I am using Enterprise Library 4 on one of my projects for logging (and other purposes). I've noticed that there is some cost to the logging that I am doing that I can mitigate by doing the logging on a separate thread.
The way I am doing this now is that I create a LogEntry object and then I call BeginInvoke on a delegate that calls Logger.Write.
new Action<LogEntry>(Logger.Write).BeginInvoke(le, null, null);
What I'd really like to do is add the log message to a queue and then have a single thread pulling LogEntry instances off the queue and performing the log operation. The benefit of this would be that logging is not interfering with the executing operation and not every logging operation results in a job getting thrown on the thread pool.
How can I create a shared queue that supports many writers and one reader in a thread safe way? Some examples of a queue implementation that is designed to support many writers (without causing synchronization/blocking) and a single reader would be really appreciated.
Recommendation regarding alternative approaches would also be appreciated, I am not interested in changing logging frameworks though.
I wrote this code a while back, feel free to use it.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
namespace MediaBrowser.Library.Logging {
public abstract class ThreadedLogger : LoggerBase {
Queue<Action> queue = new Queue<Action>();
AutoResetEvent hasNewItems = new AutoResetEvent(false);
volatile bool waiting = false;
public ThreadedLogger() : base() {
Thread loggingThread = new Thread(new ThreadStart(ProcessQueue));
loggingThread.IsBackground = true;
loggingThread.Start();
}
void ProcessQueue() {
while (true) {
waiting = true;
hasNewItems.WaitOne(10000,true);
waiting = false;
Queue<Action> queueCopy;
lock (queue) {
queueCopy = new Queue<Action>(queue);
queue.Clear();
}
foreach (var log in queueCopy) {
log();
}
}
}
public override void LogMessage(LogRow row) {
lock (queue) {
queue.Enqueue(() => AsyncLogMessage(row));
}
hasNewItems.Set();
}
protected abstract void AsyncLogMessage(LogRow row);
public override void Flush() {
while (!waiting) {
Thread.Sleep(1);
}
}
}
}
Some advantages:
It keeps the background logger alive, so it does not need to spin up and spin down threads.
It uses a single thread to service the queue, which means there will never be a situation where 100 threads are servicing the queue.
It copies the queues to ensure the queue is not blocked while the log operation is performed
It uses an AutoResetEvent to ensure the bg thread is in a wait state
It is, IMHO, very easy to follow
Here is a slightly improved version, keep in mind I performed very little testing on it, but it does address a few minor issues.
public abstract class ThreadedLogger : IDisposable {
Queue<Action> queue = new Queue<Action>();
ManualResetEvent hasNewItems = new ManualResetEvent(false);
ManualResetEvent terminate = new ManualResetEvent(false);
ManualResetEvent waiting = new ManualResetEvent(false);
Thread loggingThread;
public ThreadedLogger() {
loggingThread = new Thread(new ThreadStart(ProcessQueue));
loggingThread.IsBackground = true;
// this is performed from a bg thread, to ensure the queue is serviced from a single thread
loggingThread.Start();
}
void ProcessQueue() {
while (true) {
waiting.Set();
int i = ManualResetEvent.WaitAny(new WaitHandle[] { hasNewItems, terminate });
// terminate was signaled
if (i == 1) return;
hasNewItems.Reset();
waiting.Reset();
Queue<Action> queueCopy;
lock (queue) {
queueCopy = new Queue<Action>(queue);
queue.Clear();
}
foreach (var log in queueCopy) {
log();
}
}
}
public void LogMessage(LogRow row) {
lock (queue) {
queue.Enqueue(() => AsyncLogMessage(row));
}
hasNewItems.Set();
}
protected abstract void AsyncLogMessage(LogRow row);
public void Flush() {
waiting.WaitOne();
}
public void Dispose() {
terminate.Set();
loggingThread.Join();
}
}
Advantages over the original:
It's disposable, so you can get rid of the async logger
The flush semantics are improved
It will respond slightly better to a burst followed by silence
Yes, you need a producer/consumer queue. I have one example of this in my threading tutorial - if you look my "deadlocks / monitor methods" page you'll find the code in the second half.
There are plenty of other examples online, of course - and .NET 4.0 will ship with one in the framework too (rather more fully featured than mine!). In .NET 4.0 you'd probably wrap a ConcurrentQueue<T> in a BlockingCollection<T>.
The version on that page is non-generic (it was written a long time ago) but you'd probably want to make it generic - it would be trivial to do.
You would call Produce from each "normal" thread, and Consume from one thread, just looping round and logging whatever it consumes. It's probably easiest just to make the consumer thread a background thread, so you don't need to worry about "stopping" the queue when your app exits. That does mean there's a remote possibility of missing the final log entry though (if it's half way through writing it when the app exits) - or even more if you're producing faster than it can consume/log.
Here is what I came up with... also see Sam Saffron's answer. This answer is community wiki in case there are any problems that people see in the code and want to update.
/// <summary>
/// A singleton queue that manages writing log entries to the different logging sources (Enterprise Library Logging) off the executing thread.
/// This queue ensures that log entries are written in the order that they were executed and that logging is only utilizing one thread (backgroundworker) at any given time.
/// </summary>
public class AsyncLoggerQueue
{
//create singleton instance of logger queue
public static AsyncLoggerQueue Current = new AsyncLoggerQueue();
private static readonly object logEntryQueueLock = new object();
private Queue<LogEntry> _LogEntryQueue = new Queue<LogEntry>();
private BackgroundWorker _Logger = new BackgroundWorker();
private AsyncLoggerQueue()
{
//configure background worker
_Logger.WorkerSupportsCancellation = false;
_Logger.DoWork += new DoWorkEventHandler(_Logger_DoWork);
}
public void Enqueue(LogEntry le)
{
//lock during write
lock (logEntryQueueLock)
{
_LogEntryQueue.Enqueue(le);
//while locked check to see if the BW is running, if not start it
if (!_Logger.IsBusy)
_Logger.RunWorkerAsync();
}
}
private void _Logger_DoWork(object sender, DoWorkEventArgs e)
{
while (true)
{
LogEntry le = null;
bool skipEmptyCheck = false;
lock (logEntryQueueLock)
{
if (_LogEntryQueue.Count <= 0) //if queue is empty than BW is done
return;
else if (_LogEntryQueue.Count > 1) //if greater than 1 we can skip checking to see if anything has been enqueued during the logging operation
skipEmptyCheck = true;
//dequeue the LogEntry that will be written to the log
le = _LogEntryQueue.Dequeue();
}
//pass LogEntry to Enterprise Library
Logger.Write(le);
if (skipEmptyCheck) //if LogEntryQueue.Count was > 1 before we wrote the last LogEntry we know to continue without double checking
{
lock (logEntryQueueLock)
{
if (_LogEntryQueue.Count <= 0) //if queue is still empty than BW is done
return;
}
}
}
}
}
I suggest to start with measuring actual performance impact of logging on the overall system (i.e. by running profiler) and optionally switching to something faster like log4net (I've personally migrated to it from EntLib logging a long time ago).
If this does not work, you can try using this simple method from .NET Framework:
ThreadPool.QueueUserWorkItem
Queues a method for execution. The method executes when a thread pool thread becomes available.
MSDN Details
If this does not work either then you can resort to something like John Skeet has offered and actually code the async logging framework yourself.
In response to Sam Safrons post, I wanted to call flush and make sure everything was really finished writting. In my case, I am writing to a database in the queue thread and all my log events were getting queued up but sometimes the application stopped before everything was finished writing which is not acceptable in my situation. I changed several chunks of your code but the main thing I wanted to share was the flush:
public static void FlushLogs()
{
bool queueHasValues = true;
while (queueHasValues)
{
//wait for the current iteration to complete
m_waitingThreadEvent.WaitOne();
lock (m_loggerQueueSync)
{
queueHasValues = m_loggerQueue.Count > 0;
}
}
//force MEL to flush all its listeners
foreach (MEL.LogSource logSource in MEL.Logger.Writer.TraceSources.Values)
{
foreach (TraceListener listener in logSource.Listeners)
{
listener.Flush();
}
}
}
I hope that saves someone some frustration. It is especially apparent in parallel processes logging lots of data.
Thanks for sharing your solution, it set me into a good direction!
--Johnny S
I wanted to say that my previous post was kind of useless. You can simply set AutoFlush to true and you will not have to loop through all the listeners. However, I still had crazy problem with parallel threads trying to flush the logger. I had to create another boolean that was set to true during the copying of the queue and executing the LogEntry writes and then in the flush routine I had to check that boolean to make sure something was not already in the queue and the nothing was getting processed before returning.
Now multiple threads in parallel can hit this thing and when I call flush I know it is really flushed.
public static void FlushLogs()
{
int queueCount;
bool isProcessingLogs;
while (true)
{
//wait for the current iteration to complete
m_waitingThreadEvent.WaitOne();
//check to see if we are currently processing logs
lock (m_isProcessingLogsSync)
{
isProcessingLogs = m_isProcessingLogs;
}
//check to see if more events were added while the logger was processing the last batch
lock (m_loggerQueueSync)
{
queueCount = m_loggerQueue.Count;
}
if (queueCount == 0 && !isProcessingLogs)
break;
//since something is in the queue, reset the signal so we will not keep looping
Thread.Sleep(400);
}
}
Just an update:
Using enteprise library 5.0 with .NET 4.0 it can easily be done by:
static public void LogMessageAsync(LogEntry logEntry)
{
Task.Factory.StartNew(() => LogMessage(logEntry));
}
See:
http://randypaulo.wordpress.com/2011/07/28/c-enterprise-library-asynchronous-logging/
An extra level of indirection may help here.
Your first async method call can put messages onto a synchonized Queue and set an event -- so the locks are happening in the thread-pool, not on your worker threads -- and then have yet another thread pulling messages off the queue when the event is raised.
If you log something on a separate thread, the message may not be written if the application crashes, which makes it rather useless.
The reason goes why you should always flush after every written entry.
If what you have in mind is a SHARED queue, then I think you are going to have to synchronize the writes to it, the pushes and the pops.
But, I still think it's worth aiming at the shared queue design. In comparison to the IO of logging and probably in comparison to the other work your app is doing, the brief amount of blocking for the pushes and the pops will probably not be significant.
Related
In my quest to build a condition variable class I stumbled on a trivially simple way of doing it and I'd like to share this with the stack overflow community. I was googling for the better part of an hour and was unable to actually find a good tutorial or .NET-ish example that felt right, hopefully this can be of use to other people out there.
It's actually incredibly simple, once you know about the semantics of lock and Monitor.
But first, you do need an object reference. You can use this, but remember that this is public, in the sense that anyone with a reference to your class can lock on that reference. If you are uncomfortable with this, you can create a new private reference, like this:
readonly object syncPrimitive = new object(); // this is legal
Somewhere in your code where you'd like to be able to provide notifications, it can be accomplished like this:
void Notify()
{
lock (syncPrimitive)
{
Monitor.Pulse(syncPrimitive);
}
}
And the place where you'd do the actual work is a simple looping construct, like this:
void RunLoop()
{
lock (syncPrimitive)
{
for (;;)
{
// do work here...
Monitor.Wait(syncPrimitive);
}
}
}
Yes, this looks incredibly deadlock-ish, but the locking protocol for Monitor is such that it will release the lock during the Monitor.Wait. In fact, it's a requirement that you have obtained the lock before you call either Monitor.Pulse, Monitor.PulseAll or Monitor.Wait.
There's one caveat with this approach that you should know about. Since the lock is required to be held before calling the communication methods of Monitor you should really only hang on to the lock for an as short duration as possible. A variation of the RunLoop that's more friendly towards long running background tasks would look like this:
void RunLoop()
{
for (;;)
{
// do work here...
lock (syncPrimitive)
{
Monitor.Wait(syncPrimitive);
}
}
}
But now we've changed up the problem a bit, because the lock is no longer protecting the shared resource throughout the processing. So, if some of your code in the do work here... bit needs to access a shared resource you'll need an separate lock managing access to that.
We can leverage the above to create a simple thread-safe producer consumer collection (although .NET already provides an excellent ConcurrentQueue<T> implementation; this is just to illustrate the simplicity of using Monitor in implementing such mechanisms).
class BlockingQueue<T>
{
// We base our queue on the (non-thread safe) .NET 2.0 Queue collection
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
q.Enqueue(item);
System.Threading.Monitor.Pulse(q);
}
}
public T Dequeue()
{
lock (q)
{
for (;;)
{
if (q.Count > 0)
{
return q.Dequeue();
}
System.Threading.Monitor.Wait(q);
}
}
}
}
Now the point here is not to build a blocking collection, that also available in the .NET framework (see BlockingCollection). The point is to illustrate how simple it is to build an event driven message system using the Monitor class in .NET to implement conditional variable. Hope you find this useful.
Use ManualResetEvent
The class that is similar to conditional variable is the ManualResetEvent, just that the method name is slightly different.
The notify_one() in C++ would be named Set() in C#.
The wait() in C++ would be named WaitOne() in C#.
Moreover, ManualResetEvent also provides a Reset() method to set the state of the event to non-signaled.
The accepted answer is not a good one.
According to the Dequeue() code, Wait() gets called in each loop, which causes unnecessary waiting thus excessive context switches. The correct paradigm should be, wait() is called when the waiting condition is met. In this case, the waiting condition is q.Count() == 0.
Here's a better pattern to follow when it comes to using a Monitor.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682052%28v=vs.85%29.aspx
Another comment on C# Monitor is, it does not make use of a condition variable(which will essentially wake up all threads waiting for that lock, regardless of the conditions in which they went to wait; consequently, some threads may grab the lock and immediately return to sleep when they find the waiting condition hasn't been changed). It does not provide you with as find-grained threading control as pthreads. But it's .Net anyway, so not completely unexpected.
=============upon the request of John, here's an improved version=============
class BlockingQueue<T>
{
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
while (false) // condition predicate(s) for producer; can be omitted in this particular case
{
System.Threading.Monitor.Wait(q);
}
// critical section
q.Enqueue(item);
}
// generally better to signal outside the lock scope
System.Threading.Monitor.Pulse(q);
}
public T Dequeue()
{
T t;
lock (q)
{
while (q.Count == 0) // condition predicate(s) for consumer
{
System.Threading.Monitor.Wait(q);
}
// critical section
t = q.Dequeue();
}
// this can be omitted in this particular case; but not if there's waiting condition for the producer as the producer needs to be woken up; and here's the problem caused by missing condition variable by C# monitor: all threads stay on the same waiting queue of the shared resource/lock.
System.Threading.Monitor.Pulse(q);
return t;
}
}
A few things I'd like to point out:
1, I think my solution captures the requirements & definitions more precisely than yours. Specifically, the consumer should be forced to wait if and only if there's nothing left in the queue; otherwise it's up to the OS/.Net runtime to schedule threads. In your solution, however, the consumer is forced to wait in each loop, regardless whether it has actually consumed anything or not - this is the excessive waiting/context switches I was talking about.
2, My solution is symmetric in the sense that both the consumer and the producer code share the same pattern while yours is not. If you did know the pattern and just omitted for this particular case, then I take back this point.
3, Your solution signals inside the lock scope, while my solutions signals outside the lock scope. Please refer to this answer as to why your solution is worse.
why should we signal outside the lock scope
I was talking about the flaw of missing condition variables in C# monitor, and here's its impact: there's simply no way for C# to implemented the solution of moving the waiting thread from the condition queue to the lock queue. Therefore, the excessive context switch is doomed to take place in the three-thread scenario proposed by the answer in the link.
Also, the lack of condition variable makes it impossible to distinguish between the various cases where threads wait on the same shared resource/lock, but for different reasons. All waiting threads are place on a big waiting queue for that shared resource, which undermines efficiency.
"But it's .Net anyway, so not completely unexpected" --- it's understandable that .Net does not pursue as high efficiency as C++, it's understandable. But it does not imply programmers should not know the differences and their impacts.
Go to deadlockempire.github.io/. They have an amazing tutorial that will help you understand the condition variable as well as locks and will cetainly help you write your desired class.
You can step through the following code at deadlockempire.github.io and trace it. Here is the code snippet
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
queue.Enqueue(42);
Monitor.PulseAll(mutex);
Monitor.Exit(mutex);
}
As has been pointed out by h9uest's answer and comments the Monitor's Wait interface does not allow for proper condition variables (i.e. it does not allow for waiting on multiple conditions per shared lock).
The good news is that the other synchronization primitives (e.g. SemaphoreSlim, lock keyword, Monitor.Enter/Exit) in .NET can be used to implement a proper condition variable.
The following ConditionVariable class will allow you to wait on multiple conditions using a shared lock.
class ConditionVariable
{
private int waiters = 0;
private object waitersLock = new object();
private SemaphoreSlim sema = new SemaphoreSlim(0, Int32.MaxValue);
public ConditionVariable() {
}
public void Pulse() {
bool release;
lock (waitersLock)
{
release = waiters > 0;
}
if (release) {
sema.Release();
}
}
public void Wait(object cs) {
lock (waitersLock) {
++waiters;
}
Monitor.Exit(cs);
sema.Wait();
lock (waitersLock) {
--waiters;
}
Monitor.Enter(cs);
}
}
All you need to do is create an instance of the ConditionVariable class for each condition you want to be able to wait on.
object queueLock = new object();
private ConditionVariable notFullCondition = new ConditionVariable();
private ConditionVariable notEmptyCondition = new ConditionVariable();
And then just like in the Monitor class, the ConditionVariable's Pulse and Wait methods must be invoked from within a synchronized block of code.
T Take() {
lock(queueLock) {
while(queue.Count == 0) {
// wait for queue to be not empty
notEmptyCondition.Wait(queueLock);
}
T item = queue.Dequeue();
if(queue.Count < 100) {
// notify producer queue not full anymore
notFullCondition.Pulse();
}
return item;
}
}
void Add(T item) {
lock(queueLock) {
while(queue.Count >= 100) {
// wait for queue to be not full
notFullCondition.Wait(queueLock);
}
queue.Enqueue(item);
// notify consumer queue not empty anymore
notEmptyCondition.Pulse();
}
}
Below is a link to the full source code of a proper Condition Variable class using 100% managed code in C#.
https://github.com/CodeExMachina/ConditionVariable
i think i found "The WAY" on the tipical problem of a
List<string> log;
used by multiple thread, one tha fill it and the other processing and the other one empting
avoiding empty
while(true){
//stuff
Thread.Sleep(100)
}
variables used in Program
public static readonly List<string> logList = new List<string>();
public static EventWaitHandle evtLogListFilled = new AutoResetEvent(false);
the processor work like
private void bw_DoWorkLog(object sender, DoWorkEventArgs e)
{
StringBuilder toFile = new StringBuilder();
while (true)
{
try
{
{
//waiting form a signal
Program.evtLogListFilled.WaitOne();
try
{
//critical section
Monitor.Enter(Program.logList);
int max = Program.logList.Count;
for (int i = 0; i < max; i++)
{
SetText(Program.logList[0]);
toFile.Append(Program.logList[0]);
toFile.Append("\r\n");
Program.logList.RemoveAt(0);
}
}
finally
{
Monitor.Exit(Program.logList);
// end critical section
}
try
{
if (toFile.Length > 0)
{
Logger.Log(toFile.ToString().Substring(0, toFile.Length - 2));
toFile.Clear();
}
}
catch
{
}
}
}
catch (Exception ex)
{
Logger.Log(System.Reflection.MethodBase.GetCurrentMethod(), ex);
}
Thread.Sleep(100);
}
}
On the filler thread we have
public static void logList_add(string str)
{
try
{
try
{
//critical section
Monitor.Enter(Program.logList);
Program.logList.Add(str);
}
finally
{
Monitor.Exit(Program.logList);
//end critical section
}
//set start
Program.evtLogListFilled.Set();
}
catch{}
}
this solution is fully tested, the istruction Program.evtLogListFilled.Set(); may release the lock on Program.evtLogListFilled.WaitOne() and also the next future lock.
I think this is the simpliest way.
I'm using a named mutex to lock access to a file (with path 'strFilePath') in a construction like this:
private void DoSomethingsWithAFile(string strFilePath)
{
Mutex mutex = new Mutex(false,strFilePath.Replace("\\",""));
try
{
mutex.WaitOne();
//do something with the file....
}
catch(Exception ex)
{
//handle exception
}
finally
{
mutex.ReleaseMutex();
}
}
So, this way the code will only block the thread when the same file is being processed already.
Well, I tested this and seemed to work okay, but I really would like to know your thoughts about this.
Since you are talking about a producer-consumer situation with multiple threads the "standard solution would be to use BlockingCollection which is part of .NET 4 and up - several links with information:
http://msdn.microsoft.com/en-us/library/dd997371.aspx
http://blogs.msdn.com/b/csharpfaq/archive/2010/08/12/blocking-collection-and-the-producer-consumer-problem.aspx
http://geekswithblogs.net/BlackRabbitCoder/archive/2011/03/03/c.net-little-wonders-concurrentbag-and-blockingcollection.aspx
http://www.albahari.com/threading/part5.aspx
IF you just want to make the locking process work then:
use a ConcurrentDictionary in combination with the TryAdd method call... if it returns true then the file was not "locked" and is now "locked" so the thread can proceed - and "unlock" it by calling Remove at the end... any other thread gets false in the meantime and can decide what to do...
I would definitely recommend the BlockingCollection approach though!
I ran into the same problem with many threads that can write in the same file.
The one of the reason that mutex not good because it slowly:
duration of call mutexSyncTest: 00:00:08.9795826
duration of call NamedLockTest: 00:00:00.2565797
BlockingCollection collection - very good idea, but for my case with rare collisions, parallel writes better than serial writes. Also way with dictionary much more easy to realise.
I use this solution (UPDATED):
public class NamedLock
{
private class LockAndRefCounter
{
public long refCount;
}
private ConcurrentDictionary<string, LockAndRefCounter> locksDictionary = new ConcurrentDictionary<string, LockAndRefCounter>();
public void DoWithLockBy(string key, Action actionWithLock)
{
var lockObject = new LockAndRefCounter();
var keyLock = locksDictionary.GetOrAdd(key, lockObject);
Interlocked.Increment(ref keyLock.refCount);
lock (keyLock)
{
actionWithLock();
Interlocked.Decrement(ref keyLock.refCount);
if (Interlocked.Read(ref keyLock.refCount) <= 0)
{
LockAndRefCounter removed;
locksDictionary.TryRemove(key, out removed);
}
}
}
}
An alternative would be: make one consumer thread which works on a queue, and blocks if it is empty. You can have several producer threads adding several filepaths to this queue and inform the consumer.
Since .net 4.0 there's a nice new class: System.Collections.Concurrent.BlockingCollection<T>
A while ago I had the same issue here on Stack Overflow - How do I implement my own advanced Producer/Consumer scenario?
What would be the correct usage of either, BlockingCollection or ConcurrentQueue so you can freely dequeue items without burning out half or more of your CPU using a thread ?
I was running some tests using 2 threads and unless I had a Thread.Sleep of at least 50~100ms it would always hit at least 50% of my CPU.
Here is a fictional example:
private void _DequeueItem()
{
object o = null;
while(socket.Connected)
{
while (!listOfQueueItems.IsEmpty)
{
if (listOfQueueItems.TryDequeue(out o))
{
// use the data
}
}
}
}
With the above example I would have to set a thread.sleep so the cpu doesnt blow up.
Note: I have also tried it without the while for IsEmpty check, result was the same.
It is not because of the BlockingCollection or ConcurrentQueue, but the while loop:
while(socket.Connected)
{
while (!listOfQueueItems.IsEmpty)
{ /*code*/ }
}
Of course it will take the cpu down; because of if the queue is empty, then the while loop is just like:
while (true) ;
which in turn will eat the cpu resources.
This is not a good way of using ConcurrentQueue you should use AutoResetEvent with it so whenever item is added you will be notified.
Example:
private ConcurrentQueue<Data> _queue = new ConcurrentQueue<Data>();
private AutoResetEvent _queueNotifier = new AutoResetEvent(false);
//at the producer:
_queue.Enqueue(new Data());
_queueNotifier.Set();
//at the consumer:
while (true)//or some condition
{
_queueNotifier.WaitOne();//here we will block until receive signal notification.
Data data;
if (_queue.TryDequeue(out data))
{
//handle the data
}
}
For a good usage of the BlockingCollection you should use the GetConsumingEnumerable() to wait for the items to be added, Like:
//declare the buffer
private BlockingCollection<Data> _buffer = new BlockingCollection<Data>(new ConcurrentQueue<Data>());
//at the producer method:
_messageBuffer.Add(new Data());
//at the consumer
foreach (Data data in _buffer.GetConsumingEnumerable())//it will block here automatically waiting from new items to be added and it will not take cpu down
{
//handle the data here.
}
You really want to be using the BlockingCollection class in this case. It is designed to block until an item appears in the queue. A collection of this nature is often referred to as a blocking queue. This particular implementation is safe for multiple producers and multiple consumers. That is something that is surprisingly difficult to get right if you tried implementing it yourself. Here is what your code would look like if you used BlockingCollection.
private void _DequeueItem()
{
while(socket.Connected)
{
object o = listOfQueueItems.Take();
// use the data
}
}
The Take method blocks automatically if the queue is empty. It blocks in a manner that puts the thread in the SleepWaitJoin state so that it will not consume CPU resources. The neat thing about BlockingCollection is that it also uses low-lock strategies to increase performance. What this means is that Take will check to see if there is an item in the queue and if not then it will briefly perform a spin wait to prevent a context switch of the thread. If the queue is still empty then it will put the thread to sleep. This means that BlockingCollection will have some of the performance benefits that ConcurrentQueue provides in regards to concurrent execution.
You can call Thread.Sleep() only when queue is empty:
private void DequeueItem()
{
object o = null;
while(socket.Connected)
{
if (listOfQueueItems.IsEmpty)
{
Thread.Sleep(50);
}
else if (listOfQueueItems.TryDequeue(out o))
{
// use the data
}
}
}
Otherwise you should consider to use events.
I think I may need to re-think my design. I'm having a hard time narrowing down a bug that is causing my computer to completely hang, sometimes throwing an HRESULT 0x8007000E from VS 2010.
I have a console application (that I will later convert to a service) that handles transferring files based on a database queue.
I am throttling the threads allowed to transfer. This is because some systems we are connecting to can only contain a certain number of connections from certain accounts.
For example, System A can only accept 3 simultaneous connections (which means 3 separate threads). Each one of these threads has their own unique connection object, so we shouldn't run in to any synchronization problems since they aren't sharing a connection.
We want to process the files from those systems in cycles. So, for example, we will allow 3 connections that can transfer up to 100 files per connection. This means, to move 1000 files from System A, we can only process 300 files per cycle, since 3 threads are allowed with 100 files each. Therefore, over the lifetime of this transfer, we will have 10 threads. We can only run 3 at a time. So, there will be 3 cycles, and the last cycle will only use 1 thread to transfer the last 100 files. (3 threads x 100 files = 300 files per cycle)
The current architecture by example is:
A System.Threading.Timer checks the queue every 5 seconds for something to do by calling GetScheduledTask()
If there's nothing to, GetScheduledTask() simply does nothing
If there is work, create a ThreadPool thread to process the work [Work Thread A]
Work Thread A sees that there are 1000 files to transfer
Work Thread A sees that it can only have 3 threads running to the system it is getting files from
Work Thread A starts three new work threads [B,C,D] and transfers
Work Thread A waits for B,C,D [WaitHandle.WaitAll(transfersArray)]
Work Thread A sees that there are still more files in the queue (should be 700 now)
Work Thread A creates a new array to wait on [transfersArray = new TransferArray[3] which is the max for System A, but could vary on system
Work Thread A starts three new work threads [B,C,D] and waits for them [WaitHandle.WaitAll(transfersArray)]
The process repeats until there are no more files to move.
Work Thread A signals that it is done
I am using ManualResetEvent to handle the signaling.
My questions are:
Is there any glaring circumstance which would cause a resource leak or problem that I am experiencing?
Should I loop thru the array after every WaitHandle.WaitAll(array) and call array[index].Dispose()?
The Handle count under the Task Manager for this process slowly creeps up
I am calling the initial creation of Worker Thread A from a System.Threading.Timer. Is there going to be any problems with this? The code for that timer is:
(Some class code for scheduling)
private ManualResetEvent _ResetEvent;
private void Start()
{
_IsAlive = true;
ManualResetEvent transferResetEvent = new ManualResetEvent(false);
//Set the scheduler timer to 5 second intervals
_ScheduledTasks = new Timer(new TimerCallback(ScheduledTasks_Tick), transferResetEvent, 200, 5000);
}
private void ScheduledTasks_Tick(object state)
{
ManualResetEvent resetEvent = null;
try
{
resetEvent = (ManualResetEvent)state;
//Block timer until GetScheduledTasks() finishes
_ScheduledTasks.Change(Timeout.Infinite, Timeout.Infinite);
GetScheduledTasks();
}
finally
{
_ScheduledTasks.Change(5000, 5000);
Console.WriteLine("{0} [Main] GetScheduledTasks() finished", DateTime.Now.ToString("MMddyy HH:mm:ss:fff"));
resetEvent.Set();
}
}
private void GetScheduledTask()
{
try
{
//Check to see if the database connection is still up
if (!_IsAlive)
{
//Handle
_ConnectionLostNotification = true;
return;
}
//Get scheduled records from the database
ISchedulerTask task = null;
using (DataTable dt = FastSql.ExecuteDataTable(
_ConnectionString, "hidden for security", System.Data.CommandType.StoredProcedure,
new List<FastSqlParam>() { new FastSqlParam(ParameterDirection.Input, SqlDbType.VarChar, "#ProcessMachineName", Environment.MachineName) })) //call to static class
{
if (dt != null)
{
if (dt.Rows.Count == 1)
{ //Only 1 row is allowed
DataRow dr = dt.Rows[0];
//Get task information
TransferParam.TaskType taskType = (TransferParam.TaskType)Enum.Parse(typeof(TransferParam.TaskType), dr["TaskTypeId"].ToString());
task = ScheduledTaskFactory.CreateScheduledTask(taskType);
task.Description = dr["Description"].ToString();
task.IsEnabled = (bool)dr["IsEnabled"];
task.IsProcessing = (bool)dr["IsProcessing"];
task.IsManualLaunch = (bool)dr["IsManualLaunch"];
task.ProcessMachineName = dr["ProcessMachineName"].ToString();
task.NextRun = (DateTime)dr["NextRun"];
task.PostProcessNotification = (bool)dr["NotifyPostProcess"];
task.PreProcessNotification = (bool)dr["NotifyPreProcess"];
task.Priority = (TransferParam.Priority)Enum.Parse(typeof(TransferParam.SystemType), dr["PriorityId"].ToString());
task.SleepMinutes = (int)dr["SleepMinutes"];
task.ScheduleId = (int)dr["ScheduleId"];
task.CurrentRuns = (int)dr["CurrentRuns"];
task.TotalRuns = (int)dr["TotalRuns"];
SchedulerTask scheduledTask = new SchedulerTask(new ManualResetEvent(false), task);
//Queue up task to worker thread and start
ThreadPool.QueueUserWorkItem(new WaitCallback(this.ThreadProc), scheduledTask);
}
}
}
}
catch (Exception ex)
{
//Handle
}
}
private void ThreadProc(object taskObject)
{
SchedulerTask task = (SchedulerTask)taskObject;
ScheduledTaskEngine engine = null;
try
{
engine = SchedulerTaskEngineFactory.CreateTaskEngine(task.Task, _ConnectionString);
engine.StartTask(task.Task);
}
catch (Exception ex)
{
//Handle
}
finally
{
task.TaskResetEvent.Set();
task.TaskResetEvent.Dispose();
}
}
0x8007000E is an out-of-memory error. That and the handle count seem to point to a resource leak. Ensure you're disposing of every object that implements IDisposable. This includes the arrays of ManualResetEvents you're using.
If you have time, you may also want to convert to using the .NET 4.0 Task class; it was designed to handle complex scenarios like this much more cleanly. By defining child Task objects, you can reduce your overall thread count (threads are quite expensive not only because of scheduling but also because of their stack space).
I'm looking for answers to a similar problem (Handles Count increasing over time).
I took a look at your application architecture and like to suggest you something that could help you out:
Have you heard about IOCP (Input Output Completion Ports).
I'm not sure of the dificulty to implement this using C# but in C/C++ it is a piece of cake.
By using this you create a unique thread pool (The number of threads in that pool is in general defined as 2 x the number of processors or processors cores in the PC or server)
You associate this pool to a IOCP Handle and the pool does the work.
See the help for these functions:
CreateIoCompletionPort();
PostQueuedCompletionStatus();
GetQueuedCompletionStatus();
In General creating and exiting threads on the fly could be time consuming and leads to performance penalties and memory fragmentation.
There are thousands of literature about IOCP in MSDN and in google.
I think you should reconsider your architecture altogether. The fact that you can only have 3 simultaneously connections is almost begging you to use 1 thread to generate the list of files and 3 threads to process them. Your producer thread would insert all files into a queue and the 3 consumer threads will dequeue and continue processing as items arrive in the queue. A blocking queue can significantly simplify the code. If you are using .NET 4.0 then you can take advantage of the BlockingCollection class.
public class Example
{
private BlockingCollection<string> m_Queue = new BlockingCollection<string>();
public void Start()
{
var threads = new Thread[]
{
new Thread(Producer),
new Thread(Consumer),
new Thread(Consumer),
new Thread(Consumer)
};
foreach (Thread thread in threads)
{
thread.Start();
}
}
private void Producer()
{
while (true)
{
Thread.Sleep(TimeSpan.FromSeconds(5));
ScheduledTask task = GetScheduledTask();
if (task != null)
{
foreach (string file in task.Files)
{
m_Queue.Add(task);
}
}
}
}
private void Consumer()
{
// Make a connection to the resource that is assigned to this thread only.
while (true)
{
string file = m_Queue.Take();
// Process the file.
}
}
}
I have definitely oversimplified things in the example above, but I hope you get the general idea. Notice how this is much simpler as there is not much in the way of thread synchronization (most will be embedded in the blocking queue) and of course there is no use of WaitHandle objects. Obviously you would have to add in the correct mechanisms to shut down the threads gracefully, but that should be fairly easy.
It turns out the source of this strange problem was not related to architecture but rather because of converting the solution from 3.5 to 4.0. I re-created the solution, performing no code changes, and the problem never occurred again.
I am having hard time in understanding Wait(), Pulse(), PulseAll(). Will all of them avoid deadlock? I would appreciate if you explain how to use them?
Short version:
lock(obj) {...}
is short-hand for Monitor.Enter / Monitor.Exit (with exception handling etc). If nobody else has the lock, you can get it (and run your code) - otherwise your thread is blocked until the lock is aquired (by another thread releasing it).
Deadlock typically happens when either A: two threads lock things in different orders:
thread 1: lock(objA) { lock (objB) { ... } }
thread 2: lock(objB) { lock (objA) { ... } }
(here, if they each acquire the first lock, neither can ever get the second, since neither thread can exit to release their lock)
This scenario can be minimised by always locking in the same order; and you can recover (to a degree) by using Monitor.TryEnter (instead of Monitor.Enter/lock) and specifying a timeout.
or B: you can block yourself with things like winforms when thread-switching while holding a lock:
lock(obj) { // on worker
this.Invoke((MethodInvoker) delegate { // switch to UI
lock(obj) { // oopsiee!
...
}
});
}
The deadlock appears obvious above, but it isn't so obvious when you have spaghetti code; possible answers: don't thread-switch while holding locks, or use BeginInvoke so that you can at least exit the lock (letting the UI play).
Wait/Pulse/PulseAll are different; they are for signalling. I use this in this answer to signal so that:
Dequeue: if you try to dequeue data when the queue is empty, it waits for another thread to add data, which wakes up the blocked thread
Enqueue: if you try and enqueue data when the queue is full, it waits for another thread to remove data, which wakes up the blocked thread
Pulse only wakes up one thread - but I'm not brainy enough to prove that the next thread is always the one I want, so I tend to use PulseAll, and simply re-verify the conditions before continuing; as an example:
while (queue.Count >= maxSize)
{
Monitor.Wait(queue);
}
With this approach, I can safely add other meanings of Pulse, without my existing code assuming that "I woke up, therefore there is data" - which is handy when (in the same example) I later needed to add a Close() method.
Simple recipe for use of Monitor.Wait and Monitor.Pulse. It consists of a worker, a boss, and a phone they use to communicate:
object phone = new object();
A "Worker" thread:
lock(phone) // Sort of "Turn the phone on while at work"
{
while(true)
{
Monitor.Wait(phone); // Wait for a signal from the boss
DoWork();
Monitor.PulseAll(phone); // Signal boss we are done
}
}
A "Boss" thread:
PrepareWork();
lock(phone) // Grab the phone when I have something ready for the worker
{
Monitor.PulseAll(phone); // Signal worker there is work to do
Monitor.Wait(phone); // Wait for the work to be done
}
More complex examples follow...
A "Worker with something else to do":
lock(phone)
{
while(true)
{
if(Monitor.Wait(phone,1000)) // Wait for one second at most
{
DoWork();
Monitor.PulseAll(phone); // Signal boss we are done
}
else
DoSomethingElse();
}
}
An "Impatient Boss":
PrepareWork();
lock(phone)
{
Monitor.PulseAll(phone); // Signal worker there is work to do
if(Monitor.Wait(phone,1000)) // Wait for one second at most
Console.Writeline("Good work!");
}
No, they don't protect you from deadlocks. They are just more flexible tools for thread synchronization. Here is a very good explanation how to use them and very important pattern of usage - without this pattern you will break all the things:
http://www.albahari.com/threading/part4.aspx
Something that total threw me here is that Pulse just gives a "heads up" to a thread in a Wait. The Waiting thread will not continue until the thread that did the Pulse gives up the lock and the waiting thread successfully wins it.
lock(phone) // Grab the phone
{
Monitor.PulseAll(phone); // Signal worker
Monitor.Wait(phone); // ****** The lock on phone has been given up! ******
}
or
lock(phone) // Grab the phone when I have something ready for the worker
{
Monitor.PulseAll(phone); // Signal worker there is work to do
DoMoreWork();
} // ****** The lock on phone has been given up! ******
In both cases it's not until "the lock on phone has been given up" that another thread can get it.
There might be other threads waiting for that lock from Monitor.Wait(phone) or lock(phone). Only the one that wins the lock will get to continue.
They are tools for synchronizing and signaling between threads. As such they do nothing to prevent deadlocks, but if used correctly they can be used to synchronize and communicate between threads.
Unfortunately most of the work needed to write correct multithreaded code is currently the developers' responsibility in C# (and many other languages). Take a look at how F#, Haskell and Clojure handles this for an entirely different approach.
Unfortunately, none of Wait(), Pulse() or PulseAll() have the magical property which you are wishing for - which is that by using this API you will automatically avoid deadlock.
Consider the following code
object incomingMessages = new object(); //signal object
LoopOnMessages()
{
lock(incomingMessages)
{
Monitor.Wait(incomingMessages);
}
if (canGrabMessage()) handleMessage();
// loop
}
ReceiveMessagesAndSignalWaiters()
{
awaitMessages();
copyMessagesToReadyArea();
lock(incomingMessages) {
Monitor.PulseAll(incomingMessages); //or Monitor.Pulse
}
awaitReadyAreaHasFreeSpace();
}
This code will deadlock! Maybe not today, maybe not tomorrow. Most likely when your code is placed under stress because suddenly it has become popular or important, and you are being called to fix an urgent issue.
Why?
Eventually the following will happen:
All consumer threads are doing some work
Messages arrive, the ready area can't hold any more messages, and PulseAll() is called.
No consumer gets woken up, because none are waiting
All consumer threads call Wait() [DEADLOCK]
This particular example assumes that producer thread is never going to call PulseAll() again because it has no more space to put messages in. But there are many, many broken variations on this code possible. People will try to make it more robust by changing a line such as making Monitor.Wait(); into
if (!canGrabMessage()) Monitor.Wait(incomingMessages);
Unfortunately, that still isn't enough to fix it. To fix it you also need to change the locking scope where Monitor.PulseAll() is called:
LoopOnMessages()
{
lock(incomingMessages)
{
if (!canGrabMessage()) Monitor.Wait(incomingMessages);
}
if (canGrabMessage()) handleMessage();
// loop
}
ReceiveMessagesAndSignalWaiters()
{
awaitMessagesArrive();
lock(incomingMessages)
{
copyMessagesToReadyArea();
Monitor.PulseAll(incomingMessages); //or Monitor.Pulse
}
awaitReadyAreaHasFreeSpace();
}
The key point is that in the fixed code, the locks restrict the possible sequences of events:
A consumer threads does its work and loops
That thread acquires the lock
And thanks to locking it is now true that either:
a. Messages haven't yet arrived in the ready area, and it releases the lock by calling Wait() BEFORE the message receiver thread can acquire the lock and copy more messages into the ready area, or
b. Messages have already arrived in the ready area and it receives the messages INSTEAD OF calling Wait(). (And while it is making this decision it is impossible for the message receiver thread to e.g. acquire the lock and copy more messages into the ready area.)
As a result the problem of the original code now never occurs:
3. When PulseEvent() is called No consumer gets woken up, because none are waiting
Now observe that in this code you have to get the locking scope exactly right. (If, indeed I got it right!)
And also, since you must use the lock (or Monitor.Enter() etc.) in order to use Monitor.PulseAll() or Monitor.Wait() in a deadlock-free fashion, you still have to worry about possibility of other deadlocks which happen because of that locking.
Bottom line: these APIs are also easy to screw up and deadlock with, i.e. quite dangerous
This is a simple example of monitor use :
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
namespace ConsoleApp4
{
class Program
{
public static int[] X = new int[30];
static readonly object _object = new object();
public static int count=0;
public static void PutNumbers(int numbersS, int numbersE)
{
for (int i = numbersS; i < numbersE; i++)
{
Monitor.Enter(_object);
try
{
if(count<30)
{
X[count] = i;
count++;
Console.WriteLine("Punt in " + count + "nd: "+i);
Monitor.Pulse(_object);
}
else
{
Monitor.Wait(_object);
}
}
finally
{
Monitor.Exit(_object);
}
}
}
public static void RemoveNumbers(int numbersS)
{
for (int i = 0; i < numbersS; i++)
{
Monitor.Enter(_object);
try
{
if (count > 0)
{
X[count] = 0;
int x = count;
count--;
Console.WriteLine("Removed " + x + " element");
Monitor.Pulse(_object);
}
else
{
Monitor.Wait(_object);
}
}
finally
{
Monitor.Exit(_object);
}
}
}
static void Main(string[] args)
{
Thread W1 = new Thread(() => PutNumbers(10,50));
Thread W2 = new Thread(() => PutNumbers(1, 10));
Thread R1 = new Thread(() => RemoveNumbers(30));
Thread R2 = new Thread(() => RemoveNumbers(20));
W1.Start();
R1.Start();
W2.Start();
R2.Start();
W1.Join();
R1.Join();
W2.Join();
R2.Join();
}
}
}