What is the generic version of a Hashtable? - c#

I have been learning the basics of generics in .NET. However, I don't see the generic equivalent of Hashtable. Please share some sample C# code for creating generic hashtable classes.

Dictionary<TKey, TValue>
Note that Dictionary is not a 100% drop in replacement for HashTable.
There is a slight difference in the way they handle NULLs.
The dictionary will throw an exception if you try to reference a key that doesn't exist. The HashTable will just return null.
The reason is that the value might be a value type, which cannot be null. In a Hashtable the value was always Object, so returning null was at least possible.

The generic version of Hashtable class is System.Collections.Generic.Dictionary class.
Sample code:
Dictionary<int, string> numbers = new Dictionary<int, string>( );
numbers.Add(1, "one");
numbers.Add(2, "two");
// Display all key/value pairs in the Dictionary.
foreach (KeyValuePair<int, string> kvp in numbers)
{
Console.WriteLine("Key: " + kvp.Key + "\tValue: " + kvp.Value);
}

The generic version of a Hashtable is the Dictionary<TKey,TValue> class (link). Here is some sample code translated from using a Hashtable into the most direct equivalent of Dictionary (argument checking removed for sake of brevity)
public HashTable Create(int[] keys, string[] values) {
HashTable table = new HashTable();
for ( int i = 0; i < keys.Length; i++ ) {
table[keys[i]] = values[i];
}
return table;
}
public Dictionary<object,object> Create(int[] keys, string[] values) {
Dictionary<object,object> map = Dictionary<object,object>();
for ( int i = 0; i < keys.Length; i++) {
map[keys[i]] = values[i];
}
return map;
}
That's a fairly direct translation. But the problem is that this does not actually take advantage of the type safe features of generics. The second function could be written as follows and be much more type safe and inccur no boxing overhead
public Dictionary<int,string> Create(int[] keys, string[] values) {
Dictionary<int,string> map = Dictionary<int,string>();
for ( int i = 0; i < keys.Length; i++) {
map[keys[i]] = values[i];
}
return map;
}
Even better. Here's a completely generic version
public Dictionary<TKey,TValue> Create<TKey,TValue>(TKey[] keys, TValue[] values) {
Dictionary<TKey,TValue> map = Dictionary<TKey,TValue>();
for ( int i = 0; i < keys.Length; i++) {
map[keys[i]] = values[i];
}
return map;
}
And one that is even further flexible (thanks Joel for pointing out I missed this)
public Dictionary<TKey,TValue> Create<TKey,TValue>(
IEnumerable<TKey> keys,
IEnumerable<TValue> values) {
Dictionary<TKey,TValue> map = Dictionary<TKey,TValue>();
using ( IEnumerater<TKey> keyEnum = keys.GetEnumerator() )
using ( IEnumerator<TValue> valueEnum = values.GetEnumerator()) {
while (keyEnum.MoveNext() && valueEnum.MoveNext() ) {
map[keyEnum.Current] = valueEnum.Current;
}
}
return map;
}

For those who are interested, I created a generic Hashtable wrapper class, which is useful for enforcing type safety and can be passed as a generic IDictionary, ICollection and IEnumerable type, whereas the non-generic Hashtable cannot. Below is the implementation.
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Common.Collections.Generic
{
public class Hashtable<TKey, TValue> : IDictionary<TKey, TValue>
, ICollection<KeyValuePair<TKey, TValue>>
, IEnumerable<KeyValuePair<TKey, TValue>>
, IDictionary
, ICollection
, IEnumerable
{
protected Hashtable _items;
/// <summary>
/// Initializes a new, empty instance of the Hashtable class using the default initial capacity, load factor, hash code provider, and comparer.
/// </summary>
public Hashtable()
{
_items = new Hashtable();
}
/// <summary>
/// Initializes a new, empty instance of the Hashtable class using the specified initial capacity, and the default load factor, hash code provider, and comparer.
/// </summary>
/// <param name="capacity">The approximate number of elements that the Hashtable object can initially contain. </param>
public Hashtable(int capacity)
{
_items = new Hashtable(capacity);
}
/// <summary>
/// Actual underlying hashtable object that contains the elements.
/// </summary>
public Hashtable Items { get { return _items; } }
/// <summary>
/// Adds an element with the specified key and value into the Hashtable.
/// </summary>
/// <param name="key">Key of the new element to add.</param>
/// <param name="value">Value of the new elment to add.</param>
public void Add(TKey key, TValue value)
{
_items.Add(key, value);
}
/// <summary>
/// Adds an element with the specified key and value into the Hashtable.
/// </summary>
/// <param name="item">Item containing the key and value to add.</param>
public void Add(KeyValuePair<TKey, TValue> item)
{
_items.Add(item.Key, item.Value);
}
void IDictionary.Add(object key, object value)
{
this.Add((TKey)key, (TValue)value);
}
/// <summary>
/// Add a list of key/value pairs to the hashtable.
/// </summary>
/// <param name="collection">List of key/value pairs to add to hashtable.</param>
public void AddRange(IEnumerable<KeyValuePair<TKey, TValue>> collection)
{
foreach (var item in collection)
_items.Add(item.Key, item.Value);
}
/// <summary>
/// Determines whether the Hashtable contains a specific key.
/// </summary>
/// <param name="key">Key to locate.</param>
/// <returns>True if key is found, otherwise false.</returns>
public bool ContainsKey(TKey key)
{
return _items.ContainsKey(key);
}
/// <summary>
/// Determines whether the Hashtable contains a specific key.
/// </summary>
/// <param name="item">Item containing the key to locate.</param>
/// <returns>True if item.Key is found, otherwise false.</returns>
public bool Contains(KeyValuePair<TKey, TValue> item)
{
return _items.ContainsKey(item.Key);
}
bool IDictionary.Contains(object key)
{
return this.ContainsKey((TKey)key);
}
/// <summary>
/// Gets an ICollection containing the keys in the Hashtable.
/// </summary>
public ICollection<TKey> Keys
{
get { return _items.ToList<TKey>(); }
}
ICollection IDictionary.Keys
{
get { return this.Keys.ToList(); }
}
/// <summary>
/// Gets the value associated with the specified key.
/// </summary>
/// <param name="key">The key of the value to get.</param>
/// <param name="value">When this method returns, contains the value associated with the specified key,
/// if the key is found; otherwise, the default value for the type of the value parameter. This parameter
/// is passed uninitialized.</param>
/// <returns>true if the hashtable contains an element with the specified key, otherwise false.</returns>
public bool TryGetValue(TKey key, out TValue value)
{
value = (TValue)_items[key];
return (value != null);
}
/// <summary>
/// Gets an ICollection containing the values in the Hashtable.
/// </summary>
public ICollection<TValue> Values
{
get { return _items.Values.ToList<TValue>(); }
}
ICollection IDictionary.Values
{
get { return this.Values.ToList(); }
}
/// <summary>
/// Gets or sets the value associated with the specified key.
/// </summary>
/// <param name="key">The key whose value to get or set. </param>
/// <returns>The value associated with the specified key. If the specified key is not found,
/// attempting to get it returns null, and attempting to set it creates a new element using the specified key.</returns>
public TValue this[TKey key]
{
get
{
return (TValue)_items[key];
}
set
{
_items[key] = value;
}
}
/// <summary>
/// Removes all elements from the Hashtable.
/// </summary>
public void Clear()
{
_items.Clear();
}
/// <summary>
/// Copies all key/value pairs in the hashtable to the specified array.
/// </summary>
/// <param name="array">Object array to store objects of type "KeyValuePair<TKey, TValue>"</param>
/// <param name="arrayIndex">Starting index to store objects into array.</param>
public void CopyTo(Array array, int arrayIndex)
{
_items.CopyTo(array, arrayIndex);
}
/// <summary>
/// Copies all key/value pairs in the hashtable to the specified array.
/// </summary>
/// <param name="array">Object array to store objects of type "KeyValuePair<TKey, TValue>"</param>
/// <param name="arrayIndex">Starting index to store objects into array.</param>
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
{
_items.CopyTo(array, arrayIndex);
}
/// <summary>
/// Gets the number of key/value pairs contained in the Hashtable.
/// </summary>
public int Count
{
get { return _items.Count; }
}
/// <summary>
/// Gets a value indicating whether the Hashtable has a fixed size.
/// </summary>
public bool IsFixedSize
{
get { return _items.IsFixedSize; }
}
/// <summary>
/// Gets a value indicating whether the Hashtable is read-only.
/// </summary>
public bool IsReadOnly
{
get { return _items.IsReadOnly; }
}
/// <summary>
/// Gets a value indicating whether access to the Hashtable is synchronized (thread safe).
/// </summary>
public bool IsSynchronized
{
get { return _items.IsSynchronized; }
}
/// <summary>
/// Gets an object that can be used to synchronize access to the Hashtable.
/// </summary>
public object SyncRoot
{
get { return _items.SyncRoot; }
}
/// <summary>
/// Removes the element with the specified key from the Hashtable.
/// </summary>
/// <param name="key">Key of the element to remove.</param>
public void Remove(TKey key)
{
_items.Remove(key);
}
/// <summary>
/// Removes the element with the specified key from the Hashtable.
/// </summary>
/// <param name="item">Item containing the key of the element to remove.</param>
public void Remove(KeyValuePair<TKey, TValue> item)
{
this.Remove(item.Key);
}
bool IDictionary<TKey, TValue>.Remove(TKey key)
{
var numValues = _items.Count;
_items.Remove(key);
return numValues > _items.Count;
}
bool ICollection<KeyValuePair<TKey, TValue>>.Remove(KeyValuePair<TKey, TValue> item)
{
var numValues = _items.Count;
_items.Remove(item.Key);
return numValues > _items.Count;
}
void IDictionary.Remove(object key)
{
_items.Remove(key);
}
/// <summary>
/// Returns an enumerator that iterates through the hashtable.
/// </summary>
/// <returns>An enumerator for a list of key/value pairs.</returns>
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
{
foreach (DictionaryEntry? item in _items)
yield return new KeyValuePair<TKey, TValue>((TKey)item.Value.Key, (TValue)item.Value.Value);
}
/// <summary>
/// Returns an enumerator that iterates through the hashtable.
/// </summary>
/// <returns>An enumerator for a list of key/value pairs as generic objects.</returns>
IEnumerator IEnumerable.GetEnumerator()
{
return this.GetEnumerator();
}
IDictionaryEnumerator IDictionary.GetEnumerator()
{
// Very old enumerator that no one uses anymore, not supported.
throw new NotImplementedException();
}
object IDictionary.this[object key]
{
get
{
return _items[(TKey)key];
}
set
{
_items[(TKey)key] = value;
}
}
}
}
I have done some testing of this Hashtable vs Dictionary and found the two perform about the same when used with a string key and string value pair, except the Hashtable seems to use less memory. The results of my test are as follows:
TestInitialize Dictionary_50K_Hashtable
Number objects 50000, memory usage 905164
Insert, 22 milliseconds.
A search not found, 0 milliseconds.
Search found, 0 milliseconds.
Remove, 0 milliseconds.
Search found or not found, 0 milliseconds.
TestCleanup Dictionary_50K_Hashtable
TestInitialize Dictionary_50K_Dictionary
Number objects 50000, memory usage 1508316
Insert, 16 milliseconds.
A search not found, 0 milliseconds.
Search found, 0 milliseconds.
Remove, 0 milliseconds.
Search found or not found, 0 milliseconds.
TestCleanup Dictionary_50K_Dictionary

The generic version of System.Collection.Hashtable is System.Collections.Generic.Dictionary<TKey, TValue>.

Related

Search for Value as if it were key in Dictionary [duplicate]

How do I get a Dictionary key by value in C#?
Dictionary<string, string> types = new Dictionary<string, string>()
{
{"1", "one"},
{"2", "two"},
{"3", "three"}
};
I want something like this:
getByValueKey(string value);
getByValueKey("one") must be return "1".
What is the best way do this? Maybe HashTable or SortedLists?
Values do not necessarily have to be unique, so you have to do a lookup. You can do something like this:
var myKey = types.FirstOrDefault(x => x.Value == "one").Key;
If values are unique and are inserted less frequently than read, then create an inverse dictionary where values are keys and keys are values.
You could do that:
By looping through all the KeyValuePair<TKey, TValue>'s in the dictionary (which will be a sizable performance hit if you have a number of entries in the dictionary)
Use two dictionaries, one for value-to-key mapping and one for key-to-value mapping (which would take up twice as much space in memory).
Use Method 1 if performance is not a consideration, and use Method 2 if memory is not a consideration.
Also, all keys must be unique, but the values are not required to be unique. You may have more than one key with the specified value.
I was in a situation where LINQ binding was not available and had to expand lambda explicitly. It resulted in a simple function:
public static T KeyByValue<T, W>(this Dictionary<T, W> dict, W val)
{
T key = default;
foreach (KeyValuePair<T, W> pair in dict)
{
if (EqualityComparer<W>.Default.Equals(pair.Value, val))
{
key = pair.Key;
break;
}
}
return key;
}
Call it like follows:
public static void Main()
{
Dictionary<string, string> dict = new Dictionary<string, string>()
{
{"1", "one"},
{"2", "two"},
{"3", "three"}
};
string key = dict.KeyByValue("two");
Console.WriteLine("Key: " + key);
}
It works on .NET 2.0 and in other limited environments.
public static string GetKeyFromValue(string valueVar)
{
foreach (string keyVar in dictionaryVar.Keys)
{
if (dictionaryVar[keyVar] == valueVar)
{
return keyVar;
}
}
return null;
}
Other people may have more efficient answers, but I find this personally more intuitive and it works in my case.
I have created a double-lookup class:
/// <summary>
/// dictionary with double key lookup
/// </summary>
/// <typeparam name="T1">primary key</typeparam>
/// <typeparam name="T2">secondary key</typeparam>
/// <typeparam name="TValue">value type</typeparam>
public class cDoubleKeyDictionary<T1, T2, TValue> {
private struct Key2ValuePair {
internal T2 key2;
internal TValue value;
}
private Dictionary<T1, Key2ValuePair> d1 = new Dictionary<T1, Key2ValuePair>();
private Dictionary<T2, T1> d2 = new Dictionary<T2, T1>();
/// <summary>
/// add item
/// not exacly like add, mote like Dictionary[] = overwriting existing values
/// </summary>
/// <param name="key1"></param>
/// <param name="key2"></param>
public void Add(T1 key1, T2 key2, TValue value) {
lock (d1) {
d1[key1] = new Key2ValuePair {
key2 = key2,
value = value,
};
d2[key2] = key1;
}
}
/// <summary>
/// get key2 by key1
/// </summary>
/// <param name="key1"></param>
/// <param name="key2"></param>
/// <returns></returns>
public bool TryGetValue(T1 key1, out TValue value) {
if (d1.TryGetValue(key1, out Key2ValuePair kvp)) {
value = kvp.value;
return true;
} else {
value = default;
return false;
}
}
/// <summary>
/// get key1 by key2
/// </summary>
/// <param name="key2"></param>
/// <param name="key1"></param>
/// <remarks>
/// 2x O(1) operation
/// </remarks>
/// <returns></returns>
public bool TryGetValue2(T2 key2, out TValue value) {
if (d2.TryGetValue(key2, out T1 key1)) {
return TryGetValue(key1, out value);
} else {
value = default;
return false;
}
}
/// <summary>
/// get key1 by key2
/// </summary>
/// <param name="key2"></param>
/// <param name="key1"></param>
/// <remarks>
/// 2x O(1) operation
/// </remarks>
/// <returns></returns>
public bool TryGetKey1(T2 key2, out T1 key1) {
return d2.TryGetValue(key2, out key1);
}
/// <summary>
/// get key1 by key2
/// </summary>
/// <param name="key2"></param>
/// <param name="key1"></param>
/// <remarks>
/// 2x O(1) operation
/// </remarks>
/// <returns></returns>
public bool TryGetKey2(T1 key1, out T2 key2) {
if (d1.TryGetValue(key1, out Key2ValuePair kvp1)) {
key2 = kvp1.key2;
return true;
} else {
key2 = default;
return false;
}
}
/// <summary>
/// remove item by key 1
/// </summary>
/// <param name="key1"></param>
public void Remove(T1 key1) {
lock (d1) {
if (d1.TryGetValue(key1, out Key2ValuePair kvp)) {
d1.Remove(key1);
d2.Remove(kvp.key2);
}
}
}
/// <summary>
/// remove item by key 2
/// </summary>
/// <param name="key2"></param>
public void Remove2(T2 key2) {
lock (d1) {
if (d2.TryGetValue(key2, out T1 key1)) {
d1.Remove(key1);
d2.Remove(key2);
}
}
}
/// <summary>
/// clear all items
/// </summary>
public void Clear() {
lock (d1) {
d1.Clear();
d2.Clear();
}
}
/// <summary>
/// enumerator on key1, so we can replace Dictionary by cDoubleKeyDictionary
/// </summary>
/// <param name="key1"></param>
/// <returns></returns>
public TValue this[T1 key1] {
get => d1[key1].value;
}
/// <summary>
/// enumerator on key1, so we can replace Dictionary by cDoubleKeyDictionary
/// </summary>
/// <param name="key1"></param>
/// <returns></returns>
public TValue this[T1 key1, T2 key2] {
set {
lock (d1) {
d1[key1] = new Key2ValuePair {
key2 = key2,
value = value,
};
d2[key2] = key1;
}
}
}
A Dictionary<K,V> extension that works. I have been using it for a long time::
public static bool TryGetKey<K, V>(this IDictionary<K, V> instance, V value, out K key)
{
foreach (var entry in instance)
{
if (!entry.Value.Equals(value))
{
continue;
}
key = entry.Key;
return true;
}
key = default(K);
return false;
}
And use as :
public static void Main()
{
Dictionary<string, string> dict = new Dictionary<string, string>()
{
{"1", "one"},
{"2", "two"},
{"3", "three"}
};
string value="two";
if (dict.TryGetKey(value, out var returnedKey))
Console.WriteLine($"Found Key {returnedKey}");
else
Console.WriteLine($"No key found for value {value}");
}
Maybe something like this:
foreach (var keyvaluepair in dict)
{
if(Object.ReferenceEquals(keyvaluepair.Value, searchedObject))
{
//dict.Remove(keyvaluepair.Key);
break;
}
}
The order of the keys in Keys is unspecified, but it is the same as the associated values in Values (from the C# doc).
So an efficient way (in some situations) to do that for a collection of values looks like:
/// <summary>
/// Gets the 1st key matching each value
/// </summary>
public static IEnumerable<TKey> GetKeys<TKey,TValue>(this Dictionary<TKey, TValue> dic, IEnumerable<TValue> values) where TKey : notnull
{
//The order of the keys in Keys is unspecified, but it is the same as the associated values in Values
var dicKeys = dic.Keys.ToList();
var dicValues = dic.Values.ToList();
foreach (var value in values)
{
var i = dicValues.IndexOf(value); //Will return the index of the 1st found value, even when multiple values are present
//we could test if i==-1 there.
yield return dicKeys[i];
}
}
types.Values.ToList().IndexOf("one");
Values.ToList() converts your dictionary values into a List of objects.
IndexOf("one") searches your new List looking for "one" and returns the Index which would match the index of the Key/Value pair in the dictionary.
This method does not care about the dictionary keys, it simply returns the index of the value that you are looking for.
Keep in mind there may be more than one "one" value in your dictionary. And that is the reason there is no "get key" method.
The below code only works if it contains unique value data:
public string getKey(string Value)
{
if (dictionary.ContainsValue(Value))
{
var ListValueData = new List<string>();
var ListKeyData = new List<string>();
var Values = dictionary.Values;
var Keys = dictionary.Keys;
foreach (var item in Values)
{
ListValueData.Add(item);
}
var ValueIndex = ListValueData.IndexOf(Value);
foreach (var item in Keys)
{
ListKeyData.Add(item);
}
return ListKeyData[ValueIndex];
}
return string.Empty;
}
I have a very simple way to do this. It worked out perfect for me.
Dictionary<string, string> types = new Dictionary<string, string>();
types.Add("1", "one");
types.Add("2", "two");
types.Add("3", "three");
Console.WriteLine("Please type a key to show its value: ");
string rLine = Console.ReadLine();
if(types.ContainsKey(rLine))
{
string value_For_Key = types[rLine];
Console.WriteLine("Value for " + rLine + " is" + value_For_Key);
}

Achieve different SELECT and INSERT behavior on NHibernate IUserType

Is there a way to separate the Create (INSERT) behavior from the SELECT behavior.
Let's say I have a database with a column that will return a string looking like this
Predecessors = "1,3,4,5"
In my application I want to use this string like an int array by implementing an IUserType
public interface IIntArray
{
int[] Items { get; set; }
}
public class IntArray : IIntArray
{
public int[] Items { get; set; }
public IntArray(string item)
{
if(string.IsNullOrEmpty(item))
return;
Items = System.Array.ConvertAll<string, int>(item.Split(new[] {','}), int.Parse);
// for older .net versions use the code below
// Items = Array.ConvertAll<string, int>(item.ToString().Split(new[] { ',' }), delegate(string str) { return int.Parse(str); });
}
}
public class IntArrayType : IUserType
{
#region Implementation of IUserType
/// <summary>
/// Compare two instances of the class mapped by this type for persistent "equality"
/// ie. equality of persistent state
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns></returns>
public new bool Equals(object x, object y)
{
if (x == null && y == null) return true;
if (x == null || y == null) return false;
return x.GetType() == y.GetType();
}
/// <summary>
/// Get a hashcode for the instance, consistent with persistence "equality"
/// </summary>
public int GetHashCode(object x)
{
return x.GetHashCode();
}
/// <summary>
/// Retrieve an instance of the mapped class from a resultset.
/// Implementors should handle possibility of null values.
/// </summary>
/// <param name="rs">a IDataReader</param>
/// <param name="names">column names</param>
/// <param name="owner">the containing entity</param>
/// <returns></returns>
/// <exception cref="HibernateException">HibernateException</exception>
public object NullSafeGet(IDataReader rs, string[] names, object owner)
{
var value = NHibernateUtil.String.NullSafeGet(rs, names[0]);
if (value == null || (string.IsNullOrEmpty(value.ToString())))
{
return null;
}
return new IntArray(value.ToString());
}
/// <summary>
/// Write an instance of the mapped class to a prepared statement.
/// Implementors should handle possibility of null values.
/// A multi-column type should be written to parameters starting from index.
/// </summary>
/// <param name="cmd">a IDbCommand</param>
/// <param name="value">the object to write</param>
/// <param name="index">command parameter index</param>
/// <exception cref="HibernateException">HibernateException</exception>
public void NullSafeSet(IDbCommand cmd, object value, int index)
{
if (value == null)
{
((IDataParameter)cmd.Parameters[index]).Value = DBNull.Value;
}
else
{
var state = (IIntArray)value;
((IDataParameter)cmd.Parameters[index]).Value = state.GetType().Name;
}
}
/// <summary>
/// Return a deep copy of the persistent state, stopping at entities and at collections.
/// </summary>
/// <param name="value">generally a collection element or entity field</param>
/// <returns>a copy</returns>
public object DeepCopy(object value)
{
return value;
}
/// <summary>
/// During merge, replace the existing (<paramref name="target" />) value in the entity
/// we are merging to with a new (<paramref name="original" />) value from the detached
/// entity we are merging. For immutable objects, or null values, it is safe to simply
/// return the first parameter. For mutable objects, it is safe to return a copy of the
/// first parameter. For objects with component values, it might make sense to
/// recursively replace component values.
/// </summary>
/// <param name="original">the value from the detached entity being merged</param>
/// <param name="target">the value in the managed entity</param>
/// <param name="owner">the managed entity</param>
/// <returns>the value to be merged</returns>
public object Replace(object original, object target, object owner)
{
return original;
}
/// <summary>
/// Reconstruct an object from the cacheable representation. At the very least this
/// method should perform a deep copy if the type is mutable. (optional operation)
/// </summary>
/// <param name="cached">the object to be cached</param>
/// <param name="owner">the owner of the cached object</param>
/// <returns>a reconstructed object from the cachable representation</returns>
public object Assemble(object cached, object owner)
{
return cached;
}
/// <summary>
/// Transform the object into its cacheable representation. At the very least this
/// method should perform a deep copy if the type is mutable. That may not be enough
/// for some implementations, however; for example, associations must be cached as
/// identifier values. (optional operation)
/// </summary>
/// <param name="value">the object to be cached</param>
/// <returns>a cacheable representation of the object</returns>
public object Disassemble(object value)
{
return value;
}
/// <summary>
/// The SQL types for the columns mapped by this type.
/// </summary>
public SqlType[] SqlTypes { get { return new[] { NHibernateUtil.String.SqlType }; } }
/// <summary>
/// The type returned by <c>NullSafeGet()</c>
/// </summary>
public Type ReturnedType { get { return typeof(IntArray); } }
/// <summary>
/// Are objects of this type mutable?
/// </summary>
public bool IsMutable { get { return false; } }
#endregion
}
In my NHibernate class I mapped to property like this
public virtual IntArray Predecessors { get; set; }
And the hbm mapping
<property name="Predecessors" type="Example.IntArrayType, Example" />
The IntArray class does it's job when reading data but when trying to put something back this doesn't work. What I would like to do is to somehow force the IntArray property to render the values of IntArray.Items to a comma separated string
string magic = string.Join(",", Predecessors.Items);
Thanks
Something like this should do the trick
public void NullSafeSet(IDbCommand cmd, object value, int index)
{
var ints = value as IntArray;
if(ints != null && ints.Items != null)
{
NHibernate.NHibernateUtil.StringClob.NullSafeSet(cmd, string.Join(", ", ints.Items), index);
}
}

Mapping System.Drawing.Color

If I don't map Color but map an object that has a Color attribute, FluentNHibernate successfully maps it to a varbinary(max). However, that's extremely inefficient given that realistically Color is just composed of 4 bytes and I am keen on improving it without using a new type to Proxy it.
Internally within Color it is made up of four properties,
long value (cast down to int to represent ARGB)
short state, indicates if this is a known & valid colour
string name, the name of the colour if known.
short knownColor a value to indicate which known colour it is
So I have attempted to map this as follows.
public ColorMapping()
{
CompositeId()
.KeyProperty(c => Reveal.Member<Color, long>("value"))
.KeyProperty(c => Reveal.Member<Color, short>("state"))
.KeyProperty(c => Reveal.Member<Color, string>("name"))
.KeyProperty(c => Reveal.Member<Color, short>("knownColor"));
}
However, on usage I get the following exception,
Class Initialization method DataContextTest.ClassInitialise threw
exception. FluentNHibernate.Cfg.FluentConfigurationException:
FluentNHibernate.Cfg.FluentConfigurationException: An invalid or
incomplete configuration was used while creating a SessionFactory.
Check PotentialReasons collection, and InnerException for more detail.
---> FluentNHibernate.Cfg.FluentConfigurationException: An invalid or
incomplete configuration was used while creating a SessionFactory.
Check PotentialReasons collection, and InnerException for more detail.
---> NHibernate.MappingException: Could not compile the mapping
document: (XmlDocument) ---> NHibernate.MappingException: Could not
determine type for:
System.Linq.Expressions.Expression1[[System.Func2[[System.Drawing.Color,
System.Drawing, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a],[System.Int64, mscorlib,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]],
mscorlib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089]], System.Core, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089, for columns:
NHibernate.Mapping.Column(Member).
Am I misusing Reveal? If so, how am I meant to use it?
i would map it as UserType which converts it back and forth
// in mapping
Map(x => x.Color).Column("ColorARGB").CustomType<ColorUserType>();
[Serializable]
class ColorUserType : IUserType
{
public object Assemble(object cached, object owner)
{
return DeepCopy(cached);
}
public object DeepCopy(object value)
{
return value;
}
public object Disassemble(object value)
{
return DeepCopy(value);
}
bool IUserType.Equals(object x, object y)
{
var colorX = x as Color;
var colorY = y as Color;
return colorX == null ? colorY = null : colorX.ToArgb() == colorY.ToArgb();
}
public virtual int GetHashCode(object x)
{
var colorX = (Color)x;
return (colorX != null) ? colorX.ToArgb() : 0;
}
public bool IsMutable { get { return false; } }
public object NullSafeGet(IDataReader rs, string[] names, object owner)
{
return Color.FromArgb((int)NHibernateUtil.Int32.Get(rs, names[0]));
}
public void NullSafeSet(IDbCommand cmd, object value, int index)
{
NHibernateUtil.Int32.Set(cmd, ((Color)value).ToArgb(), index);
}
public object Replace(object original, object target, object owner)
{
return original;
}
public Type ReturnedType { get { return typeof(Color); } }
public SqlType[] SqlTypes { get { return new []{ SqlTypeFactory.Int32 }; } }
}
I went with an ICompositeUserType in the end.
Code as follows,
public class ColorType : ICompositeUserType
{
/// <summary>
/// Get the value of a property
/// </summary>
/// <param name="component">an instance of class mapped by this "type"</param>
/// <param name="property"/>
/// <returns>
/// the property value
/// </returns>
public object GetPropertyValue(object component, int property)
{
var color = (Color) component;
if (property == 0)
{
return color.ToArgb();
}
return (int) color.ToKnownColor();
}
/// <summary>
/// Set the value of a property
/// </summary>
/// <param name="component">an instance of class mapped by this "type"</param>
/// <param name="property"/>
/// <param name="value">the value to set</param>
public void SetPropertyValue(object component, int property, object value)
{
throw new InvalidOperationException("Color is immutable");
}
/// <summary>
/// Compare two instances of the class mapped by this type for persistence
/// "equality", ie. equality of persistent state.
/// </summary>
/// <param name="x"/><param name="y"/>
/// <returns/>
public new bool Equals(object x, object y)
{
return ReferenceEquals(x, y) ||
x != null && y != null &&
object.Equals(x, y);
}
/// <summary>
/// Get a hashcode for the instance, consistent with persistence "equality"
/// </summary>
public int GetHashCode(object x)
{
return x == null
? 0
: x.GetHashCode();
}
/// <summary>
/// Retrieve an instance of the mapped class from a IDataReader. Implementors
/// should handle possibility of null values.
/// </summary>
/// <param name="dr">IDataReader</param>
/// <param name="names">the column names</param>
/// <param name="session"/>
/// <param name="owner">the containing entity</param>
/// <returns/>
public object NullSafeGet(IDataReader dr, string[] names,
ISessionImplementor session, object owner)
{
var argb = (int?) NHibernateUtil.Int32.NullSafeGet(dr, names[0]);
var knownColor = (int?) NHibernateUtil.Int32.NullSafeGet(dr, names[1]);
return knownColor != null
? Color.FromKnownColor((KnownColor) knownColor.Value)
: Color.FromArgb(argb.Value);
}
/// <summary>
/// Write an instance of the mapped class to a prepared statement.
/// Implementors should handle possibility of null values.
/// A multi-column type should be written to parameters starting from index.
/// If a property is not settable, skip it and don't increment the index.
/// </summary>
/// <param name="cmd"/>
/// <param name="value"/>
/// <param name="index"/>
/// <param name="settable"/>
/// <param name="session"/>
public void NullSafeSet(IDbCommand cmd, object value, int index,
bool[] settable, ISessionImplementor session)
{
var color = (Color) value;
if (color.IsKnownColor)
{
((IDataParameter) cmd.Parameters[index]).Value = DBNull.Value;
((IDataParameter) cmd.Parameters[index + 1]).Value = (int) color.ToKnownColor();
}
else
{
((IDataParameter) cmd.Parameters[index]).Value = color.ToArgb();
((IDataParameter) cmd.Parameters[index + 1]).Value = DBNull.Value;
}
}
/// <summary>
/// Return a deep copy of the persistent state, stopping at entities and at collections.
/// </summary>
/// <param name="value">generally a collection element or entity field</param>
/// <returns/>
public object DeepCopy(object value)
{
return value;
}
/// <summary>
/// Transform the object into its cacheable representation.
/// At the very least this method should perform a deep copy.
/// That may not be enough for some implementations,
/// method should perform a deep copy. That may not be enough for
/// some implementations, however; for example, associations must
/// be cached as identifier values. (optional operation)
/// </summary>
/// <param name="value">the object to be cached</param>
/// <param name="session"/>
/// <returns/>
public object Disassemble(object value, ISessionImplementor session)
{
return value;
}
/// <summary>
/// Reconstruct an object from the cacheable representation.
/// At the very least this method should perform a deep copy. (optional operation)
/// </summary>
/// <param name="cached">the object to be cached</param>
/// <param name="session"/>
/// <param name="owner"/>
/// <returns/>
public object Assemble(object cached, ISessionImplementor session, object owner)
{
return cached;
}
/// <summary>
/// During merge, replace the existing (target) value in the entity we are merging to
/// with a new (original) value from the detached entity we are merging. For immutable
/// objects, or null values, it is safe to simply return the first parameter. For
/// mutable objects, it is safe to return a copy of the first parameter. However, since
/// composite user types often define component values, it might make sense to recursively
/// replace component values in the target object.
/// </summary>
public object Replace(object original, object target, ISessionImplementor session, object owner)
{
return original;
}
/// <summary>
/// Get the "property names" that may be used in a query.
/// </summary>
public string[] PropertyNames { get { return new[] {"Argb", "KnownColor"}; } }
/// <summary>
/// Get the corresponding "property types"
/// </summary>
public IType[] PropertyTypes
{
get
{
return new IType[]
{
NHibernateUtil.Int32, NHibernateUtil.Int32
};
}
}
/// <summary>
/// The class returned by NullSafeGet().
/// </summary>
public Type ReturnedClass { get { return typeof (Color); } }
/// <summary>
/// Are objects of this type mutable?
/// </summary>
public bool IsMutable { get { return false; } }
}

Refresh HttpRuntime.Cache on Azure

Is there a way that i can refresh the HttpRuntime.Cache on Azure without having to Reboot the instance?
Thanks
When you're adding items to your cache, you should add them with a CacheDependency with a global key. This allows you to have your items expire after a given time but also to clear all items linked to this key.
Here is an example implementation of a method to clear all items (CacheProvider.cs):
/// <summary>
/// Caching provider
/// </summary>
public static class CacheProvider
{
const string CacheDependencyKey = "1FADE275-2C84-4a9b-B3E1-68ABB15E53C8";
static readonly object SyncRoot = new object();
/// <summary>
/// Gets an item from cache. If the item does not exist, one will be
/// created and added to the cache.
/// </summary>
/// <param name="key">Caching key</param>
/// <param name="valueFactory">Function to create the item of it does not exist in the cache.</param>
/// <param name="expiresAfter">Time after the item wille be removed from cache.</param>
public static TValue GetOrAdd<TValue>(string key, Func<TValue> valueFactory, TimeSpan expiresAfter)
{
object itemFromCache = HttpRuntime.Cache.Get(key);
if (itemFromCache == null)
{
lock (SyncRoot)
{
itemFromCache = HttpRuntime.Cache.Get(key);
if (itemFromCache == null)
{
TValue value = valueFactory();
if (value != null)
{
if (HttpRuntime.Cache[CacheDependencyKey] == null)
HttpRuntime.Cache[CacheDependencyKey] = string.Empty;
HttpRuntime.Cache.Add(key, value, new CacheDependency(null, new string[] { CacheDependencyKey }), DateTime.Now.Add(expiresAfter), Cache.NoSlidingExpiration, CacheItemPriority.Normal, null);
}
return value;
}
}
}
return (TValue)itemFromCache;
}
/// <summary>
/// Invalidate all the items from the cache.
/// </summary>
public static void InvalidateCache()
{
HttpRuntime.Cache.Remove(CacheDependencyKey);
}
}
public void Clear()
{
var itemsToRemove = new List<string>();
var enumerator = HttpContext.Current.Cache.GetEnumerator();
while (enumerator.MoveNext())
{
itemsToRemove.Add(enumerator.Key.ToString());
}
foreach (string itemToRemove in itemsToRemove)
{
HttpContext.Current.Cache.Remove(itemToRemove);
}
}

Getting multiple keys of specified value of a generic Dictionary?

It's easy to get the value of a key from a .NET generic Dictionary:
Dictionary<int, string> greek = new Dictionary<int, string>();
greek.Add(1, "Alpha");
greek.Add(2, "Beta");
string secondGreek = greek[2]; // Beta
But trying to get the keys given a value is not as straightforward because there could be multiple keys:
int[] betaKeys = greek.WhatDoIPutHere("Beta"); // expecting single 2
Okay, here's the multiple bidirectional version:
using System;
using System.Collections.Generic;
using System.Text;
class BiDictionary<TFirst, TSecond>
{
IDictionary<TFirst, IList<TSecond>> firstToSecond = new Dictionary<TFirst, IList<TSecond>>();
IDictionary<TSecond, IList<TFirst>> secondToFirst = new Dictionary<TSecond, IList<TFirst>>();
private static IList<TFirst> EmptyFirstList = new TFirst[0];
private static IList<TSecond> EmptySecondList = new TSecond[0];
public void Add(TFirst first, TSecond second)
{
IList<TFirst> firsts;
IList<TSecond> seconds;
if (!firstToSecond.TryGetValue(first, out seconds))
{
seconds = new List<TSecond>();
firstToSecond[first] = seconds;
}
if (!secondToFirst.TryGetValue(second, out firsts))
{
firsts = new List<TFirst>();
secondToFirst[second] = firsts;
}
seconds.Add(second);
firsts.Add(first);
}
// Note potential ambiguity using indexers (e.g. mapping from int to int)
// Hence the methods as well...
public IList<TSecond> this[TFirst first]
{
get { return GetByFirst(first); }
}
public IList<TFirst> this[TSecond second]
{
get { return GetBySecond(second); }
}
public IList<TSecond> GetByFirst(TFirst first)
{
IList<TSecond> list;
if (!firstToSecond.TryGetValue(first, out list))
{
return EmptySecondList;
}
return new List<TSecond>(list); // Create a copy for sanity
}
public IList<TFirst> GetBySecond(TSecond second)
{
IList<TFirst> list;
if (!secondToFirst.TryGetValue(second, out list))
{
return EmptyFirstList;
}
return new List<TFirst>(list); // Create a copy for sanity
}
}
class Test
{
static void Main()
{
BiDictionary<int, string> greek = new BiDictionary<int, string>();
greek.Add(1, "Alpha");
greek.Add(2, "Beta");
greek.Add(5, "Beta");
ShowEntries(greek, "Alpha");
ShowEntries(greek, "Beta");
ShowEntries(greek, "Gamma");
}
static void ShowEntries(BiDictionary<int, string> dict, string key)
{
IList<int> values = dict[key];
StringBuilder builder = new StringBuilder();
foreach (int value in values)
{
if (builder.Length != 0)
{
builder.Append(", ");
}
builder.Append(value);
}
Console.WriteLine("{0}: [{1}]", key, builder);
}
}
As everyone else has said, there's no mapping within a dictionary from value to key.
I've just noticed you wanted to map to from value to multiple keys - I'm leaving this solution here for the single value version, but I'll then add another answer for a multi-entry bidirectional map.
The normal approach to take here is to have two dictionaries - one mapping one way and one the other. Encapsulate them in a separate class, and work out what you want to do when you have duplicate key or value (e.g. throw an exception, overwrite the existing entry, or ignore the new entry). Personally I'd probably go for throwing an exception - it makes the success behaviour easier to define. Something like this:
using System;
using System.Collections.Generic;
class BiDictionary<TFirst, TSecond>
{
IDictionary<TFirst, TSecond> firstToSecond = new Dictionary<TFirst, TSecond>();
IDictionary<TSecond, TFirst> secondToFirst = new Dictionary<TSecond, TFirst>();
public void Add(TFirst first, TSecond second)
{
if (firstToSecond.ContainsKey(first) ||
secondToFirst.ContainsKey(second))
{
throw new ArgumentException("Duplicate first or second");
}
firstToSecond.Add(first, second);
secondToFirst.Add(second, first);
}
public bool TryGetByFirst(TFirst first, out TSecond second)
{
return firstToSecond.TryGetValue(first, out second);
}
public bool TryGetBySecond(TSecond second, out TFirst first)
{
return secondToFirst.TryGetValue(second, out first);
}
}
class Test
{
static void Main()
{
BiDictionary<int, string> greek = new BiDictionary<int, string>();
greek.Add(1, "Alpha");
greek.Add(2, "Beta");
int x;
greek.TryGetBySecond("Beta", out x);
Console.WriteLine(x);
}
}
Dictionaries aren't really meant to work like this, because while uniqueness of keys is guaranteed, uniqueness of values isn't. So e.g. if you had
var greek = new Dictionary<int, string> { { 1, "Alpha" }, { 2, "Alpha" } };
What would you expect to get for greek.WhatDoIPutHere("Alpha")?
Therefore you can't expect something like this to be rolled into the framework. You'd need your own method for your own unique uses---do you want to return an array (or IEnumerable<T>)? Do you want to throw an exception if there are multiple keys with the given value? What about if there are none?
Personally I'd go for an enumerable, like so:
IEnumerable<TKey> KeysFromValue<TKey, TValue>(this Dictionary<TKey, TValue> dict, TValue val)
{
if (dict == null)
{
throw new ArgumentNullException("dict");
}
return dict.Keys.Where(k => dict[k] == val);
}
var keys = greek.KeysFromValue("Beta");
int exceptionIfNotExactlyOne = greek.KeysFromValue("Beta").Single();
Maybe the easiest way to do it, without Linq, can be to loop over the pairs:
int betaKey;
foreach (KeyValuePair<int, string> pair in lookup)
{
if (pair.Value == value)
{
betaKey = pair.Key; // Found
break;
}
}
betaKey = -1; // Not found
If you had Linq, it could have done easily this way:
int betaKey = greek.SingleOrDefault(x => x.Value == "Beta").Key;
A dictionary doesn't keep an hash of the values, only the keys, so any search over it using a value is going to take at least linear time. Your best bet is to simply iterate over the elements in the dictionary and keep track of the matching keys or switch to a different data structure, perhaps maintain two dictionary mapping key->value and value->List_of_keys. If you do the latter you will trade storage for look up speed. It wouldn't take much to turn #Cybis example into such a data structure.
As I wanted a full fledged BiDirectional Dictionary (and not only a Map), I added the missing functions to make it an IDictionary compatible class. This is based on the version with unique Key-Value Pairs. Here's the file if desired (Most work was the XMLDoc through):
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Common
{
/// <summary>Represents a bidirectional collection of keys and values.</summary>
/// <typeparam name="TFirst">The type of the keys in the dictionary</typeparam>
/// <typeparam name="TSecond">The type of the values in the dictionary</typeparam>
[System.Runtime.InteropServices.ComVisible(false)]
[System.Diagnostics.DebuggerDisplay("Count = {Count}")]
//[System.Diagnostics.DebuggerTypeProxy(typeof(System.Collections.Generic.Mscorlib_DictionaryDebugView<,>))]
//[System.Reflection.DefaultMember("Item")]
public class BiDictionary<TFirst, TSecond> : Dictionary<TFirst, TSecond>
{
IDictionary<TSecond, TFirst> _ValueKey = new Dictionary<TSecond, TFirst>();
/// <summary> PropertyAccessor for Iterator over KeyValue-Relation </summary>
public IDictionary<TFirst, TSecond> KeyValue => this;
/// <summary> PropertyAccessor for Iterator over ValueKey-Relation </summary>
public IDictionary<TSecond, TFirst> ValueKey => _ValueKey;
#region Implemented members
/// <Summary>Gets or sets the value associated with the specified key.</Summary>
/// <param name="key">The key of the value to get or set.</param>
/// <Returns>The value associated with the specified key. If the specified key is not found,
/// a get operation throws a <see cref="KeyNotFoundException"/>, and
/// a set operation creates a new element with the specified key.</Returns>
/// <exception cref="T:System.ArgumentNullException"><paramref name="key"/> is null.</exception>
/// <exception cref="T:System.Collections.Generic.KeyNotFoundException">
/// The property is retrieved and <paramref name="key"/> does not exist in the collection.</exception>
/// <exception cref="T:System.ArgumentException"> An element with the same key already
/// exists in the <see cref="ValueKey"/> <see cref="Dictionary<TFirst,TSecond>"/>.</exception>
public new TSecond this[TFirst key]
{
get { return base[key]; }
set { _ValueKey.Remove(base[key]); base[key] = value; _ValueKey.Add(value, key); }
}
/// <Summary>Gets or sets the key associated with the specified value.</Summary>
/// <param name="val">The value of the key to get or set.</param>
/// <Returns>The key associated with the specified value. If the specified value is not found,
/// a get operation throws a <see cref="KeyNotFoundException"/>, and
/// a set operation creates a new element with the specified value.</Returns>
/// <exception cref="T:System.ArgumentNullException"><paramref name="val"/> is null.</exception>
/// <exception cref="T:System.Collections.Generic.KeyNotFoundException">
/// The property is retrieved and <paramref name="val"/> does not exist in the collection.</exception>
/// <exception cref="T:System.ArgumentException"> An element with the same value already
/// exists in the <see cref="KeyValue"/> <see cref="Dictionary<TFirst,TSecond>"/>.</exception>
public TFirst this[TSecond val]
{
get { return _ValueKey[val]; }
set { base.Remove(_ValueKey[val]); _ValueKey[val] = value; base.Add(value, val); }
}
/// <Summary>Adds the specified key and value to the dictionary.</Summary>
/// <param name="key">The key of the element to add.</param>
/// <param name="value">The value of the element to add.</param>
/// <exception cref="T:System.ArgumentNullException"><paramref name="key"/> or <paramref name="value"/> is null.</exception>
/// <exception cref="T:System.ArgumentException">An element with the same key or value already exists in the <see cref="Dictionary<TFirst,TSecond>"/>.</exception>
public new void Add(TFirst key, TSecond value) {
base.Add(key, value);
_ValueKey.Add(value, key);
}
/// <Summary>Removes all keys and values from the <see cref="Dictionary<TFirst,TSecond>"/>.</Summary>
public new void Clear() { base.Clear(); _ValueKey.Clear(); }
/// <Summary>Determines whether the <see cref="Dictionary<TFirst,TSecond>"/> contains the specified
/// KeyValuePair.</Summary>
/// <param name="item">The KeyValuePair to locate in the <see cref="Dictionary<TFirst,TSecond>"/>.</param>
/// <Returns>true if the <see cref="Dictionary<TFirst,TSecond>"/> contains an element with
/// the specified key which links to the specified value; otherwise, false.</Returns>
/// <exception cref="T:System.ArgumentNullException"><paramref name="item"/> is null.</exception>
public bool Contains(KeyValuePair<TFirst, TSecond> item) => base.ContainsKey(item.Key) & _ValueKey.ContainsKey(item.Value);
/// <Summary>Removes the specified KeyValuePair from the <see cref="Dictionary<TFirst,TSecond>"/>.</Summary>
/// <param name="item">The KeyValuePair to remove.</param>
/// <Returns>true if the KeyValuePair is successfully found and removed; otherwise, false. This
/// method returns false if <paramref name="item"/> is not found in the <see cref="Dictionary<TFirst,TSecond>"/>.</Returns>
/// <exception cref="T:System.ArgumentNullException"><paramref name="item"/> is null.</exception>
public bool Remove(KeyValuePair<TFirst, TSecond> item) => base.Remove(item.Key) & _ValueKey.Remove(item.Value);
/// <Summary>Removes the value with the specified key from the <see cref="Dictionary<TFirst,TSecond>"/>.</Summary>
/// <param name="key">The key of the element to remove.</param>
/// <Returns>true if the element is successfully found and removed; otherwise, false. This
/// method returns false if <paramref name="key"/> is not found in the <see cref="Dictionary<TFirst,TSecond>"/>.</Returns>
/// <exception cref="T:System.ArgumentNullException"><paramref name="key"/> is null.</exception>
public new bool Remove(TFirst key) => _ValueKey.Remove(base[key]) & base.Remove(key);
/// <Summary>Gets the key associated with the specified value.</Summary>
/// <param name="value">The value of the key to get.</param>
/// <param name="key">When this method returns, contains the key associated with the specified value,
/// if the value is found; otherwise, the default value for the type of the key parameter.
/// This parameter is passed uninitialized.</param>
/// <Returns>true if <see cref="ValueKey"/> contains an element with the specified value;
/// otherwise, false.</Returns>
/// <exception cref="T:System.ArgumentNullException"><paramref name="value"/> is null.</exception>
public bool TryGetValue(TSecond value, out TFirst key) => _ValueKey.TryGetValue(value, out key);
#endregion
}
}
revised: okay to have some kind of find you would need something other than dictionary, since if you think about it dictionary are one way keys. that is, the values might not be unique
that said it looks like you're using c#3.0 so you might not have to resort to looping and could use something like:
var key = (from k in yourDictionary where string.Compare(k.Value, "yourValue", true) == 0 select k.Key).FirstOrDefault();
Dictionary class is not optimized for this case, but if you really wanted to do it (in C# 2.0), you can do:
public List<TKey> GetKeysFromValue<TKey, TVal>(Dictionary<TKey, TVal> dict, TVal val)
{
List<TKey> ks = new List<TKey>();
foreach(TKey k in dict.Keys)
{
if (dict[k] == val) { ks.Add(k); }
}
return ks;
}
I prefer the LINQ solution for elegance, but this is the 2.0 way.
Can't you create a subclass of Dictionary which has that functionality?
public class MyDict &lt TKey, TValue &gt : Dictionary &lt TKey, TValue &gt
{
private Dictionary &lt TValue, TKey &gt _keys;
public TValue this[TKey key]
{
get
{
return base[key];
}
set
{
base[key] = value;
_keys[value] = key;
}
}
public MyDict()
{
_keys = new Dictionary &lt TValue, TKey &gt();
}
public TKey GetKeyFromValue(TValue value)
{
return _keys[value];
}
}
EDIT: Sorry, didn't get code right first time.
The "simple" bidirectional dictionary solution proposed here is complex and may be be difficult to understand, maintain or extend. Also the original question asked for "the key for a value", but clearly there could be multiple keys (I've since edited the question). The whole approach is rather suspicious.
Software changes. Writing code that is easy to maintain should be given priority other "clever" complex workarounds. The way to get keys back from values in a dictionary is to loop. A dictionary isn't designed to be bidirectional.
Use LINQ to do a reverse Dictionary<K, V> lookup. But keep in mind that the values in your Dictionary<K, V> values may not be distinct.
Demonstration:
using System;
using System.Collections.Generic;
using System.Linq;
class ReverseDictionaryLookupDemo
{
static void Main()
{
var dict = new Dictionary<int, string>();
dict.Add(4, "Four");
dict.Add(5, "Five");
dict.Add(1, "One");
dict.Add(11, "One"); // duplicate!
dict.Add(3, "Three");
dict.Add(2, "Two");
dict.Add(44, "Four"); // duplicate!
Console.WriteLine("\n== Enumerating Distinct Values ==");
foreach (string value in dict.Values.Distinct())
{
string valueString =
String.Join(", ", GetKeysFromValue(dict, value));
Console.WriteLine("{0} => [{1}]", value, valueString);
}
}
static List<int> GetKeysFromValue(Dictionary<int, string> dict, string value)
{
// Use LINQ to do a reverse dictionary lookup.
// Returns a 'List<T>' to account for the possibility
// of duplicate values.
return
(from item in dict
where item.Value.Equals(value)
select item.Key).ToList();
}
}
Expected Output:
== Enumerating Distinct Values ==
Four => [4, 44]
Five => [5]
One => [1, 11]
Three => [3]
Two => [2]
Dictionary<string, string> dic = new Dictionary<string, string>();
dic["A"] = "Ahmed";
dic["B"] = "Boys";
foreach (string mk in dic.Keys)
{
if(dic[mk] == "Ahmed")
{
Console.WriteLine("The key that contains \"Ahmed\" is " + mk);
}
}
Many of these answers are now outdated, here is a modern C# approach, using LINQ
Since values aren't necessarily unique, you may get multiple results. You can return an IEnumerable<KeyValuePair<int, string>>:
var betaKeys = greek.Where(x => x.Value == "beta");
To transform this into an IEnumerable<int> type, just use .Select():
var betaKeys = greek.Where(x => x.Value == "beta").Select(x => x.Key);
As a twist of the accepted answer (https://stackoverflow.com/a/255638/986160) assuming that the keys will be associated with signle values in the dictionary. Similar to (https://stackoverflow.com/a/255630/986160) but a bit more elegant. The novelty is in that the consuming class can be used as an enumeration alternative (but for strings too) and that the dictionary implements IEnumerable.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections;
namespace MyApp.Dictionaries
{
class BiDictionary<TFirst, TSecond> : IEnumerable
{
IDictionary<TFirst, TSecond> firstToSecond = new Dictionary<TFirst, TSecond>();
IDictionary<TSecond, TFirst> secondToFirst = new Dictionary<TSecond, TFirst>();
public void Add(TFirst first, TSecond second)
{
firstToSecond.Add(first, second);
secondToFirst.Add(second, first);
}
public TSecond this[TFirst first]
{
get { return GetByFirst(first); }
}
public TFirst this[TSecond second]
{
get { return GetBySecond(second); }
}
public TSecond GetByFirst(TFirst first)
{
return firstToSecond[first];
}
public TFirst GetBySecond(TSecond second)
{
return secondToFirst[second];
}
public IEnumerator GetEnumerator()
{
return GetFirstEnumerator();
}
public IEnumerator GetFirstEnumerator()
{
return firstToSecond.GetEnumerator();
}
public IEnumerator GetSecondEnumerator()
{
return secondToFirst.GetEnumerator();
}
}
}
And as a consuming class you could have
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace MyApp.Dictionaries
{
class Greek
{
public static readonly string Alpha = "Alpha";
public static readonly string Beta = "Beta";
public static readonly string Gamma = "Gamma";
public static readonly string Delta = "Delta";
private static readonly BiDictionary<int, string> Dictionary = new BiDictionary<int, string>();
static Greek() {
Dictionary.Add(1, Alpha);
Dictionary.Add(2, Beta);
Dictionary.Add(3, Gamma);
Dictionary.Add(4, Delta);
}
public static string getById(int id){
return Dictionary.GetByFirst(id);
}
public static int getByValue(string value)
{
return Dictionary.GetBySecond(value);
}
}
}
Then layman's solution
A function similar to the one below could be written to make such a dictionary:
public Dictionary<TValue, TKey> Invert(Dictionary<TKey, TValue> dict) {
Dictionary<TValue, TKey> ret = new Dictionary<TValue, TKey>();
foreach (var kvp in dict) {ret[kvp.value] = kvp.key;} return ret; }
Probably, you need a bidirectional dictionary. In my mind, BidirectionalDictionary is the best realization of a bidirectional dictionary. It just provides access to an inverse O(1) dictionary.
var biDictionary = new BidirectionalDictionary<T1,T2> { ... };
This realization, for example, has no indexations problems when TKey equals TValue:
var capital = countryCapitalDictionary["Italy"]; // "Rome"
var country = countryCapitalDictionary.Inverse["Rome"]; // "Italy"
Changing the dictionary causes the reverse dictionary to be changed safely (as well as vice versa):
countryCapitalDictionary.Clear(); // equals countryCapitalDictionary.Inverse.Clear();
var containsCapital = countryCapitalDictionary.ContainsKey("Italy"); // false
var containsCountry = countryCapitalDictionary.Inverse.ContainsKey("Rome"); // false
Also, this library supports a read-only bidirectional dictionary:
var readOnlyBiDictionary = new ReadOnlyBidurectionalDictionary<T1, T2>(biDictionary);
You can use it via the package.

Categories

Resources