Looping Over Dictionary in C# - c#

I realize that you cannot iterate over a Dictionary in C# and edit the underlying Dictionary as in the following example:
Dictionary<Resource, double> totalCost = new Dictionary<Resource, double>();
// Populate the Dictionary in here - (not showing code).
foreach (Resource resource in totalCost.Keys)
{
totalCost[resource] = 5;
}
One way I see to fix this is to make a List backed by the Dictionary's keys, like this:
Dictionary<Resource, double> totalCost = new Dictionary<Resource, double>();
// Populate the Dictionary in here - (not showing code).
foreach (Resource resource in new List(totalCost.Keys))
{
totalCost[resource] = 5;
}
Because I'm not editing the keys themselves, is there any reason that this should not be done or that it's bad to choose this as a solution. (I realize if I was editing those keys, this could cause a lot of problems.)
Thank you.
Edit: Fixed my code example. Sorry about that.

You can loop over dictionaries with using KeyValuePair class.
Dictionary<string, string> d1 = new Dictionary<string, string>();
foreach (KeyValuePair<string, string> val in d1)
{
...
}

in your examples it doesn't look to me like you're editing the dictionary values (or keys)?
In general your solution looks fine, you could do it with a bit less code like this:
List<double> total = new List<double>();
foreach (AKeyObject key in aDictionary.Keys.ToList())
{
for (int i = 0; i < aDictionary[key].Count; i++)
{
total[i] += aDictionary[key][i];
}
}

Your first piece of code looks fine to me - you're not editing the dictionary at all.

Here is another more LINQ-esque version:
totalCost = totalCost
.ToDictionary( kvp => kvp.Key, 5 );
Or, if 5 is not quite what you want :)
totalCost = totalCost
.ToDictionary( kvp => kvp.Key, CalculateSomething(kvp.Value) );
(Note: this doesn't edit the underlying dictionary, instead it replaces it with a new one)

Related

Is there any way to edit the Values of a Dictionary during iteration?

I want to change all the values that fulfill a certain criterium in a C# dictionary.
Simply editing the values like this
foreach (var kv in dictionary)
{
kv.Value += 1;
}
does not work because the KeyValuePair of the foreach loop is read only.
However, editing the entries directly like this:
foreach (var kv in dictionary)
{
dictionary[kv.Key] = kv.Value + 1;
}
also doesn't work, because it modifies the collection and breaks the iterator.
At this point, the only remaining solution I can think of is storing all keys of the dictionary in a list, and then using that to edit the values during a second loop, however, that seems like a pretty inelegant solution to me.
Is there any better alternative?
You could create an array (or a List with .ToList()) from the .Keys in the foreach, something like this:
foreach (string key in dictionary.Keys.ToArray())
{
dictionary[key] += 1;
}
You can use ToDictionary to create new Dictionary and change the origin in the loop, like :
foreach (var kv in dictionary.ToDictionary(k=>k.Key,v=>v.Value))
{
dictionary[kv.Key] = kv.Value + 1;
}
I hope you find this helpful.

Asp.Net KeyValuePair<string, { } > does not contain definition or extension [duplicate]

I've seen a few different ways to iterate over a dictionary in C#. Is there a standard way?
foreach(KeyValuePair<string, string> entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
If you are trying to use a generic Dictionary in C# like you would use an associative array in another language:
foreach(var item in myDictionary)
{
foo(item.Key);
bar(item.Value);
}
Or, if you only need to iterate over the collection of keys, use
foreach(var item in myDictionary.Keys)
{
foo(item);
}
And lastly, if you're only interested in the values:
foreach(var item in myDictionary.Values)
{
foo(item);
}
(Take note that the var keyword is an optional C# 3.0 and above feature, you could also use the exact type of your keys/values here)
In some cases you may need a counter that may be provided by for-loop implementation. For that, LINQ provides ElementAt which enables the following:
for (int index = 0; index < dictionary.Count; index++) {
var item = dictionary.ElementAt(index);
var itemKey = item.Key;
var itemValue = item.Value;
}
Depends on whether you're after the keys or the values...
From the MSDN Dictionary(TKey, TValue) Class description:
// When you use foreach to enumerate dictionary elements,
// the elements are retrieved as KeyValuePair objects.
Console.WriteLine();
foreach( KeyValuePair<string, string> kvp in openWith )
{
Console.WriteLine("Key = {0}, Value = {1}",
kvp.Key, kvp.Value);
}
// To get the values alone, use the Values property.
Dictionary<string, string>.ValueCollection valueColl =
openWith.Values;
// The elements of the ValueCollection are strongly typed
// with the type that was specified for dictionary values.
Console.WriteLine();
foreach( string s in valueColl )
{
Console.WriteLine("Value = {0}", s);
}
// To get the keys alone, use the Keys property.
Dictionary<string, string>.KeyCollection keyColl =
openWith.Keys;
// The elements of the KeyCollection are strongly typed
// with the type that was specified for dictionary keys.
Console.WriteLine();
foreach( string s in keyColl )
{
Console.WriteLine("Key = {0}", s);
}
Generally, asking for "the best way" without a specific context is like asking
what is the best color?
One the one hand, there are many colors and there's no best color. It depends on the need and often on taste, too.
On the other hand, there are many ways to iterate over a Dictionary in C# and there's no best way. It depends on the need and often on taste, too.
Most straightforward way
foreach (var kvp in items)
{
// key is kvp.Key
doStuff(kvp.Value)
}
If you need only the value (allows to call it item, more readable than kvp.Value).
foreach (var item in items.Values)
{
doStuff(item)
}
If you need a specific sort order
Generally, beginners are surprised about order of enumeration of a Dictionary.
LINQ provides a concise syntax that allows to specify order (and many other things), e.g.:
foreach (var kvp in items.OrderBy(kvp => kvp.Key))
{
// key is kvp.Key
doStuff(kvp.Value)
}
Again you might only need the value. LINQ also provides a concise solution to:
iterate directly on the value (allows to call it item, more readable than kvp.Value)
but sorted by the keys
Here it is:
foreach (var item in items.OrderBy(kvp => kvp.Key).Select(kvp => kvp.Value))
{
doStuff(item)
}
There are many more real-world use case you can do from these examples.
If you don't need a specific order, just stick to the "most straightforward way" (see above)!
C# 7.0 introduced Deconstructors and if you are using .NET Core 2.0+ Application, the struct KeyValuePair<> already include a Deconstruct() for you. So you can do:
var dic = new Dictionary<int, string>() { { 1, "One" }, { 2, "Two" }, { 3, "Three" } };
foreach (var (key, value) in dic) {
Console.WriteLine($"Item [{key}] = {value}");
}
//Or
foreach (var (_, value) in dic) {
Console.WriteLine($"Item [NO_ID] = {value}");
}
//Or
foreach ((int key, string value) in dic) {
Console.WriteLine($"Item [{key}] = {value}");
}
I would say foreach is the standard way, though it obviously depends on what you're looking for
foreach(var kvp in my_dictionary) {
...
}
Is that what you're looking for?
You can also try this on big dictionaries for multithreaded processing.
dictionary
.AsParallel()
.ForAll(pair =>
{
// Process pair.Key and pair.Value here
});
I appreciate this question has already had a lot of responses but I wanted to throw in a little research.
Iterating over a dictionary can be rather slow when compared with iterating over something like an array. In my tests an iteration over an array took 0.015003 seconds whereas an iteration over a dictionary (with the same number of elements) took 0.0365073 seconds that's 2.4 times as long! Although I have seen much bigger differences. For comparison a List was somewhere in between at 0.00215043 seconds.
However, that is like comparing apples and oranges. My point is that iterating over dictionaries is slow.
Dictionaries are optimised for lookups, so with that in mind I've created two methods. One simply does a foreach, the other iterates the keys then looks up.
public static string Normal(Dictionary<string, string> dictionary)
{
string value;
int count = 0;
foreach (var kvp in dictionary)
{
value = kvp.Value;
count++;
}
return "Normal";
}
This one loads the keys and iterates over them instead (I did also try pulling the keys into a string[] but the difference was negligible.
public static string Keys(Dictionary<string, string> dictionary)
{
string value;
int count = 0;
foreach (var key in dictionary.Keys)
{
value = dictionary[key];
count++;
}
return "Keys";
}
With this example the normal foreach test took 0.0310062 and the keys version took 0.2205441. Loading all the keys and iterating over all the lookups is clearly a LOT slower!
For a final test I've performed my iteration ten times to see if there are any benefits to using the keys here (by this point I was just curious):
Here's the RunTest method if that helps you visualise what's going on.
private static string RunTest<T>(T dictionary, Func<T, string> function)
{
DateTime start = DateTime.Now;
string name = null;
for (int i = 0; i < 10; i++)
{
name = function(dictionary);
}
DateTime end = DateTime.Now;
var duration = end.Subtract(start);
return string.Format("{0} took {1} seconds", name, duration.TotalSeconds);
}
Here the normal foreach run took 0.2820564 seconds (around ten times longer than a single iteration took - as you'd expect). The iteration over the keys took 2.2249449 seconds.
Edited To Add:
Reading some of the other answers made me question what would happen if I used Dictionary instead of Dictionary. In this example the array took 0.0120024 seconds, the list 0.0185037 seconds and the dictionary 0.0465093 seconds. It's reasonable to expect that the data type makes a difference on how much slower the dictionary is.
What are my Conclusions?
Avoid iterating over a dictionary if you can, they are substantially slower than iterating over an array with the same data in it.
If you do choose to iterate over a dictionary don't try to be too clever, although slower you could do a lot worse than using the standard foreach method.
As already pointed out on this answer, KeyValuePair<TKey, TValue> implements a Deconstruct method starting on .NET Core 2.0, .NET Standard 2.1 and .NET Framework 5.0 (preview).
With this, it's possible to iterate through a dictionary in a KeyValuePair agnostic way:
var dictionary = new Dictionary<int, string>();
// ...
foreach (var (key, value) in dictionary)
{
// ...
}
There are plenty of options. My personal favorite is by KeyValuePair
Dictionary<string, object> myDictionary = new Dictionary<string, object>();
// Populate your dictionary here
foreach (KeyValuePair<string,object> kvp in myDictionary)
{
// Do some interesting things
}
You can also use the Keys and Values Collections
With .NET Framework 4.7 one can use decomposition
var fruits = new Dictionary<string, int>();
...
foreach (var (fruit, number) in fruits)
{
Console.WriteLine(fruit + ": " + number);
}
To make this code work on lower C# versions, add System.ValueTuple NuGet package and write somewhere
public static class MyExtensions
{
public static void Deconstruct<T1, T2>(this KeyValuePair<T1, T2> tuple,
out T1 key, out T2 value)
{
key = tuple.Key;
value = tuple.Value;
}
}
As of C# 7, you can deconstruct objects into variables. I believe this to be the best way to iterate over a dictionary.
Example:
Create an extension method on KeyValuePair<TKey, TVal> that deconstructs it:
public static void Deconstruct<TKey, TVal>(this KeyValuePair<TKey, TVal> pair, out TKey key, out TVal value)
{
key = pair.Key;
value = pair.Value;
}
Iterate over any Dictionary<TKey, TVal> in the following manner
// Dictionary can be of any types, just using 'int' and 'string' as examples.
Dictionary<int, string> dict = new Dictionary<int, string>();
// Deconstructor gets called here.
foreach (var (key, value) in dict)
{
Console.WriteLine($"{key} : {value}");
}
foreach is fastest and if you only iterate over ___.Values, it is also faster
Using C# 7, add this extension method to any project of your solution:
public static class IDictionaryExtensions
{
public static IEnumerable<(TKey, TValue)> Tuples<TKey, TValue>(
this IDictionary<TKey, TValue> dict)
{
foreach (KeyValuePair<TKey, TValue> kvp in dict)
yield return (kvp.Key, kvp.Value);
}
}
And use this simple syntax
foreach (var(id, value) in dict.Tuples())
{
// your code using 'id' and 'value'
}
Or this one, if you prefer
foreach ((string id, object value) in dict.Tuples())
{
// your code using 'id' and 'value'
}
In place of the traditional
foreach (KeyValuePair<string, object> kvp in dict)
{
string id = kvp.Key;
object value = kvp.Value;
// your code using 'id' and 'value'
}
The extension method transforms the KeyValuePair of your IDictionary<TKey, TValue> into a strongly typed tuple, allowing you to use this new comfortable syntax.
It converts -just- the required dictionary entries to tuples, so it does NOT converts the whole dictionary to tuples, so there are no performance concerns related to that.
There is a only minor cost calling the extension method for creating a tuple in comparison with using the KeyValuePair directly, which should NOT be an issue if you are assigning the KeyValuePair's properties Key and Value to new loop variables anyway.
In practice, this new syntax suits very well for most cases, except for low-level ultra-high performance scenarios, where you still have the option to simply not use it on that specific spot.
Check this out: MSDN Blog - New features in C# 7
Simplest form to iterate a dictionary:
foreach(var item in myDictionary)
{
Console.WriteLine(item.Key);
Console.WriteLine(item.Value);
}
I found this method in the documentation for the DictionaryBase class on MSDN:
foreach (DictionaryEntry de in myDictionary)
{
//Do some stuff with de.Value or de.Key
}
This was the only one I was able to get functioning correctly in a class that inherited from the DictionaryBase.
Sometimes if you only needs the values to be enumerated, use the dictionary's value collection:
foreach(var value in dictionary.Values)
{
// do something with entry.Value only
}
Reported by this post which states it is the fastest method:
http://alexpinsker.blogspot.hk/2010/02/c-fastest-way-to-iterate-over.html
I know this is a very old question, but I created some extension methods that might be useful:
public static void ForEach<T, U>(this Dictionary<T, U> d, Action<KeyValuePair<T, U>> a)
{
foreach (KeyValuePair<T, U> p in d) { a(p); }
}
public static void ForEach<T, U>(this Dictionary<T, U>.KeyCollection k, Action<T> a)
{
foreach (T t in k) { a(t); }
}
public static void ForEach<T, U>(this Dictionary<T, U>.ValueCollection v, Action<U> a)
{
foreach (U u in v) { a(u); }
}
This way I can write code like this:
myDictionary.ForEach(pair => Console.Write($"key: {pair.Key}, value: {pair.Value}"));
myDictionary.Keys.ForEach(key => Console.Write(key););
myDictionary.Values.ForEach(value => Console.Write(value););
If you want to use a for loop, you can do as below:
var keyList=new List<string>(dictionary.Keys);
for (int i = 0; i < keyList.Count; i++)
{
var key= keyList[i];
var value = dictionary[key];
}
I will take the advantage of .NET 4.0+ and provide an updated answer to the originally accepted one:
foreach(var entry in MyDic)
{
// do something with entry.Value or entry.Key
}
If say, you want to iterate over the values collection by default, I believe you can implement IEnumerable<>, Where T is the type of the values object in the dictionary, and "this" is a Dictionary.
public new IEnumerator<T> GetEnumerator()
{
return this.Values.GetEnumerator();
}
The standard way to iterate over a Dictionary, according to official documentation on MSDN is:
foreach (DictionaryEntry entry in myDictionary)
{
//Read entry.Key and entry.Value here
}
I wrote an extension to loop over a dictionary.
public static class DictionaryExtension
{
public static void ForEach<T1, T2>(this Dictionary<T1, T2> dictionary, Action<T1, T2> action) {
foreach(KeyValuePair<T1, T2> keyValue in dictionary) {
action(keyValue.Key, keyValue.Value);
}
}
}
Then you can call
myDictionary.ForEach((x,y) => Console.WriteLine(x + " - " + y));
Dictionary< TKey, TValue > It is a generic collection class in c# and it stores the data in the key value format.Key must be unique and it can not be null whereas value can be duplicate and null.As each item in the dictionary is treated as KeyValuePair< TKey, TValue > structure representing a key and its value. and hence we should take the element type KeyValuePair< TKey, TValue> during the iteration of element.Below is the example.
Dictionary<int, string> dict = new Dictionary<int, string>();
dict.Add(1,"One");
dict.Add(2,"Two");
dict.Add(3,"Three");
foreach (KeyValuePair<int, string> item in dict)
{
Console.WriteLine("Key: {0}, Value: {1}", item.Key, item.Value);
}
The best answer is of course: Think, if you could use a more appropriate data structure than a dictionary if you plan to iterate over it- as Vikas Gupta mentioned already in the (beginning of the) discussion under the question. But that discussion as this whole thread still lacks surprisingly good alternatives. One is:
SortedList<string, string> x = new SortedList<string, string>();
x.Add("key1", "value1");
x.Add("key2", "value2");
x["key3"] = "value3";
foreach( KeyValuePair<string, string> kvPair in x )
Console.WriteLine($"{kvPair.Key}, {kvPair.Value}");
Why it could be argued a code smell of iterating over a dictionary (e.g. by foreach(KeyValuePair<,>) ?
A basic principle of Clean Coding:
"Express intent!"
Robert C. Martin writes in "Clean Code": "Choosing names that reveal intent". Obviously naming alone is too weak. "Express (reveal) intent with every coding decision" expresses it better.
A related principle is "Principle of least surprise" (=Principle of Least Astonishment).
Why this is related to iterating over a dictionary? Choosing a dictionary expresses the intent of choosing a data structure which was made for primarily finding data by key. Nowadays there are so much alternatives in .NET, if you want to iterate through key/value pairs that you could choose something else.
Moreover: If you iterate over something, you have to reveal something about how the items are (to be) ordered and expected to be ordered!
Although the known implementations of Dictionary sort the key collection in the order of the items added-
AFAIK, Dictionary has no assured specification about ordering (has it?).
But what are the alternatives?
TLDR:
SortedList: If your collection is not getting too large, a simple solution would be to use SortedList<,> which gives you also full indexing of key/value pairs.
Microsoft has a long article about mentioning and explaining fitting collections:
Keyed collection
To mention the most important: KeyedCollection<,> and SortedDictionary<,> .
SortedDictionary<,> is a bit faster than SortedList for only inserting if it gets large, but lacks indexing and is needed only if O(log n) for inserting is preferenced over other operations. If you really need O(1) for inserting and accept slower iterating in exchange, you have to stay with simple Dictionary<,>.
Obviously there is no data structure which is the fastest for every possible operation..
Additionally there is ImmutableSortedDictionary<,>.
And if one data structure is not exactly what you need, then derivate from Dictionary<,> or even from the new ConcurrentDictionary<,> and add explicit iteration/sorting functions!
var dictionary = new Dictionary<string, int>
{
{ "Key", 12 }
};
var aggregateObjectCollection = dictionary.Select(
entry => new AggregateObject(entry.Key, entry.Value));
Just wanted to add my 2 cent, as the most answers relate to foreach-loop.
Please, take a look at the following code:
Dictionary<String, Double> myProductPrices = new Dictionary<String, Double>();
//Add some entries to the dictionary
myProductPrices.ToList().ForEach(kvP =>
{
kvP.Value *= 1.15;
Console.Writeline(String.Format("Product '{0}' has a new price: {1} $", kvp.Key, kvP.Value));
});
Altought this adds a additional call of '.ToList()', there might be a slight performance-improvement (as pointed out here foreach vs someList.Foreach(){}),
espacially when working with large Dictionaries and running in parallel is no option / won't have an effect at all.
Also, please note that you wont be able to assign values to the 'Value' property inside a foreach-loop. On the other hand, you will be able to manipulate the 'Key' as well, possibly getting you into trouble at runtime.
When you just want to "read" Keys and Values, you might also use IEnumerable.Select().
var newProductPrices = myProductPrices.Select(kvp => new { Name = kvp.Key, Price = kvp.Value * 1.15 } );
in addition to the highest ranking posts where there is a discussion between using
foreach(KeyValuePair<string, string> entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
or
foreach(var entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
most complete is the following because you can see the dictionary type from the initialization, kvp is KeyValuePair
var myDictionary = new Dictionary<string, string>(x);//fill dictionary with x
foreach(var kvp in myDictionary)//iterate over dictionary
{
// do something with kvp.Value or kvp.Key
}

Why can't I loop through this dictionary?

I thought it would have been relatively straightforward, I am here first runing this code that uses a 3rd party software to return a set of values as a dictionary:
List<Dictionary<string, long>> result = 3rdPartyConnection.GetPlans(id, params);
I then try to loop these results (so I can populate a viewmodel with them and other values) using the following code, first I declare a new list using the viewmodel, then I loop through the results to populate the model:
List<OptionViewModel> AvailableOptions = new List<OptionViewModel>();
foreach (KeyValuePair<string, long> item in result)
{
OptionViewModel c = new OptionViewModel();
c.Code = item.Key;
c.Value = item.Value;
AvailableOptions.Add(c);
}
But it only generates the following error:
Error 257 Cannot convert type 'System.Collections.Generic.Dictionary<string,long>' to 'System.Collections.Generic.KeyValuePair<string,long>'
I don't understand what the problem is, from what I've read on c# this is how you loop through a dictionary. I have a feeling this is a simple oversight of some kind on my part....
It is a List<> of dictionaries, not a single Dictionary<,>. Use two foreach loops inside each other.
Sometimes it is better to use var in foreach loops: foreach (var item in ...) It helps you figure out what the iteration variable type is, without introducing a cast.
You will need to iterate through the List first, going through each dictionary, at which point you can then iterate through the key-value pairs:
foreach (Dictionary<string, long> dic in result)
{
foreach(KeyValuePair<string, long> item in dic)
{
OptionViewModel c = new OptionViewModel();
c.Code = item.Key;
c.Value = item.Value;
AvailableOptions.Add(c);
}
}

Complex LINQ query vs Complex for loops

Right now I have this complex function, I have a list of MainObjects(call them MO) and for each of these objects I have to loop over a list of objects(call them C) with a title, a status and a list of sub-objects (call them E). The function loops over these sub-objects(E) and uses it's title and quantity properties.
The goal of the function is to create a dictionary(D1), where the Key is a C(title) and the Values is another dictionary(D2), where the Key is E(title) and the Values yet another dictionary(D3), where the Key is C(status) and the value E(quantity).
So in the end I will have all (unique) C(title)'s wherein I can see all (unique) E(title)'s wherein I can see all different C(status)'s and the E(quantity) of these statuses (with as extra challenge if 2 E(quantity)'s would have the same status with the same title on the same course they should be added to each other and then put in as value).
I made this all work fine.
However. The function is big and hard to understand, so I'm looking for a more approachable way of dealing with this problem.
One of these ways was supposed to be LINQ. However, I have little to no knowledge about this and for a massively complex function as this I can hardly understand how to deal with this in LINQ.
I'm also concerned about performance since this WPF project is heavily dependable on user-experience. So I'm not sure if LINQ would actually make things faster, slower or same.
Here is where you guys come in.
Is LINQ a better way to deal with this problem?
Is the performance similar to the one of my function?
Is the LINQ query more understandable?
Is there an alternative way of dealing with this complex function
rather then the 2 methods I'm describing?
Underneath you will find the function I used to deal with this function my way.
It is done in 3 steps:
Step1: Loop the MO's, C's, E's and create a list of dictionaries.
Step2: Join the duplicate key's of the result of step1 and create a
first stage dictionary.
Step3: Split the deeper dictionaries so that
we can use the E object as intended.
Result: has been put in the 'final' object. A list of dictionaries with as keys C(title) and values a list of dictionaries. This list of dictionaries with as keys E(title) and values a Dictionary. This Dictionary has as keys C(status) and values E(quantity). This E(quantity) is a combined value of each quantity of each E of the same C(status) for a same C.
//DateTime start = DateTime.Now; //start performance test
//start -> step 1
List<Dictionary<string/*C(title)*/, Dictionary<int/*C(status)*/, List<E>>>> firstResultList = new List<Dictionary<string, Dictionary<int, List<E>>>>();
foreach(MO mo in listOfMOs)
{
foreach (C c in mo.listOfCs)
{
Dictionary<string, Dictionary<int, List<E>>> D1 = new Dictionary<string, Dictionary<int, List<E>>>();
int cStatus = c.status;
Dictionary<int, List<E>> D2 = new Dictionary<int, List<E>>();
List<E> eList = new List<E>();
foreach (E e in c.listOfEs)
{
eList.Add(e);
}
D2.Add(cStatus, eList);
D1.Add(c.Title, D2);
firstResultList.Add(D1);
}
}
//firstResultList = step1 results
//Console.WriteLine(firstResultList.ToString());
//
//step1 -> step2
Dictionary<string/*C(title)*/, List<Dictionary<int/*C(status)*/, List<E>>>> groupedDict = new Dictionary<string, List<Dictionary<int, List<E>>>>();
foreach (Dictionary<string, Dictionary<int, List<E>>> dict in firstResultList)
{
List<Dictionary<int, List<E>>> listje;
if(groupedDict.ContainsKey(dict.Keys.ElementAt(0)))
{
listje = groupedDict[dict.Keys.ElementAt(0)];
}
else
{
listje = new List<Dictionary<int, List<E>>>();
}
listje.Add(dict[dict.Keys.ElementAt(0)]);
groupedDict[dict.Keys.ElementAt(0)] = listje;
}
//groupedDict = step2 results
//Console.WriteLine(groupedDict.ToString());
//
//step2 -> step3
Dictionary<string/*C(title)*/, List<Dictionary<string/*E(title)*/, Dictionary<int/*C(status)*/, int/*E(quantity)*/>>>> final = new Dictionary<string, List<Dictionary<string, Dictionary<int, int>>>>();
int index = 0;
foreach (List<Dictionary<int, List<E>>> list in groupedDict.Values)
{
//Within one unique C
List<Dictionary<string, Dictionary<int, int>>> eStatusQuantityList = new List<Dictionary<string, Dictionary<int, int>>>();
foreach (Dictionary<int, List<E>> dict in list)
{
foreach (List<E> eList in dict.Values)
{
foreach(E e in eList)
{
if (eStatusQuantityList.Count > 0)
{
foreach (Dictionary<string, Dictionary<int, int>> dict2 in eStatusQuantityList)
{
Dictionary<int, int> statusQuantityDict;
if (dict2.ContainsKey(e.Title))
{
statusQuantityDict = dict2[e.Title];
//int quantity = statusQuantityDict.value//statusQuantityDict[dict.Keys.ElementAt(0)];
int quantity = 0;
int value;
bool hasValue = statusQuantityDict.TryGetValue(dict.Keys.ElementAt(0), out value);
if (hasValue) {
quantity = value;
} else {
// do something when the value is not there
}
statusQuantityDict[dict.Keys.ElementAt(0)] = quantity + e.Quantity;
dict2[e.Title] = statusQuantityDict;
}
else
{
statusQuantityDict = new Dictionary<int, int>();
statusQuantityDict.Add(dict.Keys.ElementAt(0), e.Quantity);
dict2.Add(e.Title, statusQuantityDict);
}
}
}
else
{
Dictionary<string, Dictionary<int, int>> test = new Dictionary<string, Dictionary<int, int>>();
Dictionary<int, int> test2 = new Dictionary<int, int>();
test2.Add(dict.Keys.ElementAt(0), e.Quantity);
test.Add(e.Title, test2);
eStatusQuantityList.Add(test);
}
}
}
}
//ending
string key = groupedDict.Keys.ElementAt(index);
final[key] = eStatusQuantityList;
index++;
//
}
//final contains step3 results
//Console.WriteLine(final.ToString());
/*
for (int i = 0; i<final.Keys.Count; i++)
{
Console.WriteLine(final.Keys.ElementAt(i));
}
for (int i = 0; i < final.Values.Count; i++)
{
Console.WriteLine(final.Values.ElementAt(i));
}
*/
//
//TimeSpan duration = DateTime.Now - start; //end performance test
//Console.WriteLine("That took " + duration.TotalMilliseconds + " ms"); //performance test results //60.006 is fine, 600.006 is OOM. //Our range of objects is max. 300 MO's though
As you can see this is a hell of a function. But it works fine (2-5ms (avg. 2.5) for our max target of MO's). But I can see people (other then myself) messing up when they have to readjust this function for some reason. So any improvement in maintainability or readability would be cool.
Is LINQ a better way to deal with this problem?
Better is subjective. Better looking? Better performance? Better (as in easier) understanding?
Is the performance similar to the one of my function?
LINQ performance is usually not quite as good as doing it manually, however there is always a trade off because LINQ can be (not always) easier to understand.
Is the LINQ query more understandable?
It can be. But if you've ever used reSharper where it looks at your code and says it can turn it into a LINQ query then you'll know that sometimes it makes it less understandable.
Is there an alternative way of dealing with this complex function
rather then the 2 methods I'm describing?
Mix-n-match? You can hand-code performance critical parts and leave the rest in LINQ. But to find the performance critical parts you should use a profiler rather than just guessing.

Getting rid of duplicates inside List<> contained within a dictionary

I have the following dictionary.
Dictionary<string, List<string>> dictSubjects = new Dictionary<string, List<string>>();
and I am trying to get rid of potential duplicates residing within each list instace of the respective dictionary entry.
This is what I have tried but get and error along the lines of the list being read only
foreach (var kvp in dictSubjects)
{
lstSubjectsNoDupes.Clear();
for (int i = kvp.Value.Count - 1; i >= 0; i--)
{
if(lstSubjectsNoDupes.Contains(kvp.Value[i]))
{
lstSubjectsNoDupes.Add(kvp.Value[i]);
}
}
kvp.Value = lstSubjectsNoDupes;
}
How can I effectively get rid of potential duplicates within each list of my Dictionary?
The simplest way if you don't care too much about efficiency would be:
dictSubjects = dictSubjects.ToDictionary(pair => pair.Key,
pair => pair.Value.Distinct().ToList());
Alternatively, to update the existing dictionary:
foreach (var key in dictSubjects.Keys.ToList())
{
dictSubjects[key] = dictSubjects[key].Distinct().ToList();
}
Note the use of ToList here to avoid iterating over a view of a collection which is being modified. Without this, InvalidOperationException is thrown.
What about
foreach (var kvp in dictSubjects.ToList())
dictSubjects[kvp.Key] = kvp.Value.Distinct().ToList();

Categories

Resources