What are classes and modules for in C# - c#

Can someone explain the difference between a class and a module. When do you use one versus the other? I am using C#.
Update: I do mean the C# equivalent of the VB Module.

This depends heavily on which "Module" you are referring to.
Visual Basic's Module
There is no real equivalent in C# for a VB.Net Module. In ways it's similar to a static class in that you cannot create an instance of it and all of the members inside of it are static. In C# this requires an explicit static keyword while in VB.Net it's implicit.
The big difference though is in name lookup. In VB.Net if a Module is in scope then any of it's methods can be called without qualification. This is not true for C# static classes.
Besides name lookup, the primary difference between a class and a module is that a class is typically useful only with an instance of the type.
System.Reflection.Module
A module in this context is a portable executable file (dll or exe). A given DLL/EXE can be composed of several modules if it's a multi-file assembly. It has no real relationship to an individual class.

(Maybe I should be clear, there are no "Modules" in C# as in VB.NET's "Module")
There are no modules in C# (like the modules in VB or VB.NET). So, instead a module is one which is compiled and packaged into an assembly, it's more logical.
Whereas class is a well defined entity. A module may use a class (or classes), to function. (Again the word "module" is used logically)
The word "Module" is also used in a context quite different, in System.Reflection.Module

A module is a compiled dll or exe, it contains the compiled classes. A class is the same as a class in most any other language.
Also, modules, whether it's one or more are what make up Assemblies in .Net
Remember that once it's compiled in .Net it doesn't matter what language it was written in, it's all IL, so the terms you're describing are pretty much language agnostic at that point.

A class is an independent unit of data and functions - fields, properties, and methods.
A module refers to the code generated from a single physical file. Most of the time, when you write code in Visual Studio, a single file will contain a single class, interface, or struct.
Compiled DLLs or EXEs are called assemblies. An assembly can contain any number of modules as well as other resources such as version information. By default, when you compile an assembly in Visual Studio, the assembly contains every module defined in the project.
As for when you would use them: You use classes, interfaces and structs all the time, those are the basics. Modules are things that you generally don't have much control over; again, it's a generally accepted practice to have one type per file which compiles to one type per module.
You would normally use a separate assembly when you want to reuse certain types (contained within certain modules) across multiple projects. You might also use it to create a hard boundary between different components of an application, i.e. put your database logic in one assembly and your business logic in another.

There's no equivalent in C# to the VB6 module. The closest would be a static class, but even then, the members of the class are not global, as they would be in a VB6 module.

From Microsoft docs,
A module is a portable executable file, such as type.dll or application.exe, consisting of one or more classes and interfaces. There may be multiple namespaces contained in a single module, and a namespace may span multiple modules.
One or more modules deployed as a unit compose an assembly. For information about creating an assembly with more than one module, see Multifile Assemblies.
Note that a .NET Framework module is not the same as a module in Visual Basic, which is used by a programmers to organize functions and subroutines in an application.

.NET Framework module is not the same as a module in Visual Basic, which is used by a programmers to organize functions and subroutines in an application ( see module class in C#)
If you are used to the VB6 module (method that is accessible wihout an instance), declare the functions as static in c#

Related

Class visible only to shared project?

I want to separate platform-independent logic of my C# program into a shared project. Now I would like to hide repositories, service classes and such from my platform-specific projects. What access modifier can I use? internal doesn't seem to work, as they are compiled into the same executable (I think) and I don't want to go tag all my classes with InternalsVisibleToAttribute.
Is there a way to make classes in my shared project invisible to my platform-specific code?
There's only one place where you need to know the real type you're trying to instance - the platform provider. Everyone else should just use the interfaces that are platform-invariant.
All the platform-specific implementations can then be private or internal for all you care - you just need to ensure the provider has access. Your application will use the platform-specific provider to get the platform-specific instances, while only ever using the platform-invariant interfaces.
As for "being compiled into a single executable", that's not really important. Most likely you care entirely about compile-time checking, and that's still present regardless of how the final executable is packaged. There's some restrictions on reflection in a partial trust environment, but by that point you shouldn't care - you're only in it for the compile checks, not the runtime safety.
No, there is no such feature in C#. If you consider marking every other project with InternalsVisibleToAttribute an option, that would do the trick.
If possible, you could split off those other files (repositories, service files) to another assembly, which is not included in your shared project.

Guard code approaches / patterns in C# [duplicate]

In C#, is it possible to restrict who can call a method at compile time?
I've looked into directives, but that didn't work since I can't assign values to symbols.
#define WHO VisualStudioUser.Current // does not work
I also looked into Code Access Security (CAS) but that's runtime enforcement, not compile time.
The requirement is to restrict access to a method at compile time for specific developers given the method exists in a pre-compiled assembly.
here's more details...
I'm building a framework or a series or assemblies for a team of developers. Because of our software license restrictions, I can only allow a few developers to write code to make a call to some restricted methods. The developers will not have access to the source code of the framework but they'll have access to the compiled framework assemblies.
The quick answer will be: No this isn't possible, and if you need to do it, you're Doing It Wrong.
How would this even work? Does it depend who who's running the code or who wrote it?
Edit There's kind of a way using InternalsVisibleTo and restricting accessing in source control to the assemblies that InternalsVisibleTo is specified for. See Jordão's answer
The requirement is to restrict access to a method at compile time for specific developers given the method exists in a pre-compiled assembly.
One way is to mark the method private or internal, it won't be callable by anyone outside the assembly. UPDATE: Also take a look at the InternalsVisibleTo attribute, which is used to define which assemblies can "see" internals of your assembly.
Another way is to divide the code you want to distribute from the code you don't want people to call into separate assemblies. Maybe you just share an assembly mostly of interfaces with your users, that they them compile against; and you have a separate assembly with implementations that they shouldn't reference directly. Your internal team would have access to the implementation assembly. This is just a common form of dependency management, the dependency inversion principle.
Draft:
Compile the restricted code into (obfuscated) DLLs: TypeA.dll, TypeB.dll etc.
Define an interface for each type, and compile them into separate DLLs: ITypeA.dll, ITypeB.dll etc.
Create a "guard assembly", and embed all restricted assemblies into it: Guard.dll. This has a ResolveEventHandler, and methods to instantiate different types defined in the embedded restricted DLLs. Instances are returned through their interface.
Developers get the interface DLLs and the Guard.dll. Each developer can get a Guard.dll with special authentication tokens in it. For example, a Guard.dll can be bound to PC, an IP address, a GUID issued to the developer, anything.
The developer can instantiate those types for which she has the proper authentication code, and uses the object instance through an interface.
Sorry this is a bit fuzzy, because it was more than a year ago when I used these techniques. I hope the main idea is clear.
Can you try using Extensible C# developed by ResolveCorp, some of the links for study and implementation are:
http://zef.me/782/extensible-c
http://www.codeproject.com/KB/architecture/DbCwithXCSharp.aspx
http://weblogs.asp.net/nunitaddin/archive/2003/02/14/2412.aspx
http://www.devx.com/dotnet/Article/11579/0/page/5

Using a type, without knowing about the dll

is it possible to use an interface type, that is defined in a huge external dll, without referencing that dll?
in other words, there will be one core or global dll, that references the external dll, and all the projects reference this global one, so the external dlls are hidden from the other projects.
I want to use the type in my code, while knowing only about the global AllInterfaces project.
can that work? and if so, what needs to be done for such a scenario?
Is it possible to use an interface type that is defined in a huge external dll, without referencing that dll at compile time?
Not really, no. The compiler has the reasonable expectation that the types it needs are available.
Is it possible to use an interface type that is defined in a huge external dll, without referencing that dll at runtime?
Yes. We added that feature to C# 4. The "proper" name for the feature is something like "Type Embedding with Type Equivalence", but everyone just calls it "No PIA".
The motivation for the feature is the one faced most obviously by Visual Studio Tools For Office developers. VSTO developers write C# code that customizes, say, an Excel spreadsheet with some managed code. They communicate with Excel via a managed interface, but of course Excel actually exposes a set of COM interfaces. To bridge that gap, the Office team supplies a Primary Interop Assembly, or PIA. The PIA is a huge external library that contains nothing but metadata that describes how the managed interfaces correspond to the unmanaged interfaces of the COM objects.
The problem is that the Office team does not by default install the PIA when your customer buys Office! Therefore you have to ship the PIA with your customization. And the PIA is so large, it is often many times the size of the customization, which makes your download longer. And so on; it's not an ideal situation by any means.
The No-PIA feature allows the compiler to link only the portions of the PIA you actually use into your library, so that you do not have to ship the PIA with it.
Now, you might ask "what if I have two customizations that communicate with each other, and both use the IFoo interface from a PIA that I am not shipping?" The runtime identifies types by the assembly they came from, and so the two IFoo interfaces would be considered different types, and therefore not compatible.
The "No PIA" feature takes this into account as well. It does the same trick you use in COM to solve this problem: the assembly instructs the runtime to unify all interfaces that have the same GUID into the same logical type even if they come from different assemblies. This thereby explains the requirement that every interface that you use with "no PIA" has to be marked as though it were a COM interop interface with a GUID.
On the command line, use /L instead of /R to reference an assembly as a "no PIA" assembly.
Do a web search on "no PIA" and you'll find more information on this feature.
If you want to use that interface type in your code, that interface should be visible to your code. You code won't compile.
You can write adapter interface in your global dll, for the original interface and use that every where.
It cannot be done statically but you can do it using reflection.
With C# 4 you can use the dynamic keyword.
However, I fail to see how not knowing the interface in advance is going to help you - how are you going to know which methods to call?
You are trying to fool type identity. The CLR identifies a type by these properties:
Assembly display name
[AssemblyVersion]
[AssemblyCulture]
The assembly's PublicKeyToken value
The assembly's processor architecture (implicit)
The type's namespace name
The type's name.
Faking the type namespace name and name isn't difficult, the hard thing to do is faking the assembly properties. You are dead in the water if the assembly is strong-named (non-null PublicKeyToken) or if it is stored in the GAC, you can't get the substitute loaded. Faking the culture and architecture isn't hard to do, you'll have to get the display name and version right.
And of course, you'll have to get the interface declaration exactly right. Intentionally invoking DLL Hell like this is otherwise an Extremely Bad Idea. Not in the least because you now can never get the real assembly loaded.

.NET Client supporting multiple versions of an unmanaged DLL

I am developing a .NET 4.0 client that will utilize a C Library for data processing. The user will be able to specify the DLL file they wish to load for processing.
I am doing late binding / assembly loading as described here. http://blogs.msdn.com/b/jonathanswift/archive/2006/10/03/dynamically-calling-an-unmanaged-dll-from-.net-_2800_c_23002900_.aspx
For each DLL, the same method call sequences will be the same in my client, but the method signatures will change or the data structs passed in will change. The data populated with the structures will be different depending on the version of the DLL and other factors. Example, the definition of MyStruct will change depending on the version of the DLL.
public delegate int INTF_my_method(ref MyStruct pDataStruct);
What design patterns or design decision are recommended for this approach? I need to load the appropriate C method delegates and data definitions based on the version of the DLL that the user has specified, and populate the structures appropriately. Has anyone done something like this before?
There is no clean approach to this, neither in managed code nor native code. The best you could possibly do is to declare an interface type that tries to cover all possible versions and then write concrete wrapper classes for each individual version of the API. If there's at least some common functionality then you can shovel that in a base class.
Notable too is that you cannot just let the user pick a DLL, you have to pair the DLL with the concrete wrapper class instance.
Building this kind of flexibility in your program is obviously very expensive.
You can load different versions of your DLLs, but only from separate AppDomains. That is, for each DLL you want to load, you will have to create a new AppDomain.

How can I prevent the referencing of a certain assembly when running in Mono

I know how to branch the code based on Mono (Type.GetType("Mono.Runtime") != null) but even when the Mono code path is taken, Mono is attempting to load assemblies that would be required by the non-Mono code path. This is not all that surprising, but how do I get around the problem? I have tried putting the call to the non-Mono assembly in a different class, but that didn't help.
The only option to do it directly is Reflection all the way, so far as I can see.
I'd suggest a more roundabout approach: refactor all your code that is dependent on Mono or .NET into separate assemblies, one for each platform - let's call them MA and NA. Make sure that the entire API surface of your classes there is covered by common interfaces, which should be in the 3rd assembly, IA. After that, your main application references IA for interfaces, and uses Reflection just once to load either MA or NA depending on whether it's running on Mono or .NET, and obtain the instance of "top-level factory class". Once there, it just uses normal calls via IA interfaces to instantiate all other objects via that factory and work with them.
Expanding on Pavel's answer you can use a plugin framework to help with the conditionality of loading bits of code that are specific to a platform. You can use Mono.Addins or MS' own open sourced Managed Extensibility Framework known as MEF (http://www.codeplex.com/MEF)
Don't add the reference in the command-line compiler options. If you are using a high level IDE tool then you might have to play with its project settings to effect the same thing.
There are other files that come into play too like AssemblyInfo.cs and might contain instructions about assemblies that you are considering. Also the program might be using types from App.Config (Configuration file) or Web.Config (ASP.NET) / dynamic type loading.
Don't rely for your dependencies on the fact that your code is JITted and that only called code is JITted.
Best is always to assume, that whatever is referenced will be loaded and has to be available.
You user might choose to use AOT, which is Mono's counterpart of NGEN.
Or subtle differences in how newer runtime versions handle things like serialization, remoting, security, reflection, etc. can lead to your references being loaded even your code does not use anything directly. (But the serializer might have pulled all types, which then loaded other assemblies)
Use interfaces or classic inheritance, or maybe events or other means of indirection to load the .Net parts only when they are appropriate. And by hat I mean an assembly that you don't reference but load dynamically.

Categories

Resources