero
public IntPtr MarshalManagedToNative (Object ManagedObject)
{
if (null == ManagedObject) return IntPtr.Zero;
T[] array = (T[])ManagedObj;
int elSiz = Marshal.SizeOf<T>();
// Get the total size of unmanaged memory that is needed (length + elements)
int size = sizeof(int) + (elSiz * array.Length);
// Allocate unmanaged space. For COM, use Marshal.AllocCoTaskMem instead.
IntPtr ptr = Marshal.AllocHGlobal(size);
// Write the "Length" field first
Marshal.WriteInt32(ptr, array.Length);
// Write the array data
for (int i = 0; i < array.Length; i++)
{ // Newly-allocated space has no existing object, so the last param is false
Marshal.StructureToPtr<T>(array[i], ptr + sizeof(int) + (elSiz * i), false);
}
// If you're only using arrays of primitive types, you could use this instead:
//Marshal.Copy(array, 0, ptr + sizeof(int), array.Length);
return ptr;
}
// This function is called after completing the call that required marshaling to
// unmanaged memory. You should use it to free any unmanaged memory you allocated.
// If you never consume unmanaged memory or other resources, do nothing here.
public void CleanUpNativeData (IntPtr pNativeData)
{
// Free the unmanaged memory. Use Marshal.FreeCoTaskMem if using COM.
Marshal.FreeHGlobal(pNativeData);
}
// If, after marshaling from unmanaged to managed, you have anything that needs
// to be taken care of when you're done with the object, put it here. Garbage
// collection will free the managed object, so I've left this function empty.
public void CleanUpManagedData (Object ManagedObj)
{ }
// This function is a lie. It looks like it should be impossible to get the right
// value - the whole problem is that the size of each array is variable!
// - but in practice the runtime doesn't rely on this and may not even call it.
// The MSDN example returns -1; I'll try to be a little more realistic.
public int GetNativeDataSize ()
{
return sizeof(int) + Marshal.SizeOf<T>();
}
}
Whew, that was long! Well, there you have it. I hope people see this, because there's a lot of bad answers and misunderstanding out there...
It is not possible to marshal structs containing variable-length arrays (but it is possible to marshal variable-length arrays as function parameters). You will have to read your data manually:
IntPtr nativeData = ... ;
var length = Marshal.ReadUInt32 (nativeData) ;
var bytes = new byte[length] ;
Marshal.Copy (new IntPtr ((long)nativeData + 4), bytes, 0, length) ;
If the data being saved isn't a string, you don't have to store it in a string. I usually do not marshal to a string unless the original data type was a char*. Otherwise a byte[] should do.
Try:
[MarshalAs(UnmanagedType.ByValArray, SizeConst=[whatever your size is]]
byte[] Data;
If you need to convert this to a string later, use:
System.Text.Encoding.UTF8.GetString(your byte array here).
Obviously, you need to vary the encoding to what you need, though UTF-8 usually is sufficient.
I see the problem now, you have to marshal a VARIABLE length array. The MarshalAs does not allow this and the array will have to be sent by reference.
If the array length is variable, your byte[] needs to be an IntPtr, so you would use,
IntPtr Data;
Instead of
[MarshalAs(UnmanagedType.ByValArray, SizeConst=[whatever your size is]]
byte[] Data;
You can then use the Marshal class to access the underlying data.
Something like:
uint length = yourABSObject.Length;
byte[] buffer = new byte[length];
Marshal.Copy(buffer, 0, yourABSObject.Data, length);
You may need to clean up your memory when you are finished to avoid a leak, though I suspect the GC will clean it up when yourABSObject goes out of scope. Anyway, here is the cleanup code:
Marshal.FreeHGlobal(yourABSObject.Data);
You are trying to marshal something that is a byte[ABS_VARLEN] as if it were a string of length 1. You'll need to figure out what the ABS_VARLEN constant is and marshal the array as:
[MarshalAs(UnmanagedType.LPArray, SizeConst = 1024)]
public byte[] Data;
(The 1024 there is a placeholder; fill in whatever the actual value of ASB_VARLEN is.)
In my opinion, it's simpler and more efficient to pin the array and take its address.
Assuming you need to pass abs_data to myNativeFunction(abs_data*):
public struct abs_data
{
public uint Length;
public IntPtr Data;
}
[DllImport("myDll.dll")]
static extern void myNativeFunction(ref abs_data data);
void CallNativeFunc(byte[] data)
{
GCHandle pin = GCHandle.Alloc(data, GCHandleType.Pinned);
abs_data tmp;
tmp.Length = data.Length;
tmp.Data = pin.AddrOfPinnedObject();
myNativeFunction(ref tmp);
pin.Free();
}
I'm stuck on a seemingly trivial task and need your help.
I need to write a method with the following signature:
System.Array ToIntPtrArray(System.Array a)
where an actual argument can be an array of any pointer type (e.g. int*[], long**[], void*[,]) and returning an array of the same shape with elements of type System.IntPtr having the same numeric values as elements of an input array. The problem is that I do not understand how to extract numeric values of pointers if I do not know their types beforehand.
For example, if I knew beforehand that my argument is always of type void*[], I could write the method as follows:
unsafe IntPtr[] ToIntPtrArray(void*[] a)
{
var result = new IntPtr[a.Length];
for (int i = 0; i < a.Length; i++)
result[i] = (IntPtr) a[i];
return result;
}
But the problem is it could be not void*[], but void**[] or anything else, and the method should be able to handle all cases.
The short answer is, this cannot be done directly. The reasons are that if you pass your conversion function any of the conventional index-capable containers (System.Array, Collections.IList, ArrayList, etc.) performing the index operations will attempt to cast the result to System.Object. Pointers in C# do not derive from Object, so this will result in an SystemNotSupported or similar exception.
There are two reasonable workarounds:
Convert the pointer arrays to void pointer arrays before calling the
method.
Convert the pointer arrays to void pointer pointers before
calling the method.
The first one is rather cumbersome, as it requires duplicating the entire contents of the array with a for loop. The second option requires passing in the length of the array as it is no longer wrapped with a managed System.Array object.
Sample Code
Method:
unsafe Array ToIntPtrArray(void** a, int count)
{
IntPtr[] intPtrArray = new IntPtr[count];
for (int n = 0; n < count; n++)
intPtrArray[n] = new IntPtr(a[n]);
return intPtrArray;
}
Sample Usage (integer pointer array):
int*[] intPtrArray;
// Code that initializes the values of intPtrArray
fixed(int** ptr = &intPtrArray[0])
{
Array result = ToIntPtrArray((void**)ptr, intPtrArray.Length);
}
Sample Usage (void pointer pointer array):
void**[] voidPtrPtrArray;
// Code that initializes the values of voidPtrPtrArray
fixed(void*** ptr = &voidPtrPtrArray[0])
{
Array result = ToIntPtrArray((void**)ptr, voidPtrPtrArray.Length);
}
Sample Usage (multidimensional int pointer array):
int*[,] int2dArray;
// Code that initializes the values of int2dArray
fixed(int** ptr = &int2dArray[0,0])
{
Array result = ToIntPtrArray((void**)ptr, TotalSize(int2dArray));
Array reshaped = ReshapeArray(result,int2dArray);
}
Where TotalSize and ReshapeArray are helper functions that are written to deal with multi-dimensional arrays. For tips on how to accomplish this see: Programatically Declare Array of Arbitrary Rank.
This is a rather difficult problem. Creating an array of the proper shape isn't too bad.
unsafe System.Array ToIntPtrArray(System.Array a)
{
int[] lengths = new int[a.Rank];
int[] lowerBounds = new int[a.Rank];
for (int i = 0; i < a.Rank; ++i)
{
lengths[i] = a.GetLength(i);
lowerBounds[i] = a.GetLowerBound(i);
}
Array newArray = Array.CreateInstance(typeof (IntPtr), lengths, lowerBounds);
// The hard part is iterating over the array.
// Multiplying the lengths will give you the total number of items.
// Then we go from 0 to n-1, and create the indexes
// This loop could be combined with the loop above.
int numItems = 1;
for (int i = 0; i < a.Rank; ++i)
{
numItems *= lengths[i];
}
int[] indexes = new int[a.Rank];
for (int i = 0; i < numItems; ++i)
{
int work = i;
int inc = 1;
for (int r = a.Rank-1; r >= 0; --r)
{
int ix = work%lengths[r];
indexes[r] = lowerBounds[r] + ix;
work -= (ix*inc);
inc *= lengths[r];
}
object obj = a.GetValue(indexes);
// somehow create an IntPtr from a boxed pointer
var myPtr = new IntPtr((long) obj);
newArray.SetValue(myPtr, indexes);
}
return newArray;
}
That creates an array of the right type and shape (dimensions and length), but it has a problem. The GetValue method, which you use to get an item from the array, returns an object. And you can't cast a pointer type to an object. No way, no how. So you can't get the value from the array! If you call GetValue on an array of long*, for example, you'll get "type not supported."
I think you need some way to copy that oddly-shaped array to a one-dimensional array of int* (or any other pointer type). Then you could directly index the temporary array and get the values to populate your IntPtr array.
It's an interesting chicken-and-egg problem. If you pass it as a System.Array, then you can't get items from it because there's no conversion path from object to int* (or any other pointer type). But if you pass it as a pointer type (i.e. int**), then you can't get the shape of the thing.
I suppose you could write it as:
unsafe System.Array ToIntPtrArray(System.Array a, void** aAsPtr)
You then have the System.Array metadata and the actual data in a form that you can use.
Even though the question has been answered well, I feel the need to leave a note/warning to future readers.
The CLR is designed to keep you safe, or at least as safe as possible. It accomplishes this with (among other things) type safety and abstracting memory operations. While you can turn some of these protections off with the unsafe block, some protections are hardcoded into the compiler/runtime. In order to circumvent this additional hurdle, one must resort to some hackey, and possibly slow, code. While these methods work, experience has taught me that doing such things leads to problems down the road, whether it be a change in the runtime, a future programmer needing to modify that segment of code, or you yourself needing to do something else with those pointers later on in the code.
At this point, I would seriously consider a helper dll written in Managed C++ to handle the "raw pointer" side of things. My reasoning is that by using Unsafe, you're already throwing out many protections the CLR offers. You may find it easier to work unencumbered by any additional, baked in protections. Not to mention you can use pointers to their full extent, and then cast them back to intptr when you're done. If nothing else, you may want to look at implementing ToIntPtrArray in C++. Still pass it pointers on the C# side, but escape the CLR's oversight.
Note that I'm not saying that every time you use "unsafe" you should bust out the C++. Quite contrary - unsafe will allow you to do quite a bit - but in this instance, a C++ helper is probably something to consider.
Disclaimer: I have not done a whole lot with managed C++. It could be that I am totally wrong and the CLR would still monitor the pointers. If some more experienced soul could comment and tell me either way, It'd be much appreciated.
I have the following C# code with a structure definition (CInput), obj definition and init, and a call to a C++ (native) DLL function (that has also been written by me).
//C# code
public struct CInput
{
[MarshalAsAttribute(UnmanagedType.R8)]
public double Time;
[MarshalAs(UnmanagedType.SafeArray, SafeArraySubType = VarEnum.VT_R8)]
public double[] Database;
/* other similar fields*/
}
CInput Inputs = new CInput();
/* init of Inputs fields*/
int bfr = Example(ref Inputs); //'Example' being the C++ DLL call
Messagebox.Show(bfr.ToString());
There is an error in the marshaling of the second parameter, I don't know where. Then:
//C++ code
struct CInput {
double Time;
double Database[3650];
/*etc*/
}
int Example(CInput& ObjIn) {
return ObjIn.Database[0]; // just an example
}
If I'm not careful and specify only "SafeArray" in the Database marshaling I get a 'error in reading/writing memory, probably corrupt' etc.
if "Database" was marshaled as ByValArray everything is fine, the values show up correctly. Unfortunately I get an internal size exception because I have many arrays of that size, therefore I have to go for pointers - but anything with "SizeArray" will bring the following results (with the code just posted):
(from C++):
Database[0] = **0**
Database[1..etc] = values of the next parameters in the struct marshaled with ByValArray.
I think I should mention that I need the same identical structure from C# to C++, I'm not looking for anything fancy. So Array in a Struct >>> Array in a Struct.
ANY insight in reference to this would be of great value. I have been looking for hours and I don't have yet a solution.
Many thanks in advance.
As I understand your question, you can't use ByValArray with SizeConst because your real struct has a large number of such arrays which results in the stack overflowing.
You opine that maybe you need to use pointers in your structs and I agree with you. Here is how to do it.
On the C++ side you should declare each array as a pointer to the element type:
struct CInput {
double *array;
}
You may also wish to include the length of the arrays in the struct to avoid excessive amounts of hard-coded constants.
All the hard work happens on the C# side.
public struct CInput
{
public IntPtr array;
}
...
double[] theArray = new double[3650];
CInput input = new CInput();
input.array = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(double))*theArray.Length);
try
{
Marshal.Copy(theArray, 0, input.array, theArray.Length);
//call your C++ function here
}
finally
{
Marshal.FreeHGlobal(input.array);
}
public struct CInput
{
public double Time;
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 3650)]
public double[] Database;
}
CInput Inputs = new CInput();
int bfr = Example(ref Inputs);
Edit. If you need to have dynamically allocated Database array, both C++ and C# code should be changed. In C++ Database should be defined as double*, and you need to add array length somewhere. In C# Database should be declared as IntPtr, and allocated using Marshal.AllocHGlobal method. Please correct C++ structure according to your requirements, and then C# code can be fixed according to this.
How do I marshal this C++ type?
The ABS_DATA structure is used to associate an arbitrarily long data block with the length information. The declared length of the Data array is 1, but the actual length is given by the Length member.
typedef struct abs_data {
ABS_DWORD Length;
ABS_BYTE Data[ABS_VARLEN];
} ABS_DATA;
I tried the following code, but it's not working. The data variable is always empty and I'm sure it has data in there.
[System.Runtime.InteropServices.StructLayoutAttribute(System.Runtime.InteropServices.LayoutKind.Sequential, CharSet = System.Runtime.InteropServices.CharSet.Ansi)]
public struct abs_data
{
/// ABS_DWORD->unsigned int
public uint Length;
/// ABS_BYTE[1]
[System.Runtime.InteropServices.MarshalAsAttribute(System.Runtime.InteropServices.UnmanagedType.ByValTStr, SizeConst = 1)]
public string Data;
}
Old question, but I recently had to do this myself and all the existing answers are poor, so...
The best solution for marshaling a variable-length array in a struct is to use a custom marshaler. This lets you control the code that the runtime uses to convert between managed and unmanaged data. Unfortunately, custom marshaling is poorly-documented and has a few bizarre limitations. I'll cover those quickly, then go over the solution.
Annoyingly, you can't use custom marshaling on an array element of a struct or class. There's no documented or logical reason for this limitation, and the compiler won't complain, but you'll get an exception at runtime. Also, there's a function that custom marshalers must implement, int GetNativeDataSize(), which is obviously impossible to implement accurately (it doesn't pass you an instance of the object to ask its size, so you can only go off the type, which is of course variable size!) Fortunately, this function doesn't matter. I've never seen it get called, and it the custom marshaler works fine even if it returns a bogus value (one MSDN example has it return -1).
First of all, here's what I think your native prototype might look like (I'm using P/Invoke here, but it works for COM too):
// Unmanaged C/C++ code prototype (guess)
//void DoThing (ABS_DATA *pData);
// Guess at your managed call with the "marshal one-byte ByValArray" version
//[DllImport("libname.dll")] public extern void DoThing (ref abs_data pData);
Here's the naïve version of how you might have used a custom marshaler (which really ought to have worked). I'll get to the marshaler itself in a bit...
[StructLayout(LayoutKind.Sequential)]
public struct abs_data
{
// Don't need the length as a separate filed; managed arrays know it.
[MarshalAs(UnmanagedType.CustomMarshaler, MarshalTypeRef=typeof(ArrayMarshaler<byte>))]
public byte[] Data;
}
// Now you can just pass the struct but it takes arbitrary sizes!
[DllImport("libname.dll")] public extern void DoThing (ref abs_data pData);
Unfortunately, at runtime, you apparently can't marshal arrays inside data structures as anything except SafeArray or ByValArray. SafeArrays are counted, but they look nothing like the (extremely common) format that you're looking for here. So that won't work. ByValArray, of course, requires that the length be known at compile time, so that doesn't work either (as you ran into). Bizarrely, though, you can use custom marshaling on array parameters, This is annoying because you have to put the MarshalAsAttribute on every parameter that uses this type, instead of just putting it on one field and having that apply everywhere you use the type containing that field, but c'est la vie. It looks like this:
[StructLayout(LayoutKind.Sequential)]
public struct abs_data
{
// Don't need the length as a separate filed; managed arrays know it.
// This isn't an array anymore; we pass an array of this instead.
public byte Data;
}
// Now you pass an arbitrary-sized array of the struct
[DllImport("libname.dll")] public extern void DoThing (
// Have to put this huge stupid attribute on every parameter of this type
[MarshalAs(UnmanagedType.CustomMarshaler, MarshalTypeRef=typeof(ArrayMarshaler<abs_data>))]
// Don't need to use "ref" anymore; arrays are ref types and pass as pointer-to
abs_data[] pData);
In that example, I preserved the abs_data type, in case you want to do something special with it (constructors, static functions, properties, inheritance, whatever). If your array elements consisted of a complex type, you would modify the struct to represent that complex type. However, in this case, abs_data is basically just a renamed byte - it's not even "wrapping" the byte; as far as the native code is concerned it's more like a typedef - so you can just pass an array of bytes and skip the struct entirely:
// Actually, you can just pass an arbitrary-length byte array!
[DllImport("libname.dll")] public extern void DoThing (
// Have to put this huge stupid attribute on every parameter of this type
[MarshalAs(UnmanagedType.CustomMarshaler, MarshalTypeRef=typeof(ArrayMarshaler<byte>))]
byte[] pData);
OK, so now you can see how to declare the array element type (if needed), and how to pass the array to an unmanaged function. However, we still need that custom marshaler. You should read "Implementing the ICustomMarshaler Interface" but I'll cover this here, with inline comments. Note that I use some shorthand conventions (like Marshal.SizeOf<T>()) that require .NET 4.5.1 or higher.
// The class that does the marshaling. Making it generic is not required, but
// will make it easier to use the same custom marshaler for multiple array types.
public class ArrayMarshaler<T> : ICustomMarshaler
{
// All custom marshalers require a static factory method with this signature.
public static ICustomMarshaler GetInstance (String cookie)
{
return new ArrayMarshaler<T>();
}
// This is the function that builds the managed type - in this case, the managed
// array - from a pointer. You can just return null here if only sending the
// array as an in-parameter.
public Object MarshalNativeToManaged (IntPtr pNativeData)
{
// First, sanity check...
if (IntPtr.Zero == pNativeData) return null;
// Start by reading the size of the array ("Length" from your ABS_DATA struct)
int length = Marshal.ReadInt32(pNativeData);
// Create the managed array that will be returned
T[] array = new T[length];
// For efficiency, only compute the element size once
int elSiz = Marshal.SizeOf<T>();
// Populate the array
for (int i = 0; i < length; i++)
{
array[i] = Marshal.PtrToStructure<T>(pNativeData + sizeof(int) + (elSiz * i));
}
// Alternate method, for arrays of primitive types only:
// Marshal.Copy(pNativeData + sizeof(int), array, 0, length);
return array;
}
// This is the function that marshals your managed array to unmanaged memory.
// If you only ever marshal the array out, not in, you can return IntPtr.Zero
public IntPtr MarshalManagedToNative (Object ManagedObject)
{
if (null == ManagedObject) return IntPtr.Zero;
T[] array = (T[])ManagedObj;
int elSiz = Marshal.SizeOf<T>();
// Get the total size of unmanaged memory that is needed (length + elements)
int size = sizeof(int) + (elSiz * array.Length);
// Allocate unmanaged space. For COM, use Marshal.AllocCoTaskMem instead.
IntPtr ptr = Marshal.AllocHGlobal(size);
// Write the "Length" field first
Marshal.WriteInt32(ptr, array.Length);
// Write the array data
for (int i = 0; i < array.Length; i++)
{ // Newly-allocated space has no existing object, so the last param is false
Marshal.StructureToPtr<T>(array[i], ptr + sizeof(int) + (elSiz * i), false);
}
// If you're only using arrays of primitive types, you could use this instead:
//Marshal.Copy(array, 0, ptr + sizeof(int), array.Length);
return ptr;
}
// This function is called after completing the call that required marshaling to
// unmanaged memory. You should use it to free any unmanaged memory you allocated.
// If you never consume unmanaged memory or other resources, do nothing here.
public void CleanUpNativeData (IntPtr pNativeData)
{
// Free the unmanaged memory. Use Marshal.FreeCoTaskMem if using COM.
Marshal.FreeHGlobal(pNativeData);
}
// If, after marshaling from unmanaged to managed, you have anything that needs
// to be taken care of when you're done with the object, put it here. Garbage
// collection will free the managed object, so I've left this function empty.
public void CleanUpManagedData (Object ManagedObj)
{ }
// This function is a lie. It looks like it should be impossible to get the right
// value - the whole problem is that the size of each array is variable!
// - but in practice the runtime doesn't rely on this and may not even call it.
// The MSDN example returns -1; I'll try to be a little more realistic.
public int GetNativeDataSize ()
{
return sizeof(int) + Marshal.SizeOf<T>();
}
}
Whew, that was long! Well, there you have it. I hope people see this, because there's a lot of bad answers and misunderstanding out there...
It is not possible to marshal structs containing variable-length arrays (but it is possible to marshal variable-length arrays as function parameters). You will have to read your data manually:
IntPtr nativeData = ... ;
var length = Marshal.ReadUInt32 (nativeData) ;
var bytes = new byte[length] ;
Marshal.Copy (new IntPtr ((long)nativeData + 4), bytes, 0, length) ;
If the data being saved isn't a string, you don't have to store it in a string. I usually do not marshal to a string unless the original data type was a char*. Otherwise a byte[] should do.
Try:
[MarshalAs(UnmanagedType.ByValArray, SizeConst=[whatever your size is]]
byte[] Data;
If you need to convert this to a string later, use:
System.Text.Encoding.UTF8.GetString(your byte array here).
Obviously, you need to vary the encoding to what you need, though UTF-8 usually is sufficient.
I see the problem now, you have to marshal a VARIABLE length array. The MarshalAs does not allow this and the array will have to be sent by reference.
If the array length is variable, your byte[] needs to be an IntPtr, so you would use,
IntPtr Data;
Instead of
[MarshalAs(UnmanagedType.ByValArray, SizeConst=[whatever your size is]]
byte[] Data;
You can then use the Marshal class to access the underlying data.
Something like:
uint length = yourABSObject.Length;
byte[] buffer = new byte[length];
Marshal.Copy(buffer, 0, yourABSObject.Data, length);
You may need to clean up your memory when you are finished to avoid a leak, though I suspect the GC will clean it up when yourABSObject goes out of scope. Anyway, here is the cleanup code:
Marshal.FreeHGlobal(yourABSObject.Data);
You are trying to marshal something that is a byte[ABS_VARLEN] as if it were a string of length 1. You'll need to figure out what the ABS_VARLEN constant is and marshal the array as:
[MarshalAs(UnmanagedType.LPArray, SizeConst = 1024)]
public byte[] Data;
(The 1024 there is a placeholder; fill in whatever the actual value of ASB_VARLEN is.)
In my opinion, it's simpler and more efficient to pin the array and take its address.
Assuming you need to pass abs_data to myNativeFunction(abs_data*):
public struct abs_data
{
public uint Length;
public IntPtr Data;
}
[DllImport("myDll.dll")]
static extern void myNativeFunction(ref abs_data data);
void CallNativeFunc(byte[] data)
{
GCHandle pin = GCHandle.Alloc(data, GCHandleType.Pinned);
abs_data tmp;
tmp.Length = data.Length;
tmp.Data = pin.AddrOfPinnedObject();
myNativeFunction(ref tmp);
pin.Free();
}