I am trying to write a method to calculate the sum of the odd numbers in all the numbers less than the given number. so eg. CalcOdd(7) would return 5 + 3 + 1 = 9. CalcOdd (10) would return 9 + 7 + 5 + 3 + 1 = 25 etc
The method needs to take in a number, subtract 1, then recursively work backwards adding all odd numbers until it reaches 0. This is what I have so far.
private static int CalcOdd(int n)
{
if (n <= 1)
return 1;
else
if (n % 2 == 0)
n--;
return n + CalcOdd(n - 2);
}
It doesn't work so well, it includes the number passed in in the addition which is not what I want. Can anyone suggest a better way of doing this ? I would also loke to be able to port the answer to work for even numbers and add the option to include the original passed in number in the answer.
Many thanks
Why would you use recursion here? Just loop; or better, figure out the math to do it in a simple equation...
The fact is that C# doesn't make for excellent deep recursion for things like maths; the tail-call isn't really there at the moment.
Loop approach:
private static int CalcOdd(int n)
{
int sum = 0, i = 1;
while (i < n)
{
sum += i;
i += 2;
}
return sum;
}
You could do this with recursion as you say, but if you wish to do it quicker, then I can tell you that the sum of the n first odd numbers is equal to n*n.
private static int CalcOdd(int n) {
if (n<=1)
return 0;
if (n%2 == 1)
n--;
int k = n/2;
return k*k;
}
The reason this works is:
Every even number is of the form 2k, and the odd number before it is 2k-1.
Because 2*1-1 = 1, there are k odd numbers below 2k.
If n is odd, we don't want to include it, so we simply go down to the even number below it and we automatically have what we want.
Edited to fix broken code.
the sum of odd numbers less than a given number is a perfect square.
get the whole part of (n/2) to get the number of odd number less than itself.
square that and voila!
private static int CalcSumOdd(int n)
{
int i;
int.tryParse(n / 2, out i);
return i*i;
}
for even numbers its:
int i = n/2;
return i*(i+1);
correction. The above "even number sum" includes the original number "n". ie fn(12) = 42 = 2 + 4 + 6 + 8 + 10 + 12
if you want to exclude it, you should either unilaterally exclude it, or remove it with logic based on a passed in parameter.
Here is a correction,
int CalcOdd(int n)
{
n--; // <----
if (n <= 1)
return 0; // <----
else
if (n % 2 == 0)
n--;
return n + CalcOdd(n); // <----
}
i'm new here but this seems like a silly recursion exercise, given it can be done with a simple equation:
int sum(n,isEven,notFirst) {
int c=1; //skip the else
if (isEven) c=2;
if (notFirst) n-=2;
return ((n+c)*((n+c)/2))/2; }
classic discrete math sum series..
sum from 1 to 100 (odds and evens) is ((100+1)*(100/2))=5050
edit: in my code here, if you're calculating the sum of odds with n being even, or vice versa, it doesn't work, but i'm not going to put the work into that (and slop the code) right now. i'll assume your code will take care of that by the time it hits the function.. for example 7/2 isn't an int (obviously)
Why use recursion?
private Int32 CalcOdd(Int32 value)
{
Int32 r = 0;
{
while (value >= 1)
{
value--;
if (value % 2 != 0)
{
r += value;
}
}
}
return r;
}
Use a helper function. CalcOdd consists of testing n to see if it is even or odd; if it is even, return helper(n); if it is odd, return helper(n-2).
The helper function must handle three cases:
1) n is less than 1; in this case return 0.
2) n is even, in this case return helper(n-1).
3) n is odd, in this case return n+helper(n-1).
public static int CalcOdd(int n) {
// Find the highest even number. (Either n, or n-1.)
// Divide that by 2, and the answer should be the square of that number.
n = (n & 0x3FFFFFFE) >> 1;
return (int)Math.Pow(n, 2);
}
private static int CalcOdd(int n) {
n -= 1;
if ((n & 1) == 0) n--;
if (n <= 1) return 1;
return n + CalcOdd(n - 1);
}
But I would say doing loops is better and cleaner.
private static int CalcOdd(int n) {
int i, r = 1;
for (i = 3; i < n; i+=2)
r += i;
return r;
}
Since you want the option of including or excluding the first answer (and, keeping your "recursion" constraint in mind):
int calcOdd(int n, bool includeN)
{
if( !includeN )
return calcOdd(n-1, true);
if(n<=1)
return 1;
else
if(n%2 == 0)
n--;
return n+calcOdd(n-1, true);
}
The includeFirst, if passed as true, will include n in the calculations. Otherwise, the next layer down will start "including N".
Granted, as others have said, this is a horribly inefficient use of recursion, but... If you like recursion, try Haskell. It's a language built almost entirely on the concept.
int CalcOdd(int n)
{
n -= 1;
if (n <= 0)
return 0;
if (n % 2 == 0)
n--;
return n + CalcOdd(n);
}
This function is also recursive, and it has parameters which makes you able to decide wether to do even or odd number and wether you want to include the first number or not. If you are confused as to how it works, remember that bools also can be seen as 1 (true) and 0 (false)
int Calc(int n, bool even = false, bool includeFirst = false)
{
n -= !includeFirst;
if (n <= 0)
return 0;
if (n % 2 == even)
n--;
return n + Calc(n - includeFirst, even);
}
Håkon, I have ported your code to c# in VS 2008 as follows
static int Calc(int n, bool bEven, bool bIncludeFirst)
{
int iEven = Bool2Int(bEven);
int iIncludeFirst = Bool2Int(bIncludeFirst);
n -= 1 - iIncludeFirst;
if (n <= 0)
return 0;
if (n % 2 == iEven)
n--;
return n + Calc(n - iIncludeFirst, bEven, bIncludeFirst);
}
private static int Bool2Int(bool b)
{
return b ? 1 : 0;
}
It seems to be working. Now is there anything I can do to optomise ? i.e. I dont want to have to parse those bools to ints every time etc ?
I'd isolate the 'make it odd' part from the 'sum every other descending number' part: (forgive the Python)
def sumEveryTwoRecursive(n):
if n <= 0:
return 0
return n + sumEveryTwoRecursive(n - 2)
def calcOdd(n):
return sumEveryTwoRecursive(n - (2 if n % 2 else 1))
Just because there isn't one here yet, I've decided to use the LINQ hammer on this nail...
(borrowed from Nick D and Jason's pair programmed answer here)
void Main()
{
GetIterator(7, true, false).Sum().Dump();
// Returns 9
GetIterator(10, true, false).Sum().Dump();
// Returns 25
}
public IEnumerable<int> GetIterator(int n, bool isOdd, bool includeOriginal)
{
if (includeOriginal)
n++;
if (isOdd)
return GetIterator(n, 1);
else
return GetIterator(n, 0);
}
public IEnumerable<int> GetIterator(int n, int odd)
{
n--;
if (n < 0)
yield break;
if (n % 2 == odd)
yield return n;
foreach (int i in GetIterator(n, odd))
yield return i;
}
#include <iostream>
using namespace std;
int sumofodd(int num);
int main()
{
int number,res;
cin>>number;
res=sumofodd(number);
cout<<res;
return 0;
}
int sumofodd(int num)
{ if(num<1) return 0;
if (num%2==0) num--;
return num+sumofodd(num-1);
}
Related
Given any natural number N> 1 (previously assigned). Print out the successful development of prime numbers from small to large.
Example:
9 --> 3 * 3
12 --> 2 * 2 * 3
My idea is find all GCD and add to list int, and write a function isPrimeNumber(int n), browse List< int > and check if isPrimeNumber().
But I can't solve problem print out the successful development of prime numbers from small to large
Here is what I tried
static void Main(string[] args)
{
Console.WriteLine("Enter n: ");
int n = Convert.ToInt32(Console.ReadLine());
List<int> arr = new List<int>();
for (int i = 1; i <= n; i++)
{
if (n % i == 0)
{
arr.Add(i);
}
}
/* I need Print out the successful development of prime numbers from small to large here */
}
static bool isPrimeNumber(int n)
{
if (n < 2)
{
return false;
}
for (int i = 2; i <= Math.Sqrt(n); i++)
{
if (n % i == 0)
{
return false;
}
}
return true;
}
As you posted your working solution for that, let me share a different implementation for that that is still simple to understand, but more efficient, because it only tests primes until it reaches the square root of n. After that, there will not be any other divisor, except the number n itself, if n is prime.
static IList<int> Factors(int num) {
var result = new List<int>();
// avoid scenarios like num=0, that would cause infinite loop
if (num <= 1) {
return result;
}
// testing with 2 outside the main loop, otherwise we would skip factor 3
// (2 * 2 > 3)
while (num % 2 == 0) {
result.Add(2);
num /= 2;
}
// only test primes until sqrt(num)
int i = 3;
while (i * i <= num) {
if (num % i == 0) {
result.Add(i);
num /= i;
} else {
i++;
}
}
// if not 1 here, num is prime
if (num > 1) {
result.Add(num);
}
return result;
}
I solved it
Here is code
static void lesson6()
{
Console.WriteLine("Enter n: ");
int n = Convert.ToInt32(Console.ReadLine());
int a = n;
List<int> arr = new List<int>();
for (int i = 2; i <= n; i++)
{
while (n % i == 0)
{
arr.Add(i);
n /= i;
}
}
Console.Write($"{a} = ");
int lastIndex = arr.Count - 1;
for (int i = 0; i < arr.Count; i++)
{
if (i == lastIndex)
{
Console.Write(arr[i]);
}
else
{
Console.Write(arr[i] + "*");
}
}
}
As pointed by derpirscher in the comment, there are several sources online with different approaches for integer factorization.
I recommend you to look for Trial Division algorithm, as it is the easier to understand, and is similar to your approach.
Based on the code you shared, there are some thing you should consider:
for (int i = 1; i <= n; i++)
{
if (n % i == 0)
{
arr.Add(i);
}
}
After finding that a prime is a divisor and appending to the list, you are going to the next number. However, a prime can figure many times in the factorization of a number. E.g: 12 -> { 2, 2, 3 }.
You need divide n by the prime and continue testing the until it is not a divisor anymore, then you can go test the next prime.
This way, your n is shrinking down each time you find a prime divisor, until it eventually become 1. Then you know you found all prime divisors.
In CodinGame learning platform, one of the questions used as an example in a C# tutorial is this one:
The aim of this exercise is to check the presence of a number in an
array.
Specifications: The items are integers arranged in ascending order.
The array can contain up to 1 million items. The array is never null.
Implement the method boolean Answer.Exists(int[] ints, int k) so that
it returns true if k belongs to ints, otherwise the method should
return false.
Important note: Try to save CPU cycles if possible.
Example:
int[] ints = {-9, 14, 37, 102};
Answer.Exists(ints, 102) returns true.
Answer.Exists(ints, 36) returns false.
My proposal was to do that:
using System;
using System.IO;
public class Answer
{
public static bool Exists(int[] ints, int k)
{
foreach (var i in ints)
{
if (i == k)
{
return true;
}
if (i > k)
{
return false;
}
}
return false;
}
}
The result of the test was:
✔ The solution works with a 'small' array (200 pts) - Problem solving
✔ The solution works with an empty array (50 pts) - Reliability
✘ The solution works in a reasonable time with one million items (700 pts) - Problem solving
I don't get the last point. It appears that the code may be more optimal than the one I suggested.
How to optimize this piece of code? Is a binary search an actual solution (given that the values in the array are already ordered), or there is something simpler that I missed?
Yes, I think that binary search O(log(N)) complexity v. O(N) complexity is the solution:
public static bool Exists(int[] ints, int k) {
return Array.BinarySearch(ints, k) >= 0;
}
since Array.BinarySearch return non-negative value if the item (k) has been found:
https://msdn.microsoft.com/en-us/library/2cy9f6wb(v=vs.110).aspx
Return Value Type: System.Int32 The index of the specified value in
the specified array, if value is found; otherwise, a negative number.
Here is a fast method for an ordered array
public static class Answer
{
public static bool Exists( int[] ints, int k )
{
var lower = 0;
var upper = ints.Length - 1;
if ( k < ints[lower] || k > ints[upper] ) return false;
if ( k == ints[lower] ) return true;
if ( k == ints[upper] ) return true;
do
{
var middle = lower + ( upper - lower ) / 2;
if ( ints[middle] == k ) return true;
if ( lower == upper ) return false;
if ( k < ints[middle] )
upper = Math.Max( lower, middle - 1 );
else
lower = Math.Min( upper, middle + 1 );
} while ( true );
}
}
Takes around 50 ticks on my cpu (with 90.000.000 items in the array)
Sample on dotnetfiddle
class Answer
{
public static bool Exists(int[] ints, int k)
{
int index = Array.BinarySearch(ints, k);
if (index > -1)
{
return true;
}
else
{
return false;
}
}
static void Main(string[] args)
{
int[] ints = { -9, 14, 37, 102 };
Console.WriteLine(Answer.Exists(ints, 14)); // true
Console.WriteLine(Answer.Exists(ints, 4)); // false
}
}
Apparently, the task intends we use the default binary search method instead of implementing one. I was also somewhat surprised it is what it evaluates for in 3rd test. "The solution uses the standard library to perform the binary search (iterating on ints)"
Which kinda is confusing, they could have mentioned this in the code instead of giving some 15 - 20 minutes to solve. which is another reason for this confusion.
This is what I wrote for that question -> dividing array to half and search the half -> a more rudimentary way of implementing it...
int half = size/2;
if( k < ints[half])
{
for(int i=0; i < half; i++)
{
if( k == ints[i])
{
return true;
}
}
}
else
{
for(int i=half; i < size; i++)
{
if( k == ints[i])
{
return true;
}
}
}
public static bool Exists(int[] ints, int k)
{
var d = 0;
var f = ints.Length - 1;
if (d > f) return false;
if (k > ints[f] || k < ints[d]) return false;
if (k == ints[f] || k == ints[d]) return true;
return (BinarySearch(ints, k, d, f) > 0);
}
public static int BinarySearch(int[] V, int Key, int begin, int end)
{
if (begin > end)
return -1;
var MidellIndex = (begin + end) / 2;
if (Key == V[MidellIndex])
return MidellIndex;
else
{
if (Key > V[MidellIndex])
{
begin = MidellIndex + 1;
return BinarySearch(V, Key, begin, end);
}
else
{
end = MidellIndex - 1;
return BinarySearch(V, Key, begin, end);
}
}
}
I saw the all solutions, by the way I create and test the following recursive approach and get the complete points:
public static bool Exists(int[] ints, int k)
{
if (ints.Length > 0 && ints[0] <= k && k <= ints[ints.Length - 1])
{
if (ints[0] == k || ints[ints.Length - 1] == k) return true;
return SearchRecursive(ints, k, 0, ints.Length - 1) != -1;
}
return false;
}
private static int SearchRecursive(int[] array, int value, int first, int last)
{
int middle = (first + last) / 2;
if (array[middle] == value)
{
return middle;
}
else if (first >= last)
{
return -1;
}
else if (value < array[middle])
{
return SearchRecursive(array, value, first, middle - 1);
}
else
{
return SearchRecursive(array, value, middle + 1, last);
}
}
Yes, BinarySearch would be faster than most algorithms you can write manually. However, if the intent of the exercise is to learn how to write an algorithm, you are on the right track. Your algorithm, though, makes an unnecessary check with if (i > k) ... why do you need this?
Below is my general algorithm for simple requirements like this. The while loop like this is slightly more performant than a for-loop and out performs a foreach easily.
public class Answer
{
public static bool Exists(int[] ints, int k)
{
var i = 0;
var hasValue = false;
while(i < ints.Length && !hasValue)
{
hasValue = ints[i] == k;
++i;
}
return hasValue;
}
}
If you are trying to squeeze every ounce of speed out of it... consider that your array has 1..100 and you want to search for 78. Your algorithm needs to search and compare 78 items before you find the right one. How about instead you search the first item and its not there, so you jump to array size / 2 and find 50? Now you skipped 50 iterations. You know that 78 MUST be in the top half of the array, so you can again split it in half and jump to 75, etc. By continuously splitting the array in half, you do much fewer iterations then your brute force approach.
I ran across this problem here on stackoverflow:
"I'm having some trouble with this problem in Project Euler.
Here's what the question asks:
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... Find the sum of all the even-valued terms in the sequence which do not exceed four million."
The top answer was this(which does not compile for me in VS2010...why?):
IEnumerable<int> Fibonacci()
{
int n1 = 0;
int n2 = 1;
yield return 1;
while (true)
{
int n = n1 + n2;
n1 = n2;
n2 = n;
yield return n;
}
}
long result=0;
foreach (int i in Fibonacci().TakeWhile(i => i<4000000).Where(i % 2 == 0))
{
result+=i;
}
Console.WriteLine(result);
I decided to try it for myself before looking for an answer and came up with this(please tell me why or why not this is a good or bad way of solving this problem):
I wrote it in a class because I could add much more to the class in the future than just solving a single Fibonacci problem.
class Fibonacci
{
private int prevNum1 = 1;
private int prevNum2 = 2;
private int sum = 0;
public int GetSum(int min, int max)
{
prevNum1 = min;
prevNum2 = prevNum1 + prevNum1;
if (prevNum1 % 2 == 0)
{
sum += prevNum1;
}
if (prevNum2 % 2 == 0)
{
sum += prevNum2;
}
int fNum = 0;
while (prevNum2 <= max)
{
fNum = prevNum1 + prevNum2;
if (fNum % 2 == 0)
{
//is an even number...add to total
sum += fNum;
}
prevNum1 = prevNum2;
prevNum2 = fNum;
}
return sum;
}
}
Fibonacci Fib = new Fibonacci();
int sum = Fib.GetSum(1, 4000000);
Console.WriteLine("Sum of all even Fibonacci numbers 1-4,000,000 = {0}", sum);
Again, I'm looking for an answer as to why this is a good or bad way to solve this problem. Also why the first solution does not compile. I'm a beginning programmer and trying to learn. Thanks!
With this it must compile:
foreach (int i in Fibonacci().TakeWhile(i => i < 4000000).Where(i => i % 2 == 0))
{
result += i;
}
The problem why the code didn't compile was bad lambda expression, it was:
.Where(i % 2 == 0)
but must be
.Where(i => i % 2 == 0)
The code doesn't compile because of this line:
foreach (int i in Fibonacci().TakeWhile(i => i<4000000).Where(i % 2 == 0))
First of all, .Where() is an extension method (google it) that can be called over a collection (like an IEnumerable of integers in this example). It returns another collection containing any elements that satisfy some condition.
Notice the argument to .Where() is an expression producing a boolean value, true or false..
i % 2 == 0
.Where() does not take a bool as an argument, in this case the appropriate argument is of the type
Func<int,bool>
Which basically means a function that has an int as argument and returns bool. You can define these quite simply
// defines a function taking an int, returning true if that int is even
Func<int,bool> foo = i => i % 2 == 0
So the correct way to use .Where() in this case would be
foreach (int i in Fibonacci().TakeWhile(i => i<4000000).Where(i => i % 2 == 0))
So you can see that .Where() takes the function we supply it and applies it to each number, returning a collection of numbers that are even.
There's some other magic happening with the yield keyword, feel free to google this, but it's more of an advanced topic.
I'm quite new to programming in C#, and thought that attempting the Euler Problems would be a good idea as a starting foundation. However, I have gotten to a point where I can't seem to get the correct answer for Problem 2.
"Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms."
My code is this:
int i = 1;
int j = 2;
int sum = 0;
while (i < 4000000)
{
if (i < j)
{
i += j;
if (i % 2 == 0)
{
sum += i;
}
}
else
{
j += i;
if (j % 2 == 0)
{
sum += j;
}
}
}
MessageBox.Show("The answer is " + sum);
Basically, I think that I am only getting the last two even numbers of the sequence and adding them - but I don't know how to get all of the even numbers of the sequence and add them. Could someone please help me, whilst trying to progress from my starting point?
P.S. - If there are any really bad layout choices, do say as eliminating these now will help me to become a better programmer in the future :)
Thanks a lot in advance.
I just logged in into my Project Euler account, to see the correct answer. As others say, you forgot to add the initial term 2, but otherwise your code is OK (the correct answer is what your code outputs + 2), so well done!
It is pretty confusing though, I think it would look way clearer if you'd use 3 variables, something like:
int first = 1;
int second = 1;
int newTerm = 0;
int sum = 0;
while (newTerm <= 4000000)
{
newTerm = first + second;
if (newTerm % 2 == 0)
{
sum += newTerm;
}
first = second;
second = newTerm;
}
MessageBox.Show("The answer is " + sum);
You need to set the initial value of sum to 2, as you are not including that in your sum with the current code.
Also, although it may be less efficient memory-usage-wise, I would probably write the code something like this because IMO it's much more readable:
var fibonacci = new List<int>();
fibonacci.Add(1);
fibonacci.Add(2);
var curIndex = 1;
while(fibonacci[curIndex] + fibonacci[curIndex - 1] <= 4000000) {
fibonacci.Add(fibonacci[curIndex] + fibonacci[curIndex - 1]);
curIndex++;
}
var sum = fibonacci.Where(x => x % 2 == 0).Sum();
Use an array fib to store the sequence. Its easier to code and debug. At every iteration, you just need to check if the value is even.
fib[i] = fib[i - 1] + fib[i - 2];
if (fib[i] > 4000000) break;
if (fib[i] % 2 == 0) sum += fib[i];
I've solved this a few years ago, so I don't remember how I did it exactly, but I do have access to the forums talking about it. A few hints and an outright solution. The numbers repeat in a pattern. two odds followed by an even. So you could skip numbers without necessarily doing the modulus operation.
A proposed C# solution is
long sum = 0, i0, i1 = 1, i2 = 2;
do
{
sum += i2;
for (int i = 0; i < 3; i++)
{
i0 = i1;
i1 = i2;
i2 = i1 + i0;
}
} while (i2 < 4000000);
Your code is a bit ugly, since you're alternating between i and j. There is a much easier way to calculate fibonacci numbers by using three variables and keeping their meaning the same all the time.
One related bug is that you only check the end condition on every second iteration and in the wrong place. But you are lucky that the cutoff fit your bug(the number that went over the limit was odd), so this is not your problem.
Another bug is that you check with < instead of <=, but since there is no fibonacci number equal to the cutoff this doesn't cause your problem.
It's not an int overflow either.
What remains is that you forgot to look at the first two elements of the sequence. Only one of which is even, so you need to add 2 to your result.
int sum = 0; => int sum = 2;
Personally I'd write one function that returns the infinite fibonacci sequence and then filter and sum with Linq. Fibonacci().TakeWhile(i=> i<=4000000).Where(i=>i%2==0).Sum()
I used a class to represent a FibonacciNumber, which i think makes the code more readable.
public class FibonacciNumber
{
private readonly int first;
private readonly int second;
public FibonacciNumber()
{
this.first = 0;
this.second = 1;
}
private FibonacciNumber(int first, int second)
{
this.first = first;
this.second = second;
}
public int Number
{
get { return first + second; }
}
public FibonacciNumber Next
{
get
{
return new FibonacciNumber(this.second, this.Number);
}
}
public bool IsMultipleOf2
{
get { return (this.Number % 2 == 0); }
}
}
Perhaps it's a step too far but the end result is a function which reads quite nicely IMHO:
var current = new FibonacciNumber();
var result = 0;
while (current.Number <= max)
{
if (current.IsMultipleOf2)
result += current.Number;
current = current.Next;
}
return result;
However it's not going to be as efficient as the other solutions which aren't newing up classes in a while loop. Depends on your requirements I guess, for me I just wanted to solve the problem and move on to the next one.
Hi i have solved this question, check it if its right.
My code is,
#include<iostream.h>
#include<conio.h>
class euler2
{
unsigned long long int a;
public:
void evensum();
};
void euler2::evensum()
{
a=4000000;
unsigned long long int i;
unsigned long long int u;
unsigned long long int initial=0;
unsigned long long int initial1=1;
unsigned long long int sum=0;
for(i=1;i<=a;i++)
{
u=initial+initial1;
initial=initial1;
initial1=u;
if(u%2==0)
{
sum=sum+u;
}
}
cout<<"sum of even fibonacci numbers upto 400000 is"<<sum;
}
void main()
{
euler2 a;
clrscr();
a.evensum();
getch();
}
Here's my implementation:
public static int evenFibonachi(int n)
{
int EvenSum = 2, firstElem = 1, SecondElem = 2, SumElem=0;
while (SumElem <= n)
{
swich(ref firstElem, ref SecondElem, ref SumElem);
if (SumElem % 2 == 0)
EvenSum += SumElem;
}
return EvenSum;
}
private static void swich(ref int firstElem, ref int secondElem, ref int SumElem)
{
int temp = firstElem;
firstElem = secondElem;
secondElem += temp;
SumElem = firstElem + secondElem;
}
All numbers that divide evenly into x.
I put in 4 it returns: 4, 2, 1
edit: I know it sounds homeworky. I'm writing a little app to populate some product tables with semi random test data. Two of the properties are ItemMaximum and Item Multiplier. I need to make sure that the multiplier does not create an illogical situation where buying 1 more item would put the order over the maximum allowed. Thus the factors will give a list of valid values for my test data.
edit++:
This is what I went with after all the help from everyone. Thanks again!
edit#: I wrote 3 different versions to see which I liked better and tested them against factoring small numbers and very large numbers. I'll paste the results.
static IEnumerable<int> GetFactors2(int n)
{
return from a in Enumerable.Range(1, n)
where n % a == 0
select a;
}
private IEnumerable<int> GetFactors3(int x)
{
for (int factor = 1; factor * factor <= x; factor++)
{
if (x % factor == 0)
{
yield return factor;
if (factor * factor != x)
yield return x / factor;
}
}
}
private IEnumerable<int> GetFactors1(int x)
{
int max = (int)Math.Ceiling(Math.Sqrt(x));
for (int factor = 1; factor < max; factor++)
{
if(x % factor == 0)
{
yield return factor;
if(factor != max)
yield return x / factor;
}
}
}
In ticks.
When factoring the number 20, 5 times each:
GetFactors1-5,445,881
GetFactors2-4,308,234
GetFactors3-2,913,659
When factoring the number 20000, 5 times each:
GetFactors1-5,644,457
GetFactors2-12,117,938
GetFactors3-3,108,182
pseudocode:
Loop from 1 to the square root of the number, call the index "i".
if number mod i is 0, add i and number / i to the list of factors.
realocode:
public List<int> Factor(int number)
{
var factors = new List<int>();
int max = (int)Math.Sqrt(number); // Round down
for (int factor = 1; factor <= max; ++factor) // Test from 1 to the square root, or the int below it, inclusive.
{
if (number % factor == 0)
{
factors.Add(factor);
if (factor != number/factor) // Don't add the square root twice! Thanks Jon
factors.Add(number/factor);
}
}
return factors;
}
As Jon Skeet mentioned, you could implement this as an IEnumerable<int> as well - use yield instead of adding to a list. The advantage with List<int> is that it could be sorted before return if required. Then again, you could get a sorted enumerator with a hybrid approach, yielding the first factor and storing the second one in each iteration of the loop, then yielding each value that was stored in reverse order.
You will also want to do something to handle the case where a negative number passed into the function.
The % (remainder) operator is the one to use here. If x % y == 0 then x is divisible by y. (Assuming 0 < y <= x)
I'd personally implement this as a method returning an IEnumerable<int> using an iterator block.
Very late but the accepted answer (a while back) didn't not give the correct results.
Thanks to Merlyn, I got now got the reason for the square as a 'max' below the corrected sample. althought the answer from Echostorm seems more complete.
public static IEnumerable<uint> GetFactors(uint x)
{
for (uint i = 1; i * i <= x; i++)
{
if (x % i == 0)
{
yield return i;
if (i != x / i)
yield return x / i;
}
}
}
As extension methods:
public static bool Divides(this int potentialFactor, int i)
{
return i % potentialFactor == 0;
}
public static IEnumerable<int> Factors(this int i)
{
return from potentialFactor in Enumerable.Range(1, i)
where potentialFactor.Divides(i)
select potentialFactor;
}
Here's an example of usage:
foreach (int i in 4.Factors())
{
Console.WriteLine(i);
}
Note that I have optimized for clarity, not for performance. For large values of i this algorithm can take a long time.
Another LINQ style and tying to keep the O(sqrt(n)) complexity
static IEnumerable<int> GetFactors(int n)
{
Debug.Assert(n >= 1);
var pairList = from i in Enumerable.Range(1, (int)(Math.Round(Math.Sqrt(n) + 1)))
where n % i == 0
select new { A = i, B = n / i };
foreach(var pair in pairList)
{
yield return pair.A;
yield return pair.B;
}
}
Here it is again, only counting to the square root, as others mentioned. I suppose that people are attracted to that idea if you're hoping to improve performance. I'd rather write elegant code first, and optimize for performance later, after testing my software.
Still, for reference, here it is:
public static bool Divides(this int potentialFactor, int i)
{
return i % potentialFactor == 0;
}
public static IEnumerable<int> Factors(this int i)
{
foreach (int result in from potentialFactor in Enumerable.Range(1, (int)Math.Sqrt(i))
where potentialFactor.Divides(i)
select potentialFactor)
{
yield return result;
if (i / result != result)
{
yield return i / result;
}
}
}
Not only is the result considerably less readable, but the factors come out of order this way, too.
I did it the lazy way. I don't know much, but I've been told that simplicity can sometimes imply elegance. This is one possible way to do it:
public static IEnumerable<int> GetDivisors(int number)
{
var searched = Enumerable.Range(1, number)
.Where((x) => number % x == 0)
.Select(x => number / x);
foreach (var s in searched)
yield return s;
}
EDIT: As Kraang Prime pointed out, this function cannot exceed the limit of an integer and is (admittedly) not the most efficient way to handle this problem.
Wouldn't it also make sense to start at 2 and head towards an upper limit value that's continuously being recalculated based on the number you've just checked? See N/i (where N is the Number you're trying to find the factor of and i is the current number to check...) Ideally, instead of mod, you would use a divide function that returns N/i as well as any remainder it might have. That way you're performing one divide operation to recreate your upper bound as well as the remainder you'll check for even division.
Math.DivRem
http://msdn.microsoft.com/en-us/library/wwc1t3y1.aspx
If you use doubles, the following works: use a for loop iterating from 1 up to the number you want to factor. In each iteration, divide the number to be factored by i. If (number / i) % 1 == 0, then i is a factor, as is the quotient of number / i. Put one or both of these in a list, and you have all of the factors.
And one more solution. Not sure if it has any advantages other than being readable..:
List<int> GetFactors(int n)
{
var f = new List<int>() { 1 }; // adding trivial factor, optional
int m = n;
int i = 2;
while (m > 1)
{
if (m % i == 0)
{
f.Add(i);
m /= i;
}
else i++;
}
// f.Add(n); // adding trivial factor, optional
return f;
}
I came here just looking for a solution to this problem for myself. After examining the previous replies I figured it would be fair to toss out an answer of my own even if I might be a bit late to the party.
The maximum number of factors of a number will be no more than one half of that number.There is no need to deal with floating point values or transcendent operations like a square root. Additionally finding one factor of a number automatically finds another. Just find one and you can return both by just dividing the original number by the found one.
I doubt I'll need to use checks for my own implementation but I'm including them just for completeness (at least partially).
public static IEnumerable<int>Factors(int Num)
{
int ToFactor = Num;
if(ToFactor == 0)
{ // Zero has only itself and one as factors but this can't be discovered through division
// obviously.
yield return 0;
return 1;
}
if(ToFactor < 0)
{// Negative numbers are simply being treated here as just adding -1 to the list of possible
// factors. In practice it can be argued that the factors of a number can be both positive
// and negative, i.e. 4 factors into the following pairings of factors:
// (-4, -1), (-2, -2), (1, 4), (2, 2) but normally when you factor numbers you are only
// asking for the positive factors. By adding a -1 to the list it allows flagging the
// series as originating with a negative value and the implementer can use that
// information as needed.
ToFactor = -ToFactor;
yield return -1;
}
int FactorLimit = ToFactor / 2; // A good compiler may do this optimization already.
// It's here just in case;
for(int PossibleFactor = 1; PossibleFactor <= FactorLimit; PossibleFactor++)
{
if(ToFactor % PossibleFactor == 0)
{
yield return PossibleFactor;
yield return ToFactor / PossibleFactor;
}
}
}
Program to get prime factors of whole numbers in javascript code.
function getFactors(num1){
var factors = [];
var divider = 2;
while(num1 != 1){
if(num1 % divider == 0){
num1 = num1 / divider;
factors.push(divider);
}
else{
divider++;
}
}
console.log(factors);
return factors;
}
getFactors(20);
In fact we don't have to check for factors not to be square root in each iteration from the accepted answer proposed by chris fixed by Jon, which could slow down the method when the integer is large by adding an unnecessary Boolean check and a division. Just keep the max as double (don't cast it to an int) and change to loop to be exclusive not inclusive.
private static List<int> Factor(int number)
{
var factors = new List<int>();
var max = Math.Sqrt(number); // (store in double not an int) - Round down
if (max % 1 == 0)
factors.Add((int)max);
for (int factor = 1; factor < max; ++factor) // (Exclusice) - Test from 1 to the square root, or the int below it, inclusive.
{
if (number % factor == 0)
{
factors.Add(factor);
//if (factor != number / factor) // (Don't need check anymore) - Don't add the square root twice! Thanks Jon
factors.Add(number / factor);
}
}
return factors;
}
Usage
Factor(16)
// 4 1 16 2 8
Factor(20)
//1 20 2 10 4 5
And this is the extension version of the method for int type:
public static class IntExtensions
{
public static IEnumerable<int> Factors(this int value)
{
// Return 2 obvious factors
yield return 1;
yield return value;
// Return square root if number is prefect square
var max = Math.Sqrt(value);
if (max % 1 == 0)
yield return (int)max;
// Return rest of the factors
for (int i = 2; i < max; i++)
{
if (value % i == 0)
{
yield return i;
yield return value / i;
}
}
}
}
Usage
16.Factors()
// 4 1 16 2 8
20.Factors()
//1 20 2 10 4 5
Linq solution:
IEnumerable<int> GetFactors(int n)
{
Debug.Assert(n >= 1);
return from i in Enumerable.Range(1, n)
where n % i == 0
select i;
}