For a given class I would like to have tracing functionality i.e. I would like to log every method call (method signature and actual parameter values) and every method exit (just the method signature).
How do I accomplish this assuming that:
I don't want to use any 3rd party
AOP libraries for C#,
I don't want to add duplicate code to all the methods that I want to trace,
I don't want to change the public API of the class - users of the class should be able to call all the methods in exactly the same way.
To make the question more concrete let's assume there are 3 classes:
public class Caller
{
public static void Call()
{
Traced traced = new Traced();
traced.Method1();
traced.Method2();
}
}
public class Traced
{
public void Method1(String name, Int32 value) { }
public void Method2(Object object) { }
}
public class Logger
{
public static void LogStart(MethodInfo method, Object[] parameterValues);
public static void LogEnd(MethodInfo method);
}
How do I invoke Logger.LogStart and Logger.LogEnd for every call to Method1 and Method2 without modifying the Caller.Call method and without adding the calls explicitly to Traced.Method1 and Traced.Method2?
Edit: What would be the solution if I'm allowed to slightly change the Call method?
C# is not an AOP oriented language. It has some AOP features and you can emulate some others but making AOP with C# is painful.
I looked up for ways to do exactly what you wanted to do and I found no easy way to do it.
As I understand it, this is what you want to do:
[Log()]
public void Method1(String name, Int32 value);
and in order to do that you have two main options
Inherit your class from MarshalByRefObject or ContextBoundObject and define an attribute which inherits from IMessageSink. This article has a good example. You have to consider nontheless that using a MarshalByRefObject the performance will go down like hell, and I mean it, I'm talking about a 10x performance lost so think carefully before trying that.
The other option is to inject code directly. In runtime, meaning you'll have to use reflection to "read" every class, get its attributes and inject the appropiate call (and for that matter I think you couldn't use the Reflection.Emit method as I think Reflection.Emit wouldn't allow you to insert new code inside an already existing method). At design time this will mean creating an extension to the CLR compiler which I have honestly no idea on how it's done.
The final option is using an IoC framework. Maybe it's not the perfect solution as most IoC frameworks works by defining entry points which allow methods to be hooked but, depending on what you want to achive, that might be a fair aproximation.
The simplest way to achieve that is probably to use PostSharp. It injects code inside your methods based on the attributes that you apply to it. It allows you to do exactly what you want.
Another option is to use the profiling API to inject code inside the method, but that is really hardcore.
You could achieve it with Interception feature of a DI container such as Castle Windsor. Indeed, it is possible to configure the container in such way that every classes that have a method decorated by a specific attribute would be intercepted.
Regarding point #3, OP asked for a solution without AOP framework. I assumed in the following answer that what should be avoided were Aspect, JointPoint, PointCut, etc. According to Interception documentation from CastleWindsor, none of those are required to accomplish what is asked.
Configure generic registration of an Interceptor, based on the presence of an attribute:
public class RequireInterception : IContributeComponentModelConstruction
{
public void ProcessModel(IKernel kernel, ComponentModel model)
{
if (HasAMethodDecoratedByLoggingAttribute(model.Implementation))
{
model.Interceptors.Add(new InterceptorReference(typeof(ConsoleLoggingInterceptor)));
model.Interceptors.Add(new InterceptorReference(typeof(NLogInterceptor)));
}
}
private bool HasAMethodDecoratedByLoggingAttribute(Type implementation)
{
foreach (var memberInfo in implementation.GetMembers())
{
var attribute = memberInfo.GetCustomAttributes(typeof(LogAttribute)).FirstOrDefault() as LogAttribute;
if (attribute != null)
{
return true;
}
}
return false;
}
}
Add the created IContributeComponentModelConstruction to container
container.Kernel.ComponentModelBuilder.AddContributor(new RequireInterception());
And you can do whatever you want in the interceptor itself
public class ConsoleLoggingInterceptor : IInterceptor
{
public void Intercept(IInvocation invocation)
{
Console.Writeline("Log before executing");
invocation.Proceed();
Console.Writeline("Log after executing");
}
}
Add the logging attribute to your method to log
public class Traced
{
[Log]
public void Method1(String name, Int32 value) { }
[Log]
public void Method2(Object object) { }
}
Note that some handling of the attribute will be required if only some method of a class needs to be intercepted. By default, all public methods will be intercepted.
If you write a class - call it Tracing - that implements the IDisposable interface, you could wrap all method bodies in a
Using( Tracing tracing = new Tracing() ){ ... method body ...}
In the Tracing class you could the handle the logic of the traces in the constructor/Dispose method, respectively, in the Tracing class to keep track of the entering and exiting of the methods. Such that:
public class Traced
{
public void Method1(String name, Int32 value) {
using(Tracing tracer = new Tracing())
{
[... method body ...]
}
}
public void Method2(Object object) {
using(Tracing tracer = new Tracing())
{
[... method body ...]
}
}
}
If you want to trace after your methods without limitation (no code adaptation, no AOP Framework, no duplicate code), let me tell you, you need some magic...
Seriously, I resolved it to implement an AOP Framework working at runtime.
You can find here : NConcern .NET AOP Framework
I decided to create this AOP Framework to give a respond to this kind of needs. it is a simple library very lightweight. You can see an example of logger in home page.
If you don't want to use a 3rd party assembly, you can browse the code source (open source) and copy both files Aspect.Directory.cs and Aspect.Directory.Entry.cs to adapted as your wishes. Theses classes allow to replace your methods at runtime. I would just ask you to respect the license.
I hope you will find what you need or to convince you to finally use an AOP Framework.
Take a look at this - Pretty heavy stuff..
http://msdn.microsoft.com/en-us/magazine/cc164165.aspx
Essential .net - don box had a chapter on what you need called Interception.
I scraped some of it here (Sorry about the font colors - I had a dark theme back then...)
http://madcoderspeak.blogspot.com/2005/09/essential-interception-using-contexts.html
I have found a different way which may be easier...
Declare a Method InvokeMethod
[WebMethod]
public object InvokeMethod(string methodName, Dictionary<string, object> methodArguments)
{
try
{
string lowerMethodName = '_' + methodName.ToLowerInvariant();
List<object> tempParams = new List<object>();
foreach (MethodInfo methodInfo in serviceMethods.Where(methodInfo => methodInfo.Name.ToLowerInvariant() == lowerMethodName))
{
ParameterInfo[] parameters = methodInfo.GetParameters();
if (parameters.Length != methodArguments.Count()) continue;
else foreach (ParameterInfo parameter in parameters)
{
object argument = null;
if (methodArguments.TryGetValue(parameter.Name, out argument))
{
if (parameter.ParameterType.IsValueType)
{
System.ComponentModel.TypeConverter tc = System.ComponentModel.TypeDescriptor.GetConverter(parameter.ParameterType);
argument = tc.ConvertFrom(argument);
}
tempParams.Insert(parameter.Position, argument);
}
else goto ContinueLoop;
}
foreach (object attribute in methodInfo.GetCustomAttributes(true))
{
if (attribute is YourAttributeClass)
{
RequiresPermissionAttribute attrib = attribute as YourAttributeClass;
YourAttributeClass.YourMethod();//Mine throws an ex
}
}
return methodInfo.Invoke(this, tempParams.ToArray());
ContinueLoop:
continue;
}
return null;
}
catch
{
throw;
}
}
I then define my methods like so
[WebMethod]
public void BroadcastMessage(string Message)
{
//MessageBus.GetInstance().SendAll("<span class='system'>Web Service Broadcast: <b>" + Message + "</b></span>");
//return;
InvokeMethod("BroadcastMessage", new Dictionary<string, object>() { {"Message", Message} });
}
[RequiresPermission("editUser")]
void _BroadcastMessage(string Message)
{
MessageBus.GetInstance().SendAll("<span class='system'>Web Service Broadcast: <b>" + Message + "</b></span>");
return;
}
Now I can have the check at run time without the dependency injection...
No gotchas in site :)
Hopefully you will agree that this is less weight then a AOP Framework or deriving from MarshalByRefObject or using remoting or proxy classes.
First you have to modify your class to implement an interface (rather than implementing the MarshalByRefObject).
interface ITraced {
void Method1();
void Method2()
}
class Traced: ITraced { .... }
Next you need a generic wrapper object based on RealProxy to decorate any interface to allow intercepting any call to the decorated object.
class MethodLogInterceptor: RealProxy
{
public MethodLogInterceptor(Type interfaceType, object decorated)
: base(interfaceType)
{
_decorated = decorated;
}
public override IMessage Invoke(IMessage msg)
{
var methodCall = msg as IMethodCallMessage;
var methodInfo = methodCall.MethodBase;
Console.WriteLine("Precall " + methodInfo.Name);
var result = methodInfo.Invoke(_decorated, methodCall.InArgs);
Console.WriteLine("Postcall " + methodInfo.Name);
return new ReturnMessage(result, null, 0,
methodCall.LogicalCallContext, methodCall);
}
}
Now we are ready to intercept calls to Method1 and Method2 of ITraced
public class Caller
{
public static void Call()
{
ITraced traced = (ITraced)new MethodLogInterceptor(typeof(ITraced), new Traced()).GetTransparentProxy();
traced.Method1();
traced.Method2();
}
}
You can use open source framework CInject on CodePlex. You can write minimal code to create an Injector and get it to intercept any code quickly with CInject. Plus, since this is Open Source you can extend this as well.
Or you can follow the steps mentioned on this article on Intercepting Method Calls using IL and create your own interceptor using Reflection.Emit classes in C#.
I don't know a solution but my approach would be as follows.
Decorate the class (or its methods) with a custom attribute. Somewhere else in the program, let an initialization function reflect all types, read the methods decorated with the attributes and inject some IL code into the method. It might actually be more practical to replace the method by a stub that calls LogStart, the actual method and then LogEnd. Additionally, I don't know if you can change methods using reflection so it might be more practical to replace the whole type.
You could potentially use the GOF Decorator Pattern, and 'decorate' all classes that need tracing.
It's probably only really practical with an IOC container (but as pointer out earlier you may want to consider method interception if you're going to go down the IOC path).
you need to bug Ayende for an answer on how he did it:
http://ayende.com/Blog/archive/2009/11/19/can-you-hack-this-out.aspx
AOP is a must for clean code implementing, however if you want to surround a block in C#, generic methods have relatively easier usage. (with intelli sense and strongly typed code) Certainly, it can NOT be an alternative for AOP.
Although PostSHarp have little buggy issues (i do not feel confident for using at production), it is a good stuff.
Generic wrapper class,
public class Wrapper
{
public static Exception TryCatch(Action actionToWrap, Action<Exception> exceptionHandler = null)
{
Exception retval = null;
try
{
actionToWrap();
}
catch (Exception exception)
{
retval = exception;
if (exceptionHandler != null)
{
exceptionHandler(retval);
}
}
return retval;
}
public static Exception LogOnError(Action actionToWrap, string errorMessage = "", Action<Exception> afterExceptionHandled = null)
{
return Wrapper.TryCatch(actionToWrap, (e) =>
{
if (afterExceptionHandled != null)
{
afterExceptionHandled(e);
}
});
}
}
usage could be like this (with intelli sense of course)
var exception = Wrapper.LogOnError(() =>
{
MessageBox.Show("test");
throw new Exception("test");
}, "Hata");
Maybe it's to late for this answer but here it goes.
What you are looking to achieve is built in MediatR library.
This is my RequestLoggerBehaviour which intercepts all calls to my business layer.
namespace SmartWay.Application.Behaviours
{
public class RequestLoggerBehaviour<TRequest, TResponse> : IPipelineBehavior<TRequest, TResponse>
{
private readonly ILogger _logger;
private readonly IAppSession _appSession;
private readonly ICreateLogGrain _createLogGrain;
public RequestLoggerBehaviour(ILogger<TRequest> logger, IAppSession appSession, IClusterClient clusterClient)
{
_logger = logger;
_appSession = appSession;
_createLogGrain = clusterClient.GetGrain<ICreateLogGrain>(Guid.NewGuid());
}
public async Task<TResponse> Handle(TRequest request, CancellationToken cancellationToken, RequestHandlerDelegate<TResponse> next)
{
var name = typeof(TRequest).Name;
_logger.LogInformation($"SmartWay request started: ClientId: {_appSession.ClientId} UserId: {_appSession.UserId} Operation: {name} Request: {request}");
var response = await next();
_logger.LogInformation($"SmartWay request ended: ClientId: {_appSession.ClientId} UserId: {_appSession.UserId} Operation: {name} Request: {request}");
return response;
}
}
}
You can also create performance behaviours to trace methods that take too long to execute for example.
Having clean architecture (MediatR) on your business layer will allow you to keep your code clean while you enforce SOLID principles.
You can see how it works here:
https://youtu.be/5OtUm1BLmG0?t=1
Write your own AOP library.
Use reflection to generate a logging proxy over your instances (not sure if you can do it without changing some part of your existing code).
Rewrite the assembly and inject your logging code (basically the same as 1).
Host the CLR and add logging at this level (i think this is the hardest solution to implement, not sure if you have the required hooks in the CLR though).
The best you can do before C# 6 with 'nameof' released is to use slow StackTrace and linq Expressions.
E.g. for such method
public void MyMethod(int age, string name)
{
log.DebugTrace(() => age, () => name);
//do your stuff
}
Such line may be produces in your log file
Method 'MyMethod' parameters age: 20 name: Mike
Here is the implementation:
//TODO: replace with 'nameof' in C# 6
public static void DebugTrace(this ILog log, params Expression<Func<object>>[] args)
{
#if DEBUG
var method = (new StackTrace()).GetFrame(1).GetMethod();
var parameters = new List<string>();
foreach(var arg in args)
{
MemberExpression memberExpression = null;
if (arg.Body is MemberExpression)
memberExpression = (MemberExpression)arg.Body;
if (arg.Body is UnaryExpression && ((UnaryExpression)arg.Body).Operand is MemberExpression)
memberExpression = (MemberExpression)((UnaryExpression)arg.Body).Operand;
parameters.Add(memberExpression == null ? "NA" : memberExpression.Member.Name + ": " + arg.Compile().DynamicInvoke().ToString());
}
log.Debug(string.Format("Method '{0}' parameters {1}", method.Name, string.Join(" ", parameters)));
#endif
}
Related
I have various interfaces and I need to be able to call them. Here is the base class:
public class MyActorBase<TChild>: ActorBase where TChild : MyActorBase<TChild>
{
public MyActorBase()
{
var actors = ChildClass
.GetInterfaces()
.Where(i => i.IsGenericType && i.GetGenericTypeDefinition() == typeof(IActorMessageHandler<>))
.Select(x=> (arguments: x.GetGenericArguments(), definition: x))
.ToImmutableList();
if (actors.Any())
{
var ty = actors.First();
var obj = Activator.CreateInstance(ty.definition, true);
// how to call method implementation
}
}
protected sealed override bool Receive(object message) => false;
private Type ChildClass => ((this as TChild)?? new object()).GetType();
}
public interface IActorMessageHandler<in T>
{
Task Handle(T msg);
}
I read these blog post:
Dont use Activator.CreateInstance
Linq Expressions
Creating objects performance implications
The writers already knew the type at compile time hence were able to cast correctly. I do not know anything at compile time so I cannot use a generic method or typecast it using () operator or as operator.
UPDATE: I think people are not getting the idea of what I want to achieve. so consider this. I made a nuget package which anyone can
depend upon. Somewhere in the world, someone writes this code:
public class MyMessage
{
public int Number { get; }
public MyMessage(int number) => Number = number;
}
public class MyNewActor: MyActorBase<MyNewActor>, IActorMessageHandler<MyMessage>
{
public Task Handle(MyMessage msg)
{
return Task.CompletedTask;
}
}
I want that any class that implements the IActorMessageHandler, i should be able to call its method Handle(T msg). so while I was able to instantiate it (considering that I'm not using any dependency injection) how can I call the method in the most efficient way?
Is there any alternate to reflection?
you should not use Activator.CreateInstance it's very much expensive. instead, you may use Expression.Lamda to create objects in an efficient way.
var object = Expression.Lambda<Func<IActorMessageHandler<TChild>>>(Expression.New(ty.definition.Value.GetConstructor(Type.EmptyTypes) ?? throw new
Exception("Failed to create object"))
).Compile()();
What about using the dynamic keyword? This is basically optimized reflection nicely wrapped for you:
dynamic obj = Activator.CreateInstance(ty.definition, true);
Task t = obj.Handle(msg); //need to define msg before
It bypasses compile-time checks and defers method look-up at run-time.
Note that it will fail at run-time if no resolution for the Handle method can be performed.
This blog post concludes that dynamic ends up being much quicker than reflection when called fairly often because of caching optimizations.
For a given class I would like to have tracing functionality i.e. I would like to log every method call (method signature and actual parameter values) and every method exit (just the method signature).
How do I accomplish this assuming that:
I don't want to use any 3rd party
AOP libraries for C#,
I don't want to add duplicate code to all the methods that I want to trace,
I don't want to change the public API of the class - users of the class should be able to call all the methods in exactly the same way.
To make the question more concrete let's assume there are 3 classes:
public class Caller
{
public static void Call()
{
Traced traced = new Traced();
traced.Method1();
traced.Method2();
}
}
public class Traced
{
public void Method1(String name, Int32 value) { }
public void Method2(Object object) { }
}
public class Logger
{
public static void LogStart(MethodInfo method, Object[] parameterValues);
public static void LogEnd(MethodInfo method);
}
How do I invoke Logger.LogStart and Logger.LogEnd for every call to Method1 and Method2 without modifying the Caller.Call method and without adding the calls explicitly to Traced.Method1 and Traced.Method2?
Edit: What would be the solution if I'm allowed to slightly change the Call method?
C# is not an AOP oriented language. It has some AOP features and you can emulate some others but making AOP with C# is painful.
I looked up for ways to do exactly what you wanted to do and I found no easy way to do it.
As I understand it, this is what you want to do:
[Log()]
public void Method1(String name, Int32 value);
and in order to do that you have two main options
Inherit your class from MarshalByRefObject or ContextBoundObject and define an attribute which inherits from IMessageSink. This article has a good example. You have to consider nontheless that using a MarshalByRefObject the performance will go down like hell, and I mean it, I'm talking about a 10x performance lost so think carefully before trying that.
The other option is to inject code directly. In runtime, meaning you'll have to use reflection to "read" every class, get its attributes and inject the appropiate call (and for that matter I think you couldn't use the Reflection.Emit method as I think Reflection.Emit wouldn't allow you to insert new code inside an already existing method). At design time this will mean creating an extension to the CLR compiler which I have honestly no idea on how it's done.
The final option is using an IoC framework. Maybe it's not the perfect solution as most IoC frameworks works by defining entry points which allow methods to be hooked but, depending on what you want to achive, that might be a fair aproximation.
The simplest way to achieve that is probably to use PostSharp. It injects code inside your methods based on the attributes that you apply to it. It allows you to do exactly what you want.
Another option is to use the profiling API to inject code inside the method, but that is really hardcore.
You could achieve it with Interception feature of a DI container such as Castle Windsor. Indeed, it is possible to configure the container in such way that every classes that have a method decorated by a specific attribute would be intercepted.
Regarding point #3, OP asked for a solution without AOP framework. I assumed in the following answer that what should be avoided were Aspect, JointPoint, PointCut, etc. According to Interception documentation from CastleWindsor, none of those are required to accomplish what is asked.
Configure generic registration of an Interceptor, based on the presence of an attribute:
public class RequireInterception : IContributeComponentModelConstruction
{
public void ProcessModel(IKernel kernel, ComponentModel model)
{
if (HasAMethodDecoratedByLoggingAttribute(model.Implementation))
{
model.Interceptors.Add(new InterceptorReference(typeof(ConsoleLoggingInterceptor)));
model.Interceptors.Add(new InterceptorReference(typeof(NLogInterceptor)));
}
}
private bool HasAMethodDecoratedByLoggingAttribute(Type implementation)
{
foreach (var memberInfo in implementation.GetMembers())
{
var attribute = memberInfo.GetCustomAttributes(typeof(LogAttribute)).FirstOrDefault() as LogAttribute;
if (attribute != null)
{
return true;
}
}
return false;
}
}
Add the created IContributeComponentModelConstruction to container
container.Kernel.ComponentModelBuilder.AddContributor(new RequireInterception());
And you can do whatever you want in the interceptor itself
public class ConsoleLoggingInterceptor : IInterceptor
{
public void Intercept(IInvocation invocation)
{
Console.Writeline("Log before executing");
invocation.Proceed();
Console.Writeline("Log after executing");
}
}
Add the logging attribute to your method to log
public class Traced
{
[Log]
public void Method1(String name, Int32 value) { }
[Log]
public void Method2(Object object) { }
}
Note that some handling of the attribute will be required if only some method of a class needs to be intercepted. By default, all public methods will be intercepted.
If you write a class - call it Tracing - that implements the IDisposable interface, you could wrap all method bodies in a
Using( Tracing tracing = new Tracing() ){ ... method body ...}
In the Tracing class you could the handle the logic of the traces in the constructor/Dispose method, respectively, in the Tracing class to keep track of the entering and exiting of the methods. Such that:
public class Traced
{
public void Method1(String name, Int32 value) {
using(Tracing tracer = new Tracing())
{
[... method body ...]
}
}
public void Method2(Object object) {
using(Tracing tracer = new Tracing())
{
[... method body ...]
}
}
}
If you want to trace after your methods without limitation (no code adaptation, no AOP Framework, no duplicate code), let me tell you, you need some magic...
Seriously, I resolved it to implement an AOP Framework working at runtime.
You can find here : NConcern .NET AOP Framework
I decided to create this AOP Framework to give a respond to this kind of needs. it is a simple library very lightweight. You can see an example of logger in home page.
If you don't want to use a 3rd party assembly, you can browse the code source (open source) and copy both files Aspect.Directory.cs and Aspect.Directory.Entry.cs to adapted as your wishes. Theses classes allow to replace your methods at runtime. I would just ask you to respect the license.
I hope you will find what you need or to convince you to finally use an AOP Framework.
Take a look at this - Pretty heavy stuff..
http://msdn.microsoft.com/en-us/magazine/cc164165.aspx
Essential .net - don box had a chapter on what you need called Interception.
I scraped some of it here (Sorry about the font colors - I had a dark theme back then...)
http://madcoderspeak.blogspot.com/2005/09/essential-interception-using-contexts.html
I have found a different way which may be easier...
Declare a Method InvokeMethod
[WebMethod]
public object InvokeMethod(string methodName, Dictionary<string, object> methodArguments)
{
try
{
string lowerMethodName = '_' + methodName.ToLowerInvariant();
List<object> tempParams = new List<object>();
foreach (MethodInfo methodInfo in serviceMethods.Where(methodInfo => methodInfo.Name.ToLowerInvariant() == lowerMethodName))
{
ParameterInfo[] parameters = methodInfo.GetParameters();
if (parameters.Length != methodArguments.Count()) continue;
else foreach (ParameterInfo parameter in parameters)
{
object argument = null;
if (methodArguments.TryGetValue(parameter.Name, out argument))
{
if (parameter.ParameterType.IsValueType)
{
System.ComponentModel.TypeConverter tc = System.ComponentModel.TypeDescriptor.GetConverter(parameter.ParameterType);
argument = tc.ConvertFrom(argument);
}
tempParams.Insert(parameter.Position, argument);
}
else goto ContinueLoop;
}
foreach (object attribute in methodInfo.GetCustomAttributes(true))
{
if (attribute is YourAttributeClass)
{
RequiresPermissionAttribute attrib = attribute as YourAttributeClass;
YourAttributeClass.YourMethod();//Mine throws an ex
}
}
return methodInfo.Invoke(this, tempParams.ToArray());
ContinueLoop:
continue;
}
return null;
}
catch
{
throw;
}
}
I then define my methods like so
[WebMethod]
public void BroadcastMessage(string Message)
{
//MessageBus.GetInstance().SendAll("<span class='system'>Web Service Broadcast: <b>" + Message + "</b></span>");
//return;
InvokeMethod("BroadcastMessage", new Dictionary<string, object>() { {"Message", Message} });
}
[RequiresPermission("editUser")]
void _BroadcastMessage(string Message)
{
MessageBus.GetInstance().SendAll("<span class='system'>Web Service Broadcast: <b>" + Message + "</b></span>");
return;
}
Now I can have the check at run time without the dependency injection...
No gotchas in site :)
Hopefully you will agree that this is less weight then a AOP Framework or deriving from MarshalByRefObject or using remoting or proxy classes.
First you have to modify your class to implement an interface (rather than implementing the MarshalByRefObject).
interface ITraced {
void Method1();
void Method2()
}
class Traced: ITraced { .... }
Next you need a generic wrapper object based on RealProxy to decorate any interface to allow intercepting any call to the decorated object.
class MethodLogInterceptor: RealProxy
{
public MethodLogInterceptor(Type interfaceType, object decorated)
: base(interfaceType)
{
_decorated = decorated;
}
public override IMessage Invoke(IMessage msg)
{
var methodCall = msg as IMethodCallMessage;
var methodInfo = methodCall.MethodBase;
Console.WriteLine("Precall " + methodInfo.Name);
var result = methodInfo.Invoke(_decorated, methodCall.InArgs);
Console.WriteLine("Postcall " + methodInfo.Name);
return new ReturnMessage(result, null, 0,
methodCall.LogicalCallContext, methodCall);
}
}
Now we are ready to intercept calls to Method1 and Method2 of ITraced
public class Caller
{
public static void Call()
{
ITraced traced = (ITraced)new MethodLogInterceptor(typeof(ITraced), new Traced()).GetTransparentProxy();
traced.Method1();
traced.Method2();
}
}
You can use open source framework CInject on CodePlex. You can write minimal code to create an Injector and get it to intercept any code quickly with CInject. Plus, since this is Open Source you can extend this as well.
Or you can follow the steps mentioned on this article on Intercepting Method Calls using IL and create your own interceptor using Reflection.Emit classes in C#.
I don't know a solution but my approach would be as follows.
Decorate the class (or its methods) with a custom attribute. Somewhere else in the program, let an initialization function reflect all types, read the methods decorated with the attributes and inject some IL code into the method. It might actually be more practical to replace the method by a stub that calls LogStart, the actual method and then LogEnd. Additionally, I don't know if you can change methods using reflection so it might be more practical to replace the whole type.
You could potentially use the GOF Decorator Pattern, and 'decorate' all classes that need tracing.
It's probably only really practical with an IOC container (but as pointer out earlier you may want to consider method interception if you're going to go down the IOC path).
you need to bug Ayende for an answer on how he did it:
http://ayende.com/Blog/archive/2009/11/19/can-you-hack-this-out.aspx
AOP is a must for clean code implementing, however if you want to surround a block in C#, generic methods have relatively easier usage. (with intelli sense and strongly typed code) Certainly, it can NOT be an alternative for AOP.
Although PostSHarp have little buggy issues (i do not feel confident for using at production), it is a good stuff.
Generic wrapper class,
public class Wrapper
{
public static Exception TryCatch(Action actionToWrap, Action<Exception> exceptionHandler = null)
{
Exception retval = null;
try
{
actionToWrap();
}
catch (Exception exception)
{
retval = exception;
if (exceptionHandler != null)
{
exceptionHandler(retval);
}
}
return retval;
}
public static Exception LogOnError(Action actionToWrap, string errorMessage = "", Action<Exception> afterExceptionHandled = null)
{
return Wrapper.TryCatch(actionToWrap, (e) =>
{
if (afterExceptionHandled != null)
{
afterExceptionHandled(e);
}
});
}
}
usage could be like this (with intelli sense of course)
var exception = Wrapper.LogOnError(() =>
{
MessageBox.Show("test");
throw new Exception("test");
}, "Hata");
Maybe it's to late for this answer but here it goes.
What you are looking to achieve is built in MediatR library.
This is my RequestLoggerBehaviour which intercepts all calls to my business layer.
namespace SmartWay.Application.Behaviours
{
public class RequestLoggerBehaviour<TRequest, TResponse> : IPipelineBehavior<TRequest, TResponse>
{
private readonly ILogger _logger;
private readonly IAppSession _appSession;
private readonly ICreateLogGrain _createLogGrain;
public RequestLoggerBehaviour(ILogger<TRequest> logger, IAppSession appSession, IClusterClient clusterClient)
{
_logger = logger;
_appSession = appSession;
_createLogGrain = clusterClient.GetGrain<ICreateLogGrain>(Guid.NewGuid());
}
public async Task<TResponse> Handle(TRequest request, CancellationToken cancellationToken, RequestHandlerDelegate<TResponse> next)
{
var name = typeof(TRequest).Name;
_logger.LogInformation($"SmartWay request started: ClientId: {_appSession.ClientId} UserId: {_appSession.UserId} Operation: {name} Request: {request}");
var response = await next();
_logger.LogInformation($"SmartWay request ended: ClientId: {_appSession.ClientId} UserId: {_appSession.UserId} Operation: {name} Request: {request}");
return response;
}
}
}
You can also create performance behaviours to trace methods that take too long to execute for example.
Having clean architecture (MediatR) on your business layer will allow you to keep your code clean while you enforce SOLID principles.
You can see how it works here:
https://youtu.be/5OtUm1BLmG0?t=1
Write your own AOP library.
Use reflection to generate a logging proxy over your instances (not sure if you can do it without changing some part of your existing code).
Rewrite the assembly and inject your logging code (basically the same as 1).
Host the CLR and add logging at this level (i think this is the hardest solution to implement, not sure if you have the required hooks in the CLR though).
The best you can do before C# 6 with 'nameof' released is to use slow StackTrace and linq Expressions.
E.g. for such method
public void MyMethod(int age, string name)
{
log.DebugTrace(() => age, () => name);
//do your stuff
}
Such line may be produces in your log file
Method 'MyMethod' parameters age: 20 name: Mike
Here is the implementation:
//TODO: replace with 'nameof' in C# 6
public static void DebugTrace(this ILog log, params Expression<Func<object>>[] args)
{
#if DEBUG
var method = (new StackTrace()).GetFrame(1).GetMethod();
var parameters = new List<string>();
foreach(var arg in args)
{
MemberExpression memberExpression = null;
if (arg.Body is MemberExpression)
memberExpression = (MemberExpression)arg.Body;
if (arg.Body is UnaryExpression && ((UnaryExpression)arg.Body).Operand is MemberExpression)
memberExpression = (MemberExpression)((UnaryExpression)arg.Body).Operand;
parameters.Add(memberExpression == null ? "NA" : memberExpression.Member.Name + ": " + arg.Compile().DynamicInvoke().ToString());
}
log.Debug(string.Format("Method '{0}' parameters {1}", method.Name, string.Join(" ", parameters)));
#endif
}
I'm using Polly .NET for wrapping my methods with retry behavior.
Polly makes it quite easy and elegant but I'm trying to take it to the next level.
Please see this Python example (it might have few mistakes, but that's not the point here):
#retry(wait_exponential_multiplier=250,
wait_exponential_max=4500,
stop_max_attempt_number=8,
retry_on_result=lambda failures_count: failures_count > 0)
def put():
global non_delivered_tweets
logger.info("Executing Firehose put_batch command on {} tweets".format(len(non_delivered_tweets)))
response = firehose.put_record_batch(DeliveryStreamName=firehose_stream_name, Records=non_delivered_tweets)
failures_count = response["FailedPutCount"]
failures_list = []
if failures_count > 0:
for index, request_response in enumerate(response["RequestResponses"]):
if "ErrorCode" in request_response:
failures_list.append(non_delivered_tweets[index])
non_delivered_tweets = failures_list
return failures_count
The benefits in writing code like the above:
You read the core logic
You consider that the core logic is retried in the specified cases
Since the two are not mixed - it makes the code much more readable in my opinion.
I would like to achieve this syntax with Polly on C#, using attributes.
I have minimum knowledge in C# attributes, and for what I've read, it seems that this is not possible.
I would be happy to have something like this:
class Program
{
static void Main(string[] args)
{
var someClassInstance = new SomeClass();
someClassInstance.DoSomething();
}
}
class Retry : Attribute
{
private static readonly Policy DefaultRetryPolicy = Policy
.Handle<Exception>()
.WaitAndRetry(3, retryAttempt => TimeSpan.FromSeconds(5));
public void Wrapper(Action action)
{
DefaultRetryPolicy.Execute(action);
}
}
class SomeClass
{
[Retry]
public void DoSomething()
{
// core logic
}
}
As you can see, in my example - the [Retry] attribute wraps the DoSomething method with retry logic.
If that is possible, I would be very happy to learn how to implement it.
Thanks a lot for help !
Of course, that is possible. However, it is way more complicated than in Python. Unlike Python where decorators are executable code that may exchange the decorated object, attributes in C# are pure metadata. .NET attributes do not have access to the object they are decorating but rather stand for themselves.
Therefore, you have to connect the attribute and the method yourself and especially replace the method yourself (i.e. replace the function with the core logic with the function that also includes retries etc.). The latter is not possible implicitly in C#, you have to do that explicitly.
It should work similar to this:
class RetryExecutor
{
public static void Call(Action action)
{
var attribute = action.Method.GetCustomAttribute(typeof(Retry));
if (attribute != null)
{
((Retry)attribute).Wrap(action);
}
else
{
action();
}
}
}
Given an object, I would like to create a mock that implements the interface of the object and mocks one method, but forwards the rest of the methods to the real object, not the base class.
For example:
ISqlUtil sqlUtil = GetTheRealSqlUtilObjectSomehow(...);
var mock = new Mock<ISqlUtil>();
mock.Setup(o => o.SpecialMethodToBeMocked(...)).Returns<...>(...)
// Here I would like to delegate the rest of the methods to the real sqlUtil object. How ?
So, in the example I want to mock just ISqlUtil.SpecialMethodToBeMocked and forward the rest of methods/properties to the existing instance sqlUtil.
Is it possible in Moq.NET ?
EDIT 1
It should work for generic methods as well.
You can't do this with Moq out of the box. However, I think you can achieve basically what you want if you go down to the next layer and use Castle DynamicProxy directly (which is what's underneath Moq).
So, given the following base code to simulate your issue (essentially, an interface, a concrete implementation and a factory because the concrete is hard to make/setup):
public interface ISqlUtil {
T SomeGenericMethod<T>(T args);
int SomeMethodToIntercept();
}
public class ConcreteSqlUtil : ISqlUtil {
public T SomeGenericMethod<T>(T args){
return args;
}
public int SomeMethodToIntercept() {
return 42;
}
}
public class SqlUtilFactory {
public static ISqlUtil CreateSqlUtil() {
var rVal = new ConcreteSqlUtil();
// Some Complex setup
return rVal;
}
}
You can then have the following test:
public void TestCanInterceptMethods() {
// Create a concrete instance, using the factory
var coreInstance = SqlUtilFactory.CreateSqlUtil();
// Test that the concrete instance works
Assert.AreEqual(42, coreInstance.SomeMethodToIntercept());
Assert.AreEqual(40, coreInstance.SomeGenericMethod(40));
// Create a proxy generator (you'll probably want to put this
// somewhere static so that it's caching works if you use it)
var generator = new Castle.DynamicProxy.ProxyGenerator();
// Use the proxy to generate a new class that implements ISqlUtil
// Note the concrete instance is passed into the construction
// As is an instance of MethodInterceptor (see below)
var proxy = generator.CreateInterfaceProxyWithTarget<ISqlUtil>(coreInstance,
new MethodInterceptor<int>("SomeMethodToIntercept", 33));
// Check that calling via the proxy still delegates to existing
// generic method
Assert.AreEqual(45, proxy.SomeGenericMethod(45));
// Check that calling via the proxy returns the result we've specified
// for our intercepted method
Assert.AreEqual(33, proxy.SomeMethodToIntercept());
}
The method interceptor looks like this:
public class MethodInterceptor<T> : Castle.DynamicProxy.IInterceptor {
private T _returns;
private string _methodName;
public MethodInterceptor(string methodName, T returns) {
_returns = returns;
_methodName = methodName;
}
public void Intercept(IInvocation invocation) {
if (invocation.Method.Name == _methodName) {
invocation.ReturnValue = _returns;
}
else {
invocation.Proceed();
}
}
}
Essentially, the interceptor checks if the method being called matches the one you're interested in and if so, returns the stored return value. Otherwise, it calls Proceed, which delegates the method call onto the concrete object supplied when the proxy was created.
The example code uses strings rather than lambdas to specify the method to intercept, obviously this could be changed (exercise for the reader). Also, this isn't using Moq, so you lose the Setup, Returns and Verify elements, which are replaced by the Interceptor, so this may be too far away from what you're after to be useful, however depending what your code really looks like it may be a viable alternative approach.
If you're unable to mock the class and delegate calls to the base by default, then you'll have to manually wire up the delegation to your separate instance.
var util = GetSqlUtil();
var mockUtil = new Mock<ISqlUtil>(MockBehavior.Strict);
mockUtil.Setup(x => x.SomeCall(...)).Returns<...>(args => util.SomeCall(args));
Having been successful with tricking Moq into creating a proxy for given class instance in my other SO answer here, I thought it would be easy to tweak the solution for your case of a given interface implementation.
No way
If you think of, it it makes sense: interface has no implementateion. And since Moq is aware mocked type is an interface - it does not even try to call the underlying proxy. That's it, end of story.
For those who don't give up easily
spoiler: still no luck
Looking at the library source code, I had a theory that it might be possible to force the correct execution path:
if (mock.TargetType.IsInterface) // !!! needs to be true here
{
// !!! we end up here and proceed to `DefaultValueProvider`
}
else
{
Debug.Assert(mock.TargetType.IsClass); // !!! needs to pass here
Debug.Assert(mock.ImplementsInterface(declaringType)); // !!! needs to pass here
// Case 2: Explicitly implemented interface method of a class proxy.
......
for that we could fulfill two conditions:
mock.TargetType should be a target class instance type
this.InheritedInterfaces should contain our interface
the second one is easy enough to build:
private void AddInheritedInterfaces(T targetInstance)
{
var moqAssembly = Assembly.Load(nameof(Moq));
var mockType = moqAssembly.GetType("Moq.Mock`1");
var concreteType = mockType.MakeGenericType(typeof(T));
var fi = concreteType.GetField("inheritedInterfaces", BindingFlags.NonPublic | BindingFlags.Static);
var t = targetInstance.GetType()
.GetInterfaces()
.ToArray();
fi.SetValue(null, t);
}
but as far as I'm aware, overriding an expression-bodied property marked internal (which Mock<>.TargetType is) is impossible without Reflection.Emit artillery, where it will likely become infeasible due to amonunt of overriding and subclassing required - you might be better off just forking Moq and patching the source code in this case (or submitting a PR maybe?).
What can be done
It should be possible to generate Setup LINQ expressions that automatically call through to your respective instance implementations:
//something along these lines, but this is basically sudocode
ISqlUtil sqlUtil = GetTheRealSqlUtilObjectSomehow(...);
var mock = new Mock<ISqlUtil>();
foreach(var methodInfo in typeof(ISqlUtil).GetMembers())
{ mock.Setup(Expression.Member(methodInfo)).Returns(Expression.Lambda(Expression.Call(methodInfo)).Compile()())
}
But given how much effort it is to account for everything properly, that again is probably not very feasible.
There is a workaround to do it, by using the method by #timur described in this answer.
While this method doesn't work directly on interfaces as described by his answer in the current thread, but it is indeed possible to do it via a generic factory method.
NOTE: The resulting Moq object will NOT be a true subclass rather it is a wrapped object and therefore only public virtual methods will be forwarded to the object (unlike a typical Moq which the base is automatically called for non public or non virtual methods/properties).
The factory mode would look like this:
static MyMock<T> CreateMock<T>(T target) where T : class, ISqlUtil
{
var superMock = new MyMock<T>(target); // now we can pass instances!
superMock.CallBase = true;
superMock.Setup(o => o.SpecialMethodToBeMocked(...)).Returns<...>(...);
return superMock;
}
And you use it like this:
var mockFunc = typeof(this).GetMethod("CreateMock").MakeGenericMethod(sqlUtil.GetType());
var superMock = mockFunc.Invoke(null, new object[] {sqlUtil}) as Mock;
While the implementation of MyMock will be based on the one described in this answer (but I am simplifying it a bit).
public class MyMock<T> : Mock<T>, IDisposable where T : class
{
public MyMock(T targetInstance)
{
var moqAssembly = typeof(Mock).Assembly;
var proxyFactoryType = moqAssembly.GetType("Moq.ProxyFactory");
var castleProxyFactoryInstance = proxyFactoryType.GetProperty("Instance").GetValue(null);
var castleProxyFactoryType = moqAssembly.GetType("Moq.CastleProxyFactory");
var generatorFieldInfo = castleProxyFactoryType.GetField("generator", BindingFlags.NonPublic | BindingFlags.Instance);
generatorFieldInfo.SetValue(castleProxyFactoryInstance, new MyProxyGenerator(targetInstance));
}
}
class MyProxyGenerator : ProxyGenerator
{
object _target;
public MyProxyGenerator(object target) {
_target = target;
}
// this method is 90% taken from the library source. I only had to tweak two lines (see below)
public override object CreateClassProxy(Type classToProxy, Type[] additionalInterfacesToProxy, ProxyGenerationOptions options, object[] constructorArguments, params IInterceptor[] interceptors)
{
if (_target is not null) return CreateClassProxyWithTarget(classToProxy, additionalInterfacesToProxy, _target, options, constructorArguments, interceptors);
return base.CreateClassProxy(classToProxy, additionalInterfacesToProxy, options, constructorArguments, interceptors);
}
I have built a c# .net 4.0 library.
all of the methods are public and static.
i want to add an aspect using an aspect programming library that does something like this:
try block
1. call method (if method throws exception)
catch block
2. log the exception and massage the exception
it is a dll (class library project)
can you please advice if there is a way to add try/catch routines in one class instead of wrapping around all methods one by one?
Because you had mentioned word static neither ninject nor castle-windsor nor anything else based upon castle-dynamicproxy would help you, because they able to add aspects around regular method. So you have two options:
Handwritten tracing decorator
Add separate handwritten tracing decorator that will add required functionality without altering of existing code
Benefits
Simple and easy to write yourself
Drawbacks
Almost no call context. This is important for tracing, if you like to know what method actually has been called and what parameters had been passed, etc.
New layer of abstraction around existed code. Instead of calling your static methods, you have to call Decorator that will call your static methods inside
Example
// Decorated calls
TraceDecorator.Aspect(() => StaticLogic.SuccessfulCall());
TraceDecorator.Aspect(() => StaticLogic.ExceptionCall());
TraceDecorator.Aspect(() => StaticLogic.SuccessfulCallWithReturn(42));
TraceDecorator.Aspect(() => StaticLogic.ExceptionCallWithReturn(42));
// Decorator itself
public static class TraceDecorator
{
public static T Aspect<T>(Func<T> func)
{
try
{
return func();
}
catch(Exception ex)
{
LogException(ex);
return default(T);
}
}
public static void Aspect(Action func)
{
try
{
func();
}
catch(Exception ex)
{
LogException(ex);
}
}
private static void LogException(Exception ex)
{
Console.WriteLine("Traced by TraceDecorator: {0}", ex);
}
}
Full sample available here
PostSharp
Take a look at Non-Invasive Tracing & Logging with postsharp
Benefits
Broadcast your aspect without altering existing code or adding attributes by yourself, whatever you found suitable
Separation of concerns: tracing/logging are separated from your logic
and alot more …
Drawbacks
Nothing come for free. But there is a free PostSharp edition available with limited functionality
Sometimes integration with other tools because of post-compilation
See NConcern .NET AOP Framework, an open source project.
Example
Your static class
static public class Calculator
{
static public int Add(int a, int b)
{
return a + b;
}
}
Logger
static public class Logger
{
static public void Log(MethodInfo method, object[] arguments, Exception exception)
{
Console.WriteLine("{0}({1}) exception = {2}", method.Name, string.Join(", ", arguments), exception.Message);
}
}
Aspect : log on exception
public class Logging : IAspect
{
public IEnumerable<IAdvice> Advise(MethodInfo method)
{
yield return Advice.Basic.After.Throwing((instance, arguments, exception) =>
{
Logger.Log(method, arguments, exception);
});
}
}
Joinpoint : methods of Calculator
var calculatorMethods = new Func<MethodInfo, bool>(method => method.ReflectedType == typeof(Calculator));
Activate the logging aspect for joinpoint
Aspect.Weave<Logging>(calculatorMethods);