C# Threading and Queues - c#

This isn't about the different methods I could or should be using to utilize the queues in the best manner, rather something I have seen happening that makes no sense to me.
void Runner() {
// member variable
queue = Queue.Synchronized(new Queue());
while (true) {
if (0 < queue.Count) {
queue.Dequeue();
}
}
}
This is run in a single thread:
var t = new Thread(Runner);
t.IsBackground = true;
t.Start();
Other events are "Enqueue"ing else where. What I've seen happen is over a period of time, the Dequeue will actually throw InvalidOperationException, queue empty. This should be impossible seeing as how the count guarantees there is something there, and I'm positive that nothing else is "Dequeue"ing.
The question(s):
Is it possible that the Enqueue actually increases the count before the item is fully on the queue (whatever that means...)?
Is it possible that the thread is somehow restarting (expiring, reseting...) at the Dequeue statement, but immediately after it already removed an item?
Edit (clarification):
These code pieces are part of a Wrapper class that implements the background helper thread. The Dequeue here is the only Dequeue, and all Enqueue/Dequeue are on the Synchronized member variable (queue).

Using Reflector, you can see that no, the count does not get increased until after the item is added.
As Ben points out, it does seem as you do have multiple people calling dequeue.
You say you are positive that nothing else is calling dequeue. Is that because you only have the one thread calling dequeue? Is dequeue called anywhere else at all?
EDIT:
I wrote a little sample code, but could not get the problem to reproduce. It just kept running and running without any exceptions.
How long was it running before you got errors? Maybe you can share a bit more of the code.
class Program
{
static Queue q = Queue.Synchronized(new Queue());
static bool running = true;
static void Main()
{
Thread producer1 = new Thread(() =>
{
while (running)
{
q.Enqueue(Guid.NewGuid());
Thread.Sleep(100);
}
});
Thread producer2 = new Thread(() =>
{
while (running)
{
q.Enqueue(Guid.NewGuid());
Thread.Sleep(25);
}
});
Thread consumer = new Thread(() =>
{
while (running)
{
if (q.Count > 0)
{
Guid g = (Guid)q.Dequeue();
Console.Write(g.ToString() + " ");
}
else
{
Console.Write(" . ");
}
Thread.Sleep(1);
}
});
consumer.IsBackground = true;
consumer.Start();
producer1.Start();
producer2.Start();
Console.ReadLine();
running = false;
}
}

Here is what I think the problematic sequence is:
(0 < queue.Count) evaluates to true, the queue is not empty.
This thread gets preempted and another thread runs.
The other thread removes an item from the queue, emptying it.
This thread resumes execution, but is now within the if block, and attempts to dequeue an empty list.
However, you say nothing else is dequeuing...
Try outputting the count inside the if block. If you see the count jump numbers downwards, someone else is dequeuing.

Here's a possible answer from the MSDN page on this topic:
Enumerating through a collection is
intrinsically not a thread-safe
procedure. Even when a collection is
synchronized, other threads can still
modify the collection, which causes
the enumerator to throw an exception.
To guarantee thread safety during
enumeration, you can either lock the
collection during the entire
enumeration or catch the exceptions
resulting from changes made by other
threads.
My guess is that you're correct - at some point, there's a race condition happening, and you end up dequeuing something that isn't there.
A Mutex or Monitor.Lock is probably appropriate here.
Good luck!

Are the other areas that are "Enqueuing" data also using the same synchronized queue object? In order for the Queue.Synchronized to be thread-safe, all Enqueue and Dequeue operations must use the same synchronized queue object.
From MSDN:
To guarantee the thread safety of the
Queue, all operations must be done
through this wrapper only.
Edited:
If you are looping over many items that involve heavy computation or if you are using a long-term thread loop (communications, etc.), you should consider having a wait function such as System.Threading.Thread.Sleep, System.Threading.WaitHandle.WaitOne, System.Threading.WaitHandle.WaitAll, or System.Threading.WaitHandle.WaitAny in the loop, otherwise it might kill system performance.

question 1: If you're using a synchronized queue, then: no, you're safe! But you'll need to use the synchronized instance on both sides, the supplier and the feeder.
question 2: Terminating your worker thread when there is no work to do, is a simple job. However, you either way need a monitoring thread or have the queue start a background worker thread whenever the queue has something to do. The last one sounds more like the ActiveObject Pattern, than a simple queue (which's Single-Responsibily-Pattern says that it should only do queueing).
In addition, I'd go for a blocking queue instead of your code above. The way your code works requires CPU processing power even if there is no work to do. A blocking queue lets your worker thread sleep whenever there is nothing to do. You can have multiple sleeping threads running without using CPU processing power.
C# doesn't come with a blocking queue implementation, but there a many out there. See this example and this one.

Another option for making thread-safe use of queues is the ConcurrentQueue<T> class that has been introduced since 2009 (the year of this question). This may help avoid having to write your own synchronization code or at least help making it much simpler.
From .NET Framework 4.6 onward, ConcurrentQueue<T> also implements the interface IReadOnlyCollection<T>.

Related

Tell if Concurrent Queue updated without looping

thanks for the assistance. I've got a triple-threaded process, linked by a concurrent queue. Thread one processes information, returns to the second thread, which places data into a concurrent queue. The third thread is just looping like so:
while (true) {
if(queue.TryDequeue(out info)) {
doStuff(info);
} else {
Thread.Sleep(1);
}
}
Is there a better way to handle it such that I'm not iterating over the loop so much? The application is extremely performance sensitive, and currently just the TryDequeue is taking ~8-9% of the application runtime. Looking to decrease that as much as possible, but not really sure what my options are.
You should consider using System.Collections.Concurrent.BlockingCollection and its Add() / Take() methods. With Take() your third thread will be just suspended while waiting for new item. Add() is thread safe and can be used by second thread.
With that approach you should be able to simplify your code into something like that:
while (true) {
var info = collection.Take();
doStuff(info);
}
You can increase the sleep time. I would also use await Task.Delay instead of sleep. This way you can wait longer without the extra cpu cycles that Thread.Sleep uses and still be able to cancel the delay by making use of the CancellationTokenSource.
On another note, there are better ways of queuing up jobs. Taking into consideration that it appears you want to run these jobs synchronously, an example would be to have a singleton class that takes your work items and queues them up. So if there are no items in the queue when you add one, it should detect that and then start your job process. At the end of your job process, check for more work, use recursion to do that work or if no more jobs then exit the job process, which will run again when you add an item to the empty queue. If my assumption is wrong and you can run these jobs in parallel, why use a queue?
You may like to use a thread safe implementation of ObservableCollection. Check out this SO question ObservableCollection and threading
I don't have a recommendation that avoids looping, however I would recommend you move away from
while (true)
and consider this instead:
MyThing thing;
while (queue.TryDequeue(out thing))
{
doWork(thing);
}
Put this in a method that gets called each time the queue is modified, this ensures it is running when needed, but ends when not needed.

Monitor.Wait, Condition variable

Given a following code snippet(found in somewhere while learning threading).
public class BlockingQueue<T>
{
private readonly object sync = new object();
private readonly Queue<T> queue;
public BlockingQueue()
{
queue = new Queue<T>();
}
public void Enqueue(T item)
{
lock (sync)
{
queue.Enqueue(item);
Monitor.PulseAll(sync);
}
}
public T Dequeue()
{
lock (sync)
{
while (queue.Count == 0)
Monitor.Wait(sync);
return queue.Dequeue();
}
}
}
What I want to understand is ,
Why is there a while loop ?
while (queue.Count == 0)
Monitor.Wait(sync);
and what is wrong with the,
if(queue.Count == 0)
Monitor.Wait(sync);
In fact, all the time when I see the similar code I found using while loop, can anyone please help me understand the use of one above another.
Thank you.
You need to understand what Pulse, PulseAll, and Wait are doing. The Monitor maintains two queues: the waiting queue and the ready queue. When a thread calls Wait it is moved into the waiting queue. When a thread calls Pulse it moves one and only one thread from the waiting queue to the ready queue. When a thread calls PulseAll it moves all threads from the waiting queue to the ready queue. Threads in the ready queue are eligible to reacquire the lock at any moment, but only after the current holder releases it of course.
Based on this knowledge it is fairly easy to understand why you must recheck the queue count when using PulseAll. It is because all dequeueing threads will eventually wake and will want to attempt to extract an item from queue. But, what if there is only one item in the queue to begin with? Obviously, we must recheck the queue count to avoid dequeueing an empty queue.
So what would be the conclusion if you had used Pulse instead of PulseAll? There would still be a problem with the simple if check. The reason is because a thread from the ready queue is not necessarily going to be the next thread to acquire the lock. That is because the Monitor does not give preference to a Wait call above an Enter call.
The while loop is a fairly standard pattern when using Monitor.Wait. This is because pulsing a thread does not have semantic meaning by itself. It is only a signal that the lock state has changed. When threads wake up after blocking on Wait they should recheck the same condition that was originally used to block the thread to see if the thread can now proceed. Sometimes it cannot and so it should block some more.
The best rule of thumb here is that if there is doubt about whether to use an if check or a while check then always choose a while loop because it is safer. In fact, I would take this to the extreme and suggest to always use a while loop because there is no inherent advantage in using the simpler if check and because the if check is almost always the wrong choice anyway. A similar rule holds for choosing whether to use Pulse or PulseAll. If there is doubt about which one to use then always choose PulseAll.
you have to keep checking whether the queue is still empty or not. Using only if would only check it once, wait for a while, then a dequeue. What if at that time the queue is still empty? BANG! queue underflow error...
with if condition when something released the lock the queue.Count == 0 will not check again and maybe a queue underflow error so we have to check the condition every time because of concurrency and this is called Spinning
Why on Unix it could go wrong is because of the spurious wake up, possibility caused by OS signals. It is a side effect that is not guaranteed to never happen on windows as well. This is not a legacy, it is how OS works. If Monitors are implemented in terms of Condition Variable, that is.
def : a spurious wake up is a re-scheduling of a sleeping thread on a condition variable wait site, that was not triggered by an action coming from the current program threads (like Pulse()).
This inconvenience could be masked in managed languages by, e.g. the queues. So before going out of the Wait() function, the framework could check that this running thread is actually really being requested for scheduling, if it does not find itself in a run queue it can go back to sleep. Hiding the problem.
if (queue.Count == 0)
will do.
Using while loop pattern for "wait for and check condition" context is a legacy leftover, I think. Because non-Windows, non-.NET monitor variables can be triggered without actual Pulse.
In .NET, you private monitor variable cannot be triggered without Queue filling so you don't need to worry about queue underflow after monitor waiting. But, it is really not bad habit to use while loop for "wait for and check condition".

does Monitor.Wait Needs synchronization?

I have developed a generic producer-consumer queue which pulses by Monitor in the following way:
the enqueue :
public void EnqueueTask(T task)
{
_workerQueue.Enqueue(task);
Monitor.Pulse(_locker);
}
the dequeue:
private T Dequeue()
{
T dequeueItem;
if (_workerQueue.Count > 0)
{
_workerQueue.TryDequeue(out dequeueItem);
if(dequeueItem!=null)
return dequeueItem;
}
while (_workerQueue.Count == 0)
{
Monitor.Wait(_locker);
}
_workerQueue.TryDequeue(out dequeueItem);
return dequeueItem;
}
the wait section produces the following SynchronizationLockException :
"object synchronization method was called from an unsynchronized block of code"
do i need to synch it? why ? Is it better to use ManualResetEvents or the Slim version of .NET 4.0?
Yes, the current thread needs to "own" the monitor in order to call either Wait or Pulse, as documented. (So you'll need to lock for Pulse as well.) I don't know the details for why it's required, but it's the same in Java. I've usually found I'd want to do that anyway though, to make the calling code clean.
Note that Wait releases the monitor itself, then waits for the Pulse, then reacquires the monitor before returning.
As for using ManualResetEvent or AutoResetEvent instead - you could, but personally I prefer using the Monitor methods unless I need some of the other features of wait handles (such as atomically waiting for any/all of multiple handles).
From the MSDN description of Monitor.Wait():
Releases the lock on an object and blocks the current thread until it reacquires the lock.
The 'releases the lock' part is the problem, the object isn't locked. You are treating the _locker object as though it is a WaitHandle. Doing your own locking design that's provably correct is a form of black magic that's best left to our medicine man, Jeffrey Richter and Joe Duffy. But I'll give this one a shot:
public class BlockingQueue<T> {
private Queue<T> queue = new Queue<T>();
public void Enqueue(T obj) {
lock (queue) {
queue.Enqueue(obj);
Monitor.Pulse(queue);
}
}
public T Dequeue() {
T obj;
lock (queue) {
while (queue.Count == 0) {
Monitor.Wait(queue);
}
obj = queue.Dequeue();
}
return obj;
}
}
In most any practical producer/consumer scenario you will want to throttle the producer so it cannot fill the queue unbounded. Check Duffy's BoundedBuffer design for an example. If you can afford to move to .NET 4.0 then you definitely want to take advantage of its ConcurrentQueue class, it has lots more black magic with low-overhead locking and spin-waiting.
The proper way to view Monitor.Wait and Monitor.Pulse/PulseAll is not as providing a means of waiting, but rather (for Wait) as a means of letting the system know that the code is in a waiting loop which can't exit until something of interest changes, and (for Pulse/PulseAll) as a means of letting the system know that code has just changed something that might cause satisfy the exit condition some other thread's waiting loop. One should be able to replace all occurrences of Wait with Sleep(0) and still have code work correctly (even if much less efficiently, as a result of spending CPU time repeatedly testing conditions that haven't changed).
For this mechanism to work, it is necessary to avoid the possibility of the following sequence:
The code in the wait loop tests the condition when it isn't satisfied.
The code in another thread changes the condition so that it is satisfied.
The code in that other thread pulses the lock (which nobody is yet waiting on).
The code in the wait loop performs a Wait since its condition wasn't satisfied.
The Wait method requires that the waiting thread have a lock, since that's the only way it can be sure that the condition it's waiting upon won't change between the time it's tested and the time the code performs the Wait. The Pulse method requires a lock because that's the only way it can be sure that if another thread has "committed" itself to performing a Wait, the Pulse won't occur until after the other thread actually does so. Note that using Wait within a lock doesn't guarantee that it's being used correctly, but there's no way that using Wait outside a lock could possibly be correct.
The Wait/Pulse design actually works reasonably well if both sides cooperate. The biggest weaknesses of the design, IMHO, are (1) there's no mechanism for a thread to wait until any of a number of objects is pulsed; (2) even if one is "shutting down" an object such that all future wait loops should exit immediately (probably by checking an exit flag), the only way to ensure that any Wait to which a thread has committed itself will get a Pulse is to acquire the lock, possibly waiting indefinitely for it to become available.

How do you determine if child threads have completed

I am using multiple threads in my application using while(true) loop and now i want to exit from loop when all the active threads complete their work.
Assuming that you have a list of the threads themselves, here are two approaches.
Solution the first:
Use Thread.Join() with a timespan parameter to synch up with each thread in turn. The return value tells you whether the thread has finished or not.
Solution the second:
Check Thread.IsAlive() to see if the thread is still running.
In either situation, make sure that your main thread yields processor time to the running threads, else your wait loop will consume most/all the CPU and starve your worker threads.
You can use Process.GetCurrentProcess().Threads.Count.
There are various approaches here, but utlimately most of them come down to your changing the executed threads to do something whenever they leave (success or via exception, which you don't want to do anyway). A simple approach might be to use Interlock.Decrement to reduce a counter - and if it is zero (or -ve, which probably means an error) release a ManualResetEvent or Monitor.Pulse an object; in either case, the original thread would be waiting on that object. A number of such approaches are discussed here.
Of course, it might be easier to look at the TPL bits in 4.0, which provide a lot of new options here (not least things like Parallel.For in PLINQ).
If you are using a synchronized work queue, it might also be possible to set that queue to close (drain) itself, and simply wait for the queue to be empty? The assumption here being that your worker threads are doing something like:
T workItem;
while(queue.TryDequeue(out workItem)) { // this may block until either something
ProcessWorkItem(workItem); // todo, or the queue is terminated
}
// queue has closed - exit the thread
in which case, once the queue is empty all your worker threads should already be in the process of suicide.
You can use Thread.Join(). The Join method will block the calling thread until the thread (the one on which the Join method is called) terminates.
So if you have a list of thread, then you can loop through and call Join on each thread. You loop will only exit when all the threads are dead. Something like this:
for(int i = 0 ;i < childThreadList.Count; i++)
{
childThreadList[i].Join();
}
///...The following code will execute when all threads in the list have been terminated...///
I find that using the Join() method is the cleanest way. I use multiple threads frequently, and each thread is typically loading data from different data sources (Informix, Oracle and SQL at the same time.) A simple loop, as mentioned above, calling Join() on each thread object (which I store in a simple List object) works!!!
Carlos Merighe.
I prefer using a HashSet of Threads:
// create a HashSet of heavy tasks (threads) to run
HashSet<Thread> Threadlist = new HashSet<Thread>();
Threadlist.Add(new Thread(() => SomeHeavyTask1()));
Threadlist.Add(new Thread(() => SomeHeavyTask2()));
Threadlist.Add(new Thread(() => SomeHeavyTask3()));
// start the threads
foreach (Thread T in Threadlist)
T.Start();
// these will execute sequential
NotSoHeavyTask1();
NotSoHeavyTask2();
NotSoHeavyTask3();
// loop through tasks to see if they are still active, and join them to main thread
foreach (Thread T in Threadlist)
if (T.ThreadState == ThreadState.Running)
T.Join();
// finally this code will execute
MoreTasksToDo();

Maximum queued elements in ThreadPool.QueueUserWorkItem

I set the max thread to 10. Then I added 22000 task using ThreadPool.QueueUserWorkItem.
It is very likely that not all the 22000 task was completed after running the program. Is there a limitation how many task can be queued for avaiable threads?
If you need to wait for all of the tasks to process, you need to handle that yourself. The ThreadPool threads are all background threads, and will not keep the application alive.
This is a relatively clean way to handle this type of situation:
using (var mre = new ManualResetEvent(false))
{
int remainingToProcess = workItems.Count(); // Assuming workItems is a collection of "tasks"
foreach(var item in workItems)
{
// Delegate closure (in C# 4 and earlier) below will
// capture a reference to 'item', resulting in
// the incorrect item sent to ProcessTask each iteration. Use a local copy
// of the 'item' variable instead.
// C# 5/VS2012 will not require the local here.
var localItem = item;
ThreadPool.QueueUserWorkItem(delegate
{
// Replace this with your "work"
ProcessTask(localItem);
// This will (safely) decrement the remaining count, and allow the main thread to continue when we're done
if (Interlocked.Decrement(ref remainingToProcess) == 0)
mre.Set();
});
}
mre.WaitOne();
}
That being said, it's usually better to "group" together your work items if you have thousands of them, and not treat them as separate Work Items for the threadpool. This is some overhead involved in managing the list of items, and since you won't be able to process 22000 at a time, you're better off grouping these into blocks. Having single work items each process 50 or so will probably help your overall throughput quite a bit...
The queue has no practical limit however the pool itself will not exceed 64 wait handles, ie total threads active.
This is an implementation dependent question and the implementation of this function has changed a bit over time. But in .Net 4.0, you're essentially limited by the amount of memory in the system as the tasks are stored in an in memory queue. You can see this by digging through the implementation in reflector.
From the documentation of ThreadPool:
Note: The threads in the managed thread pool are background threads. That is, their IsBackground properties are true. This means that a ThreadPool thread will not keep an application running after all foreground threads have exited.
Is it possible that you're exiting before all tasks have been processed?

Categories

Resources