why can't a local variable be volatile in C#? - c#

public void MyTest()
{
bool eventFinished = false;
myEventRaiser.OnEvent += delegate { doStuff(); eventFinished = true; };
myEventRaiser.RaiseEventInSeperateThread()
while(!eventFinished) Thread.Sleep(1);
Assert.That(stuff);
}
Why can't eventFinished be volatile and does it matter?
It would seem to me that in this case the compiler or runtime could become to smart for its own good and 'know' in the while loop that eventFinished can only be false. Especially when you consider the way a lifted variable gets generated as a member of a class and the delegate as a method of that same class and thereby depriving optimizations of the fact that eventFinished was once a local variable.

There exists a threading primitive, ManualResetEvent to do precisely this task - you don't want to be using a boolean flag.
Something like this should do the job:
public void MyTest()
{
var doneEvent = new ManualResetEvent(false);
myEventRaiser.OnEvent += delegate { doStuff(); doneEvent.Set(); };
myEventRaiser.RaiseEventInSeparateThread();
doneEvent.WaitOne();
Assert.That(stuff);
}
Regarding the lack of support for the volatile keyword on local variables, I don't believe there is any reason why this might not in theory be possible in C#. Most likely, it is not supported simply because there was no use for such a feature prior to C# 2.0. Now, with the existence of anonymous methods and lambda functions, such support could potentially become useful. Someone please clarify matters if I'm missing something here.

In most scenarios, local variables are specific to a thread, so the issues associated with volatile are completely unnecessary.
This changes when, like in your example, it is a "captured" variable - when it is silently implemented as a field on a compiler-generated class. So in theory it could be volatile, but in most cases it wouldn't be worth the extra complexity.
In particular, something like a Monitor (aka lock) with Pulse etc could do this just as well, as could any number of other threading constructs.
Threading is tricky, and an active loop is rarely the best way to manage it...
Re the edit... secondThread.Join() would be the obvious thing - but if you really want to use a separate token, see below. The advantage of this (over things like ManualResetEvent) is that it doesn't require anything from the OS - it is handled purely inside the CLI.
using System;
using System.Threading;
static class Program {
static void WriteLine(string message) {
Console.WriteLine(Thread.CurrentThread.Name + ": " + message);
}
static void Main() {
Thread.CurrentThread.Name = "Main";
object syncLock = new object();
Thread thread = new Thread(DoStuff);
thread.Name = "DoStuff";
lock (syncLock) {
WriteLine("starting second thread");
thread.Start(syncLock);
Monitor.Wait(syncLock);
}
WriteLine("exiting");
}
static void DoStuff(object lockHandle) {
WriteLine("entered");
for (int i = 0; i < 10; i++) {
Thread.Sleep(500);
WriteLine("working...");
}
lock (lockHandle) {
Monitor.Pulse(lockHandle);
}
WriteLine("exiting");
}
}

You could also use Voltile.Write if you want to make the local var behave as Volatile. As in:
public void MyTest()
{
bool eventFinished = false;
myEventRaiser.OnEvent += delegate { doStuff(); Volatile.Write(ref eventFinished, true); };
myEventRaiser.RaiseEventInSeperateThread()
while(!Volatile.Read(eventFinished)) Thread.Sleep(1);
Assert.That(stuff);
}

What would happen if the Event raised didn't complete until after the process had exited the scope of that local variable? The variable would have been released and your thread would fail.
The sensible approach is to attach a delegate function that indicates to the parent thread that the sub-thread has completed.

Related

Use of volatile keyword on the flag field

I try to understand the use of volatile in multithread context. In the following code from another source of knowledge on the Internet:
class Program
{
static string _result;
//static volatile bool _done;
static bool _done;
static void SetVolatile()
{
// Set the string.
_result = "Dot Net Perls";
// The volatile field must be set at the end of this method.
_done = true;
}
static void Main()
{
// Run the above method on a new thread.
new Thread(new ThreadStart(SetVolatile)).Start();
// Wait a while.
Thread.Sleep(200);
// Read the volatile field.
if (_done)
{
Console.WriteLine(_result);
}
}
}
The demonstrated use of a volatile keyword should prevent a thread from reading a value stored in a cache. Instead of this it should check an actual value.
So without a volatile _done should still have a false value (read from the cache) and Console.WriteLine statement should not be executed.
Unfortunately running this code in Debug/Release mode without a volatile keyword always produces the output. What is the point of this particular example?
As already said, not using volatile keyword does not mean all reads will necessary be cached in all circumstances. They may be cached, or may be not. But if you want more reproducable example, try this:
class Program {
static string _result;
//static volatile bool _done;
static bool _done;
static void SetVolatile() {
// Set the string.
_result = "Dot Net Perls";
// The volatile field must be set at the end of this method.
_done = true;
}
static void Main() {
// Run the above method on a new thread.
new Thread(new ThreadStart(SetVolatile)).Start();
// prevent compiler to throw away empty while loop
// by doing something in it
int i = 0;
while (!_done) {
i++;
}
Console.WriteLine("done " + i);
}
}
Here you repeatedly read _done in a while loop, increasing possibility it will be cached. Program should terminate with "done" message but will not, because change to _done from another thread will not be noticed.
It's better to read ECMA-335, §I.12.6
Main points are:
Program can be optimized (a lot)
An optimizing compiler that converts CIL to native code shall not remove any volatile operation, nor shall it coalesce multiple volatile operations into a single operation
So, in this case, your code can be optimized.
Try the following code:
private bool flag = true;
public void LoopReadHoistingTest()
{
Task.Run(() => { flag = false; });
while (flag)
{
// Do nothing
}
}
In Debug mode (without optimizations) it will work fine. In Release mode (with optimizations) it will hang forever, because moving the read outside the loop is quite common optimization.
But if you mark field volatile (or use Volatile.Read method, or some of Interlocked methods) it will work because in that case optimizations are prohibited.
In your example (without loop), Thread.Sleep makes an implicit memory barrier (because it's not forbidden and it makes code to work with less surprises), so it will read the value from memory. But I don't see any specification saying that it has to do an implicit memory barrier, so in some implementations it can be not true (or we have to find it in specification).

non busy waiting for object initialization

I would like to do a non busy waiting for a variable to become non-null:
while (true)
{
if (myStaticVar != null)
{
break;
}
}
myStaticVar.DoSomething();
The myStaticVar could be set any time by any thread.
I am stuck to .net 4, so i can not use async/await.
The correct solution would be to let your threads communicate via a .NET synchronization primitive such as AutoResetEvent. Lots of examples can be found on SO, for example, here.
That said, manual thread synchronization is a hard problem and easy to get wrong. If your code is not time-critical and you prefer the simplicity of "busy waiting", don't forget to yield processor time while doing so. Either add some Thread.Sleep in your loop or use SpinWait.SpinUntil.
You could convert your variable into a property and use the set accessor to call a delegate.
void Main()
{
_someAction = () => Console.WriteLine("Hello world!");
myStaticVar = 20;
}
private static Int32 _myStaticVar;
private static Action _someAction;
public static Int32 myStaticVar
{
get
{
return _myStaticVar;
}
set
{
_myStaticVar = value;
if (_someAction != null)
_someAction();
}
}

Is there a general way to convert a critical section to one or more semaphores?

Is there a general way to convert a critical section to one or more semaphores? That is, is there some sort of straightforward transformation of the code that can be done to convert them?
For example, if I have two threads doing protected and unprotected work like below. Can I convert them to Semaphores that can be signaled, cleared and waited on?
void AThread()
{
lock (this)
{
Do Protected Work
}
Do Unprotected work.
}
The question came to me after thinking about C#'s lock() statement and if I could implement equivalent functionality with an EventWaitHandle instead.
Yes there is a general way to convert a lock section to use a Semaphore, using the same try...finally block that lock is equivalent to, with a Semaphore with a max count of 1, initialised to count 1.
EDIT (May 11th) recent research has shown me that my reference for the try ... finally equivalence is out of date. The code samples below would need to be adjusted accordingly as a result of this. (end edit)
private readonly Semaphore semLock = new Semaphore(1, 1);
void AThread()
{
semLock.WaitOne();
try {
// Protected code
}
finally {
semLock.Release();
}
// Unprotected code
}
However you would never do this. lock:
is used to restrict resource access to a single thread at a time,
conveys the intent that resources in that section cannot be simultaneously accessed by more than one thread
Conversely Semaphore:
is intended to control simultaneous access to a pool of resources with a limit on concurrent access.
conveys the intent of either a pool of resources that can be accessed by a maximum number of threads, or of a controlling thread that can release a number of threads to do some work when it is ready.
with a max count of 1 will perform slower than lock.
can be released by any thread, not just the one that entered the section (added in edit)
Edit: You also mention EventWaitHandle at the end of your question. It is worth noting that Semaphore is a WaitHandle, but not an EventWaitHandle, and also from the MSDN documentation for EventWaitHandle.Set:
There is no guarantee that every call to the Set method will release a thread from an EventWaitHandle whose reset mode is EventResetMode.AutoReset. If two calls are too close together, so that the second call occurs before a thread has been released, only one thread is released. It is as if the second call did not happen.
The Detail
You asked:
Is there a general way to convert a critical section to one or more semaphores? That is, is there some sort of straightforward transformation of the code that can be done to convert them?
Given that:
lock (this) {
// Do protected work
}
//Do unprotected work
is equivalent (see below for reference and notes on this) to
**EDIT: (11th May) as per the above comment, this code sample needs adjusting before use as per this link
Monitor.Enter(this);
try {
// Protected code
}
finally {
Monitor.Exit(this);
}
// Unprotected code
You can achieve the same using Semaphore by doing:
private readonly Semaphore semLock = new Semaphore(1, 1);
void AThread()
{
semLock.WaitOne();
try {
// Protected code
}
finally {
semLock.Release();
}
// Unprotected code
}
You also asked:
For example, if I have two threads doing protected and unprotected work like below. Can I convert them to Semaphores that can be signaled, cleared and waited on?
This is a question I struggled to understand, so I apologise. In your example you name your method AThread. To me, it's not really AThread, it's AMethodToBeRunByManyThreads !!
private readonly Semaphore semLock = new Semaphore(1, 1);
void MainMethod() {
Thread t1 = new Thread(AMethodToBeRunByManyThreads);
Thread t2 = new Thread(AMethodToBeRunByManyThreads);
t1.Start();
t2.Start();
// Now wait for them to finish - but how?
}
void AMethodToBeRunByManyThreads() { ... }
So semLock = new Semaphore(1, 1); will protect your "protected code", but lock is more appropriate for that use. The difference is that a Semaphore would allow a third thread to get involved:
private readonly Semaphore semLock = new Semaphore(0, 2);
private readonly object _lockObject = new object();
private int counter = 0;
void MainMethod()
{
Thread t1 = new Thread(AMethodToBeRunByManyThreads);
Thread t2 = new Thread(AMethodToBeRunByManyThreads);
t1.Start();
t2.Start();
// Now wait for them to finish
semLock.WaitOne();
semLock.WaitOne();
lock (_lockObject)
{
// uses lock to enforce a memory barrier to ensure we read the right value of counter
Console.WriteLine("done: {0}", counter);
}
}
void AMethodToBeRunByManyThreads()
{
lock (_lockObject) {
counter++;
Console.WriteLine("one");
Thread.Sleep(1000);
}
semLock.Release();
}
However, in .NET 4.5 you would use Tasks to do this and control your main thread synchronisation.
Here are a few thoughts:
lock(x) and Monitor.Enter - equivalence
The above statement about equivalence is not quite accurate. In fact:
"[lock] is precisely equivalent [to Monitor.Enter try ... finally] except x is only evaluated once [by lock]"
(ref: C# Language Specification)
This is minor, and probably doesn't matter to us.
You may have to be careful of memory barriers, and incrementing counter-like fields, so if you are using Semaphore you may still need lock, or Interlocked if you are confident of using it.
Beware of lock(this) and deadlocks
My original source for this would be Jeffrey Richter's article "Safe Thread Synchronization". That, and general best practice:
Don't lock this, instead create an object field within your class on class instantiation (don't use a value type, as it will be boxed anyway)
Make the object field readonly (personal preference - but it not only conveys intent, it also prevents your locking object being changed by other code contributors etc.)
The implications are many, but to make team working easier, follow best practice for encapsulation and to avoid nasty edge case errors that are hard for tests to detect, it is better to follow the above rules.
Your original code would therefore become:
private readonly object m_lockObject = new object();
void AThread()
{
lock (m_lockObject) {
// Do protected work
}
//Do unprotected work
}
(Note: generally Visual Studio helps you in its snippets by using SyncRoot as your lock object name)
Semaphore and lock are intended for different use
lock grants threads a spot on the "ready queue" on a FIFO basis (ref. Threading in C# - Joseph Albahari, part 2: Basic Synchronization, Section: Locking). When anyone sees lock, they know that usually inside that section is a shared resource, such as a class field, that should only be altered by a single thread at a time.
The Semaphore is a non-FIFO control for a section of code. It is great for publisher-subscriber (inter-thread communication) scenarios. The freedom around different threads being able to release the Semaphore to the ones that acquired it is very powerful. Semantically it does not necessarily say "only one thread accesses the resources inside this section", unlike lock.
Example: to increment a counter on a class, you might use lock, but not Semaphore
lock (_lockObject) {
counter++;
}
But to only increment that once another thread said it was ok to do so, you could use a Semaphore, not a lock, where Thread A does the increment once it has the Semaphore section:.
semLock.WaitOne();
counter++;
return;
And thread B releases the Semaphore when it is ready to allow the increment:
// when I'm ready in thread B
semLock.Release();
(Note that this is forced, a WaitHandle such as ManualResetEvent might be more appropriate in that example).
Performance
From a performance perspective, running the simple program below on a small multi thread VM, lock wins over Semaphore by a long way, although the timescales are still very fast and would be sufficient for all but high throughput software. Note that this ranking was broadly the same when running the test with two parallel threads accessing the lock.
Time for 100 iterations in ticks on a small VM (smaller is better):
291.334 (Semaphore)
44.075 (SemaphoreSlim)
4.510 (Monitor.Enter)
6.991 (Lock)
Ticks per millisecond: 10000
class Program
{
static void Main(string[] args)
{
Program p = new Program();
Console.WriteLine("100 iterations in ticks");
p.TimeMethod("Semaphore", p.AThreadSemaphore);
p.TimeMethod("SemaphoreSlim", p.AThreadSemaphoreSlim);
p.TimeMethod("Monitor.Enter", p.AThreadMonitorEnter);
p.TimeMethod("Lock", p.AThreadLock);
Console.WriteLine("Ticks per millisecond: {0}", TimeSpan.TicksPerMillisecond);
}
private readonly Semaphore semLock = new Semaphore(1, 1);
private readonly SemaphoreSlim semSlimLock = new SemaphoreSlim(1, 1);
private readonly object _lockObject = new object();
const int Iterations = (int)1E6;
int sharedResource = 0;
void TimeMethod(string description, Action a)
{
sharedResource = 0;
Stopwatch sw = new Stopwatch();
sw.Start();
for (int i = 0; i < Iterations; i++)
{
a();
}
sw.Stop();
Console.WriteLine("{0:0.000} ({1})", (double)sw.ElapsedTicks * 100d / (double)Iterations, description);
}
void TimeMethod2Threads(string description, Action a)
{
sharedResource = 0;
Stopwatch sw = new Stopwatch();
using (Task t1 = new Task(() => IterateAction(a, Iterations / 2)))
using (Task t2 = new Task(() => IterateAction(a, Iterations / 2)))
{
sw.Start();
t1.Start();
t2.Start();
Task.WaitAll(t1, t2);
sw.Stop();
}
Console.WriteLine("{0:0.000} ({1})", (double)sw.ElapsedTicks * (double)100 / (double)Iterations, description);
}
private static void IterateAction(Action a, int iterations)
{
for (int i = 0; i < iterations; i++)
{
a();
}
}
void AThreadSemaphore()
{
semLock.WaitOne();
try {
sharedResource++;
}
finally {
semLock.Release();
}
}
void AThreadSemaphoreSlim()
{
semSlimLock.Wait();
try
{
sharedResource++;
}
finally
{
semSlimLock.Release();
}
}
void AThreadMonitorEnter()
{
Monitor.Enter(_lockObject);
try
{
sharedResource++;
}
finally
{
Monitor.Exit(_lockObject);
}
}
void AThreadLock()
{
lock (_lockObject)
{
sharedResource++;
}
}
}
It's difficult to determine what you're asking for here.
If you just want something you can wait on, you can use a Monitor, which is what lock uses under the hood. That is, your lock sequence above is expanded to something like:
void AThread()
{
Monitor.Enter(this);
try
{
// Do protected work
}
finally
{
Monitor.Exit(this);
}
// Do unprotected work
}
By the way, lock (this) is generally not a good idea. You're better off creating a lock object:
private object _lockObject = new object();
Now, if you want to conditionally obtain the lock, you can use `Monitor.TryEnter:
if (Monitor.TryEnter(_lockObject))
{
try
{
// Do protected work
}
finally
{
Monitor.Exit(_lockObject);
}
}
If you want to wait with a timeout, use the TryEnter overload:
if (Monitor.TryEnter(_lockObject, 5000)) // waits for up to 5 seconds
The return value is true if the lock was obtained.
A mutex is fundamentally different from an EventWaitHandle or Semaphore in that only the thread that acquires the mutex can release it. Any thread can set or clear a WaitHandle, and any thread can release a Semaphore.
I hope that answers your question. If not, edit your question to give us more detail about what you're asking for.
You should consider taking a look a the Wintellect Power Threading libraries:
https://github.com/Wintellect/PowerThreading
One of the things these libraries do is create generic abstractions that allow threading primitives to be swapped out.
This means on a 1 or 2 processor machine where you see very little contention, you may use a standard lock. One a 4 or 8 processor machine where contention is common, perhaps a reader/writer lock is more correct. If you use the primitives such as ResourceLock you can swap out:
Spin Lock
Monitor
Mutex
Reader Writer
Optex
Semaphore
... and others
I've written code that dynamically, based on the number of processors, chose specific locks based on the amount of contention likely to be present. With the structure found in that library, this is practical to do.

Condition Variables C#/.NET

In my quest to build a condition variable class I stumbled on a trivially simple way of doing it and I'd like to share this with the stack overflow community. I was googling for the better part of an hour and was unable to actually find a good tutorial or .NET-ish example that felt right, hopefully this can be of use to other people out there.
It's actually incredibly simple, once you know about the semantics of lock and Monitor.
But first, you do need an object reference. You can use this, but remember that this is public, in the sense that anyone with a reference to your class can lock on that reference. If you are uncomfortable with this, you can create a new private reference, like this:
readonly object syncPrimitive = new object(); // this is legal
Somewhere in your code where you'd like to be able to provide notifications, it can be accomplished like this:
void Notify()
{
lock (syncPrimitive)
{
Monitor.Pulse(syncPrimitive);
}
}
And the place where you'd do the actual work is a simple looping construct, like this:
void RunLoop()
{
lock (syncPrimitive)
{
for (;;)
{
// do work here...
Monitor.Wait(syncPrimitive);
}
}
}
Yes, this looks incredibly deadlock-ish, but the locking protocol for Monitor is such that it will release the lock during the Monitor.Wait. In fact, it's a requirement that you have obtained the lock before you call either Monitor.Pulse, Monitor.PulseAll or Monitor.Wait.
There's one caveat with this approach that you should know about. Since the lock is required to be held before calling the communication methods of Monitor you should really only hang on to the lock for an as short duration as possible. A variation of the RunLoop that's more friendly towards long running background tasks would look like this:
void RunLoop()
{
for (;;)
{
// do work here...
lock (syncPrimitive)
{
Monitor.Wait(syncPrimitive);
}
}
}
But now we've changed up the problem a bit, because the lock is no longer protecting the shared resource throughout the processing. So, if some of your code in the do work here... bit needs to access a shared resource you'll need an separate lock managing access to that.
We can leverage the above to create a simple thread-safe producer consumer collection (although .NET already provides an excellent ConcurrentQueue<T> implementation; this is just to illustrate the simplicity of using Monitor in implementing such mechanisms).
class BlockingQueue<T>
{
// We base our queue on the (non-thread safe) .NET 2.0 Queue collection
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
q.Enqueue(item);
System.Threading.Monitor.Pulse(q);
}
}
public T Dequeue()
{
lock (q)
{
for (;;)
{
if (q.Count > 0)
{
return q.Dequeue();
}
System.Threading.Monitor.Wait(q);
}
}
}
}
Now the point here is not to build a blocking collection, that also available in the .NET framework (see BlockingCollection). The point is to illustrate how simple it is to build an event driven message system using the Monitor class in .NET to implement conditional variable. Hope you find this useful.
Use ManualResetEvent
The class that is similar to conditional variable is the ManualResetEvent, just that the method name is slightly different.
The notify_one() in C++ would be named Set() in C#.
The wait() in C++ would be named WaitOne() in C#.
Moreover, ManualResetEvent also provides a Reset() method to set the state of the event to non-signaled.
The accepted answer is not a good one.
According to the Dequeue() code, Wait() gets called in each loop, which causes unnecessary waiting thus excessive context switches. The correct paradigm should be, wait() is called when the waiting condition is met. In this case, the waiting condition is q.Count() == 0.
Here's a better pattern to follow when it comes to using a Monitor.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682052%28v=vs.85%29.aspx
Another comment on C# Monitor is, it does not make use of a condition variable(which will essentially wake up all threads waiting for that lock, regardless of the conditions in which they went to wait; consequently, some threads may grab the lock and immediately return to sleep when they find the waiting condition hasn't been changed). It does not provide you with as find-grained threading control as pthreads. But it's .Net anyway, so not completely unexpected.
=============upon the request of John, here's an improved version=============
class BlockingQueue<T>
{
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
while (false) // condition predicate(s) for producer; can be omitted in this particular case
{
System.Threading.Monitor.Wait(q);
}
// critical section
q.Enqueue(item);
}
// generally better to signal outside the lock scope
System.Threading.Monitor.Pulse(q);
}
public T Dequeue()
{
T t;
lock (q)
{
while (q.Count == 0) // condition predicate(s) for consumer
{
System.Threading.Monitor.Wait(q);
}
// critical section
t = q.Dequeue();
}
// this can be omitted in this particular case; but not if there's waiting condition for the producer as the producer needs to be woken up; and here's the problem caused by missing condition variable by C# monitor: all threads stay on the same waiting queue of the shared resource/lock.
System.Threading.Monitor.Pulse(q);
return t;
}
}
A few things I'd like to point out:
1, I think my solution captures the requirements & definitions more precisely than yours. Specifically, the consumer should be forced to wait if and only if there's nothing left in the queue; otherwise it's up to the OS/.Net runtime to schedule threads. In your solution, however, the consumer is forced to wait in each loop, regardless whether it has actually consumed anything or not - this is the excessive waiting/context switches I was talking about.
2, My solution is symmetric in the sense that both the consumer and the producer code share the same pattern while yours is not. If you did know the pattern and just omitted for this particular case, then I take back this point.
3, Your solution signals inside the lock scope, while my solutions signals outside the lock scope. Please refer to this answer as to why your solution is worse.
why should we signal outside the lock scope
I was talking about the flaw of missing condition variables in C# monitor, and here's its impact: there's simply no way for C# to implemented the solution of moving the waiting thread from the condition queue to the lock queue. Therefore, the excessive context switch is doomed to take place in the three-thread scenario proposed by the answer in the link.
Also, the lack of condition variable makes it impossible to distinguish between the various cases where threads wait on the same shared resource/lock, but for different reasons. All waiting threads are place on a big waiting queue for that shared resource, which undermines efficiency.
"But it's .Net anyway, so not completely unexpected" --- it's understandable that .Net does not pursue as high efficiency as C++, it's understandable. But it does not imply programmers should not know the differences and their impacts.
Go to deadlockempire.github.io/. They have an amazing tutorial that will help you understand the condition variable as well as locks and will cetainly help you write your desired class.
You can step through the following code at deadlockempire.github.io and trace it. Here is the code snippet
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
queue.Enqueue(42);
Monitor.PulseAll(mutex);
Monitor.Exit(mutex);
}
As has been pointed out by h9uest's answer and comments the Monitor's Wait interface does not allow for proper condition variables (i.e. it does not allow for waiting on multiple conditions per shared lock).
The good news is that the other synchronization primitives (e.g. SemaphoreSlim, lock keyword, Monitor.Enter/Exit) in .NET can be used to implement a proper condition variable.
The following ConditionVariable class will allow you to wait on multiple conditions using a shared lock.
class ConditionVariable
{
private int waiters = 0;
private object waitersLock = new object();
private SemaphoreSlim sema = new SemaphoreSlim(0, Int32.MaxValue);
public ConditionVariable() {
}
public void Pulse() {
bool release;
lock (waitersLock)
{
release = waiters > 0;
}
if (release) {
sema.Release();
}
}
public void Wait(object cs) {
lock (waitersLock) {
++waiters;
}
Monitor.Exit(cs);
sema.Wait();
lock (waitersLock) {
--waiters;
}
Monitor.Enter(cs);
}
}
All you need to do is create an instance of the ConditionVariable class for each condition you want to be able to wait on.
object queueLock = new object();
private ConditionVariable notFullCondition = new ConditionVariable();
private ConditionVariable notEmptyCondition = new ConditionVariable();
And then just like in the Monitor class, the ConditionVariable's Pulse and Wait methods must be invoked from within a synchronized block of code.
T Take() {
lock(queueLock) {
while(queue.Count == 0) {
// wait for queue to be not empty
notEmptyCondition.Wait(queueLock);
}
T item = queue.Dequeue();
if(queue.Count < 100) {
// notify producer queue not full anymore
notFullCondition.Pulse();
}
return item;
}
}
void Add(T item) {
lock(queueLock) {
while(queue.Count >= 100) {
// wait for queue to be not full
notFullCondition.Wait(queueLock);
}
queue.Enqueue(item);
// notify consumer queue not empty anymore
notEmptyCondition.Pulse();
}
}
Below is a link to the full source code of a proper Condition Variable class using 100% managed code in C#.
https://github.com/CodeExMachina/ConditionVariable
i think i found "The WAY" on the tipical problem of a
List<string> log;
used by multiple thread, one tha fill it and the other processing and the other one empting
avoiding empty
while(true){
//stuff
Thread.Sleep(100)
}
variables used in Program
public static readonly List<string> logList = new List<string>();
public static EventWaitHandle evtLogListFilled = new AutoResetEvent(false);
the processor work like
private void bw_DoWorkLog(object sender, DoWorkEventArgs e)
{
StringBuilder toFile = new StringBuilder();
while (true)
{
try
{
{
//waiting form a signal
Program.evtLogListFilled.WaitOne();
try
{
//critical section
Monitor.Enter(Program.logList);
int max = Program.logList.Count;
for (int i = 0; i < max; i++)
{
SetText(Program.logList[0]);
toFile.Append(Program.logList[0]);
toFile.Append("\r\n");
Program.logList.RemoveAt(0);
}
}
finally
{
Monitor.Exit(Program.logList);
// end critical section
}
try
{
if (toFile.Length > 0)
{
Logger.Log(toFile.ToString().Substring(0, toFile.Length - 2));
toFile.Clear();
}
}
catch
{
}
}
}
catch (Exception ex)
{
Logger.Log(System.Reflection.MethodBase.GetCurrentMethod(), ex);
}
Thread.Sleep(100);
}
}
On the filler thread we have
public static void logList_add(string str)
{
try
{
try
{
//critical section
Monitor.Enter(Program.logList);
Program.logList.Add(str);
}
finally
{
Monitor.Exit(Program.logList);
//end critical section
}
//set start
Program.evtLogListFilled.Set();
}
catch{}
}
this solution is fully tested, the istruction Program.evtLogListFilled.Set(); may release the lock on Program.evtLogListFilled.WaitOne() and also the next future lock.
I think this is the simpliest way.

Lazy<T> ExecutionAndPublication - Examples That Could Cause Deadlock

The documentation for LazyThreadSafetyMode states that using the value ExecutionAndPublication could cause deadlocks if the initialization method (or the default constructor, if there is no initialization method) uses locks internally. I am trying to get a better understanding of examples that could cause a deadlock when using this value. In my use of this value, I am initializing a ChannelFactory. I cannot see the ChannelFactory's constructor using any internal locks (reviewing the class with Reflector), so I believe this scenario does not fit the possible deadlock situation, but I am curious what situations could cause a deadlock as well as if there could be a possible deadlock initializing the ChannelFactory.
So, to summarize, my questions are:
Is it possible to cause a deadlock initializing the ChannelFactory using ExecutionAndPublication?
What are some possible ways to cause a deadlock initializing other objects using ExecutionAndPublication?
Suppose you have the following code:
class x
{
static Lazy<ChannelFactory<ISomeChannel>> lcf =
new Lazy<ChannelFactory<ISomeChannel>>(
() => new ChannelFactory<ISomeChannel>("someEndPointConfig"),
LazyThreadSafetyMode.ExecutionAndPublication
);
public static ISomeChannel Create()
{
return lcf.Value.CreateChannel();
}
}
It's as documented – if it doesn't use any locks, this usage cannot cause any deadlocks.
Imagine that you have a lazy value that you initialize by reading from a database, but you want to make sure that only one thread is accessing the DB at any moment. If you have other code that accesses the DB, you could have a deadlock. Consider the following code:
void Main()
{
Task otherThread = Task.Factory.StartNew(() => UpdateDb(43));
Thread.Sleep(100);
Console.WriteLine(lazyInt.Value);
}
static object l = new object();
Lazy<int> lazyInt = new Lazy<int>(Init, LazyThreadSafetyMode.ExecutionAndPublication);
static int Init()
{
lock(l)
{
return ReadFromDb();
}
}
void UpdateDb(int newValue)
{
lock(l)
{
// to make sure deadlock occurs every time
Thread.Sleep(1000);
if (newValue != lazyInt.Value)
{
// some code that requires the lock
}
}
}
Init() reads from the DB, so it has to use the lock. UpdateDb() writes to the DB, so it needs the lock too, and since Lazy uses a lock internally too in this case, it causes deadlock.
In this case, it would be easy to fix the deadlock by moving the access to lazyInt.Value in UpdateDb() outside the lock statement, but it may not be so trivial (or obvious) in other cases.

Categories

Resources