Serialize nested Interface properties without any boilerplate code [duplicate] - c#

I would like to XML serialize an object that has (among other) a property of type IModelObject (which is an interface).
public class Example
{
public IModelObject Model { get; set; }
}
When I try to serialize an object of this class, I receive the following error:
"Cannot serialize member Example.Model of type Example because it is an interface."
I understand that the problem is that an interface cannot be serialized. However, the concrete Model object type is unknown until runtime.
Replacing the IModelObject interface with an abstract or concrete type and use inheritance with XMLInclude is possible, but seems like an ugly workaround.
Any suggestions?

This is simply an inherent limitation of declarative serialization where type information is not embedded within the output.
On trying to convert <Flibble Foo="10" /> back into
public class Flibble { public object Foo { get; set; } }
How does the serializer know whether it should be an int, a string, a double (or something else)...
To make this work you have several options but if you truly don't know till runtime the easiest way to do this is likely to be using the XmlAttributeOverrides.
Sadly this will only work with base classes, not interfaces. The best you can do there is to ignore the property which isn't sufficient for your needs.
If you really must stay with interfaces you have three real options:
Hide it and deal with it in another property
Ugly, unpleasant boiler plate and much repetition but most consumers of the class will not have to deal with the problem:
[XmlIgnore()]
public object Foo { get; set; }
[XmlElement("Foo")]
[EditorVisibile(EditorVisibility.Advanced)]
public string FooSerialized
{
get { /* code here to convert any type in Foo to string */ }
set { /* code to parse out serialized value and make Foo an instance of the proper type*/ }
}
This is likely to become a maintenance nightmare...
Implement IXmlSerializable
Similar to the first option in that you take full control of things but
Pros
You don't have nasty 'fake' properties hanging around.
you can interact directly with the xml structure adding flexibility/versioning
Cons
you may end up having to re-implement the wheel for all the other properties on the class
Issues of duplication of effort are similar to the first.
Modify your property to use a wrapping type
public sealed class XmlAnything<T> : IXmlSerializable
{
public XmlAnything() {}
public XmlAnything(T t) { this.Value = t;}
public T Value {get; set;}
public void WriteXml (XmlWriter writer)
{
if (Value == null)
{
writer.WriteAttributeString("type", "null");
return;
}
Type type = this.Value.GetType();
XmlSerializer serializer = new XmlSerializer(type);
writer.WriteAttributeString("type", type.AssemblyQualifiedName);
serializer.Serialize(writer, this.Value);
}
public void ReadXml(XmlReader reader)
{
if(!reader.HasAttributes)
throw new FormatException("expected a type attribute!");
string type = reader.GetAttribute("type");
reader.Read(); // consume the value
if (type == "null")
return;// leave T at default value
XmlSerializer serializer = new XmlSerializer(Type.GetType(type));
this.Value = (T)serializer.Deserialize(reader);
reader.ReadEndElement();
}
public XmlSchema GetSchema() { return(null); }
}
Using this would involve something like (in project P):
public namespace P
{
public interface IFoo {}
public class RealFoo : IFoo { public int X; }
public class OtherFoo : IFoo { public double X; }
public class Flibble
{
public XmlAnything<IFoo> Foo;
}
public static void Main(string[] args)
{
var x = new Flibble();
x.Foo = new XmlAnything<IFoo>(new RealFoo());
var s = new XmlSerializer(typeof(Flibble));
var sw = new StringWriter();
s.Serialize(sw, x);
Console.WriteLine(sw);
}
}
which gives you:
<?xml version="1.0" encoding="utf-16"?>
<MainClass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Foo type="P.RealFoo, P, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
<RealFoo>
<X>0</X>
</RealFoo>
</Foo>
</MainClass>
This is obviously more cumbersome for users of the class though avoids much boiler plate.
A happy medium may be merging the XmlAnything idea into the 'backing' property of the first technique. In this way most of the grunt work is done for you but consumers of the class suffer no impact beyond confusion with introspection.

The solution to this is using reflection with the DataContractSerializer. You don't even have to mark your class with [DataContract] or [DataMember]. It will serialize any object, regardless of whether it has interface type properties (including dictionaries) into xml. Here is a simple extension method that will serialize any object into XML even if it has interfaces (note you could tweak this to run recursively as well).
public static XElement ToXML(this object o)
{
Type t = o.GetType();
Type[] extraTypes = t.GetProperties()
.Where(p => p.PropertyType.IsInterface)
.Select(p => p.GetValue(o, null).GetType())
.ToArray();
DataContractSerializer serializer = new DataContractSerializer(t, extraTypes);
StringWriter sw = new StringWriter();
XmlTextWriter xw = new XmlTextWriter(sw);
serializer.WriteObject(xw, o);
return XElement.Parse(sw.ToString());
}
what the LINQ expression does is it enumerates each property,
returns each property that is an interface,
gets the value of that property (the underlying object),
gets the type of that concrete object
puts it into an array, and adds that to the serializer's list of known types.
Now the serializer knows how about the types it is serializing so it can do its job.

If you know your interface implementors up-front there's a fairly simple hack you can use to get your interface type to serialize without writing any parsing code:
public interface IInterface {}
public class KnownImplementor01 : IInterface {}
public class KnownImplementor02 : IInterface {}
public class KnownImplementor03 : IInterface {}
public class ToSerialize {
[XmlIgnore]
public IInterface InterfaceProperty { get; set; }
[XmlArray("interface")]
[XmlArrayItem("ofTypeKnownImplementor01", typeof(KnownImplementor01))]
[XmlArrayItem("ofTypeKnownImplementor02", typeof(KnownImplementor02))]
[XmlArrayItem("ofTypeKnownImplementor03", typeof(KnownImplementor03))]
public object[] InterfacePropertySerialization {
get { return new[] { InterfaceProperty }; ; }
set { InterfaceProperty = (IInterface)value.Single(); }
}
}
The resulting xml should look something along the lines of
<interface><ofTypeKnownImplementor01><!-- etc... -->

You can use ExtendedXmlSerializer. This serializer support serialization of interface property without any tricks.
var serializer = new ConfigurationContainer().UseOptimizedNamespaces().Create();
var obj = new Example
{
Model = new Model { Name = "name" }
};
var xml = serializer.Serialize(obj);
Your xml will look like:
<?xml version="1.0" encoding="utf-8"?>
<Example xmlns:exs="https://extendedxmlserializer.github.io/v2" xmlns="clr-namespace:ExtendedXmlSerializer.Samples.Simple;assembly=ExtendedXmlSerializer.Samples">
<Model exs:type="Model">
<Name>name</Name>
</Model>
</Example>
ExtendedXmlSerializer support .net 4.5 and .net Core.

Replacing the IModelObject interface with an abstract or concrete type and use inheritance with XMLInclude is possible, but seems like an ugly workaround.
If it is possible to use an abstract base I would recommend that route. It will still be cleaner than using hand-rolled serialization. The only trouble I see with the abstract base is that your still going to need the concrete type? At least that is how I've used it in the past, something like:
public abstract class IHaveSomething
{
public abstract string Something { get; set; }
}
public class MySomething : IHaveSomething
{
string _sometext;
public override string Something
{ get { return _sometext; } set { _sometext = value; } }
}
[XmlRoot("abc")]
public class seriaized
{
[XmlElement("item", typeof(MySomething))]
public IHaveSomething data;
}

Unfortunately there's no simple answer, as the serializer doesn't know what to serialize for an interface. I found a more complete explaination on how to workaround this on MSDN

Unfortuantely for me, I had a case where the class to be serialized had properties that had interfaces as properties as well, so I needed to recursively process each property. Also, some of the interface properties were marked as [XmlIgnore], so I wanted to skip over those. I took ideas that I found on this thread and added some things to it to make it recursive. Only the deserialization code is shown here:
void main()
{
var serializer = GetDataContractSerializer<MyObjectWithCascadingInterfaces>();
using (FileStream stream = new FileStream(xmlPath, FileMode.Open))
{
XmlDictionaryReader reader = XmlDictionaryReader.CreateTextReader(stream, new XmlDictionaryReaderQuotas());
var obj = (MyObjectWithCascadingInterfaces)serializer.ReadObject(reader);
// your code here
}
}
DataContractSerializer GetDataContractSerializer<T>() where T : new()
{
Type[] types = GetTypesForInterfaces<T>();
// Filter out duplicates
Type[] result = types.ToList().Distinct().ToList().ToArray();
var obj = new T();
return new DataContractSerializer(obj.GetType(), types);
}
Type[] GetTypesForInterfaces<T>() where T : new()
{
return GetTypesForInterfaces(typeof(T));
}
Type[] GetTypesForInterfaces(Type T)
{
Type[] result = new Type[0];
var obj = Activator.CreateInstance(T);
// get the type for all interface properties that are not marked as "XmlIgnore"
Type[] types = T.GetProperties()
.Where(p => p.PropertyType.IsInterface &&
!p.GetCustomAttributes(typeof(System.Xml.Serialization.XmlIgnoreAttribute), false).Any())
.Select(p => p.GetValue(obj, null).GetType())
.ToArray();
result = result.ToList().Concat(types.ToList()).ToArray();
// do the same for each of the types identified
foreach (Type t in types)
{
Type[] embeddedTypes = GetTypesForInterfaces(t);
result = result.ToList().Concat(embeddedTypes.ToList()).ToArray();
}
return result;
}

I have found a simpler solution (you don't need the DataContractSerializer), thanks to this blog here:
XML serializing derived types when base type is in another namespace or DLL
But 2 problems can rise in this implementation:
(1) What if DerivedBase is not in the namespace of class Base, or even worse in a project that depends on Base namespace, so Base cannot XMLInclude DerivedBase
(2) What if we only have class Base as a dll ,so again Base cannot XMLInclude DerivedBase
Till now, ...
So the solution to the 2 problems is by using XmlSerializer Constructor (Type, array[]) :
XmlSerializer ser = new XmlSerializer(typeof(A), new Type[]{ typeof(DerivedBase)});
A detailed example is provided here on MSDN:
XmlSerializer Constructor (Type, extraTypesArray[])
It seems to me that for DataContracts or Soap XMLs, you need to check the XmlRoot as mentioned here in this SO question.
A similar answer is here on SO but it isn't marked as one, as it not the OP seems to have considered it already.

in my project, I have a
List<IFormatStyle> FormatStyleTemplates;
containing different Types.
I then use the solution 'XmlAnything' from above, to serialize this list of different types.
The generated xml is beautiful.
[Browsable(false)]
[EditorBrowsable(EditorBrowsableState.Never)]
[XmlArray("FormatStyleTemplates")]
[XmlArrayItem("FormatStyle")]
public XmlAnything<IFormatStyle>[] FormatStyleTemplatesXML
{
get
{
return FormatStyleTemplates.Select(t => new XmlAnything<IFormatStyle>(t)).ToArray();
}
set
{
// read the values back into some new object or whatever
m_FormatStyleTemplates = new FormatStyleProvider(null, true);
value.ForEach(t => m_FormatStyleTemplates.Add(t.Value));
}
}

Related

Xml serialization of a class derived from SerializableDictionary<T1,T2> is missing properties of the derived class

I am successfully using XML serializer to serialize a Microsoft.VisualStudio.Services.Common.SerializableDictionary<T1, T2>.
Now I want to add a guid string to SerializableDictionary and serialize it as well. I therefore created the following class:
public class SerializableDictWithGuid<T1, T2> : SerializableDictionary<T1, T2>, IMyInterface
{
[XmlElement(ElementName = idXml001)]
public string Guid { get; set; } = string.Empty;
}
When serializing SerializableDictWithGuid with the below code, the guid string is missing in the XML output.
public class XmlSerializeHelper<T> where T : class
{
public static string Serialize(T obj)
{
try
{
System.Xml.Serialization.XmlSerializer xsSubmit = new System.Xml.Serialization.XmlSerializer(typeof(T));
using (var sww = new StringWriter())
{
using (XmlTextWriter writer = new XmlTextWriter(sww) { Formatting = Formatting.Indented })
{
xsSubmit.Serialize(writer, obj);
}
return sww.ToString();
}
}
catch (Exception ex)
{
logger.log(ex);
}
return string.Empty;
}
}
Minimal reproducible example
SerializableDictWithGuid <string, string> test = new SerializableDictWithGuid <string, string>() { Guid = "123" };
XmlSerializeHelper<SerializableDictWithGuid <string, string>>.Serialize(test);
Question: how can I add properties to SerializableDictionary and include them in XML serialization?
XmlSerializer does not support dictionaries, so SerializableDictionary<T1, T2> works by implementing IXmlSerializable. I.e., it serializes itself manually using handcrafted code. As such, that code knows nothing about the properties of subclasses, and doesn't have any code to discover and serialize them automatically.
Luckily it appears that IXmlSerializable.ReadXml() and IXmlSerializable.WriteXml() were not implemented explicitly, so it should be possible to re-implement them via interface re-implementation and still call the base class methods. And, while in general it's tricky to implement IXmlSerializable, if you make your Guid be an XML attribute rather than an element, implementation becomes simple because, while the design of IXmlSerializable doesn't allow for derived classes to inject child elements, it does allow for derived classes to inject custom attributes:
public class SerializableDictWithGuid<T1, T2> : SerializableDictionary<T1, T2>, IMyInterface, IXmlSerializable // Re-implement IXmlSerializable
{
const string idXml001 = "idXml001";
public string Guid { get; set; } = string.Empty;
public new void ReadXml(XmlReader reader)
{
reader.MoveToContent();
// At this point the reader is positioned on the beginning of the container element for the dictionary, so we can get any custom attributes we wrote.
Guid = reader.GetAttribute(idXml001);
base.ReadXml(reader);
}
public new void WriteXml(XmlWriter writer)
{
// At this point the container element has been written but nothing else, so it's still possible to add some attributes.
if (Guid != null)
writer.WriteAttributeString(idXml001, Guid);
base.WriteXml(writer);
}
}
This results in XML that looks like:
<SerializableDictWithGuidOfStringString idXml001="123">
<item>
<key>
<string>hello</string>
</key>
<value>
<string>there</string>
</value>
</item>
</SerializableDictWithGuidOfStringString>
The XML Standard states that
Attributes are used to associate name-value pairs with elements.
In general attributes are appropriate for fixed sets of simple, primitive values such as names and IDs. Complex values with multiple internal properties, or values that repeat (i.e. collections) should be child elements, not attributes. Since an identifying Guid is a primitive value, using an attribute is appropriate. See:
XML attribute vs XML element
Should I use Elements or Attributes in XML?
Demo fiddle here.

RedisSessionStateProvider with ProtoBuf serialization causing errors

I am trying to get protobuf serialization working with the RedisSessionStateProvider. I have specified the redisSerializerType as a custom class which implements Microsoft.Web.Redis.ISerializer - here is the deserialization code:
public object Deserialize(byte[] data)
{
return DeserializeDirect(data);
}
private object DeserializeDirect(byte[] data)
{
using (var memoryStream = new MemoryStream(data))
{
return Serializer.Deserialize<object>(memoryStream);
}
return null;
}
As I need to implement Microsoft.Web.Redis.ISerializer the signature for deserialize uses a return type of object and there is no way to pass in the actual type being returned. So when DeserializeDirect tries to use the Protobuf.Serializer to deserialize it (as expected) says "Type is not expected, and no contract can be inferred: System.Object". I am using a web app with .NET framework 4.6.1 and I was hoping somebody could point out what I am doing wrong.
Thanks!
Normally, protobuf-net really wants to know the exact type. You can, however, cheat using DynamicType. This tells protobuf-net to include additional type metadata - something it doesn't usually include.
Note that this can make you code brittle - it may fail if the type changes in you code!
I will be implementing Any soon (as part of 2.3.0), which is another option here.
public static void Main()
{
// the actual object we care about
object obj = new Foo { X = 1 };
// serialize and deserialize via stub
var stub = new Stub { Data = obj };
var clone = Serializer.DeepClone(stub);
// prove it worked
Console.WriteLine(clone.Data);
// prove it is a different instance
Console.WriteLine(ReferenceEquals(obj, clone.Data));
}
[ProtoContract]
public class Foo
{
[ProtoMember(1)]
public int X { get; set; }
public override string ToString() => $"X={X}";
}
[ProtoContract]
public sealed class Stub
{
[ProtoMember(1, DynamicType = true)]
public object Data { get; set; }
}

Custom Xml Serialization of Unknown Type

I'm attempting to deserialize a custom class via the XmlSerializer and having a few problems, in the fact that I don't know the type that I'm going to be deserializing (it's pluggable) and I'm having difficulty determining it.
I found this post which looks similar but can't quite get it to work with my approach because I need to deserialize an interface which is XmlSerializable.
What I've currently got is of the form. Note that I expect and need to be able to handle both class A and class B to be implemented via a plugin. So if I can avoid using the IXmlSerializable (which I don't think I can) then that would be great.
The ReadXml for A is what I'm stuck on. However if there are other changes that I can make to improve the system then I'm happy to do so.
public class A : IXmlSerializable
{
public IB MyB { get; set;}
public void ReadXml(System.Xml.XmlReader reader)
{
// deserialize other member attributes
SeekElement(reader, "MyB");
string typeName = reader.GetAttribute("Type");
// Somehow need to the type based on the typename. From potentially
//an external assembly. Is it possible to use the extra types passed
//into an XMlSerializer Constructor???
Type bType = ???
// Somehow then need to deserialize B's Members
// Deserialize X
// Deserialize Y
}
public void WriteXml(System.Xml.XmlWriter writer)
{
// serialize other members as attributes
writer.WriteStartElement("MyB");
writer.WriteAttributeString("Type", this.MyB.GetType().ToString());
this.MyB.WriteXml(writer);
writer.WriteEndElement();
}
private void SeekElement(XmlReader reader, string elementName)
{
ReaderToNextNode(reader);
while (reader.Name != elementName)
{
ReaderToNextNode(reader);
}
}
private void ReaderToNextNode(XmlReader reader)
{
reader.Read();
while (reader.NodeType == XmlNodeType.Whitespace)
{
reader.Read();
}
}
}
public interface IB : IXmlSerializable
{
}
public class B : IB
{
public void ReadXml(XmlReader reader)
{
this.X = Convert.ToDouble(reader.GetAttribute("x"));
this.Y = Convert.ToDouble(reader.GetAttribute("y"));
}
public void WriteXml(XmlWriter writer)
{
writer.WriteAttributeString("x", this.X.ToString());
writer.WriteAttributeString("y", this.Y.ToString());
}
}
NOTE : Updated as I realised B was supposed to use interface IB. Sorry for slightly wrong question.
To create an instance from a string, use one of the overloads of Activator.CreateInstance. To just get a type with that name, use Type.GetType.
I don't think you need to implement IXmlSerializable...
Since you don't know the actual types before runtime, you can dynamically add attribute overrides to the XmlSerializer. You just need to know the list of types that inherit from A. For instance, if you use A as a property of another class :
public class SomeClass
{
public A SomeProperty { get; set; }
}
You can dynamically apply XmlElementAttributes for each derived type to that property :
XmlAttributes attr = new XmlAttributes();
var candidateTypes = from t in AppDomain.CurrentDomain.GetAssemblies().SelectMany(a => a.GetTypes())
where typeof(A).IsAssignableFrom(t) && !t.IsAbstract
select t;
foreach(Type t in candidateTypes)
{
attr.XmlElements.Add(new XmlElementAttribute(t.Name, t));
}
XmlAttributeOverrides overrides = new XmlAttributeOverrides();
overrides.Add(typeof(SomeClass), "SomeProperty", attr);
XmlSerializer xs = new XmlSerializer(typeof(SomeClass), overrides);
...
This is just a very basic example, but it shows how to apply XML serialization attributes at runtime when you can't do it statically.
I'd use xpath to quickly figure out whether the input xml contains class A or class B. Then deserialize it based on that.

Can I apply an attribute to an inherited member?

Suppose I have the following (trivially simple) base class:
public class Simple
{
public string Value { get; set; }
}
I now want to do the following:
public class PathValue : Simple
{
[XmlAttribute("path")]
public string Value { get; set; }
}
public class ObjectValue : Simple
{
[XmlAttribute("object")]
public string Value { get; set; }
}
But without actually redefining the property. I want to apply attributes to members of the base class. Is this possible?
The real problem is that in my serialization mechanism from/to XML (which works brilliantly btw), I find a lot of similar elements where only the names of the attributes differ (they're not consistent, and I don't control the format). Right now I need to create a different class for every such element, whereas they're like 100% the same (apart from the attributes).
I don't think it's possible, but you might never know.
UPDATE:
I tried Marc's approach, but to no avail:
public class Document
{
public PathValue Path;
public ObjectValue Object;
}
class Program
{
static void Main(string[] args)
{
var doc = new Document()
{
Path = new PathValue() { Value = "some path" },
Object = new ObjectValue() { Value = "some object" }
};
XmlAttributeOverrides overrides = new XmlAttributeOverrides();
overrides.Add(typeof(PathValue), "Value", new XmlAttributes() { XmlAttribute = new XmlAttributeAttribute("path") });
overrides.Add(typeof(ObjectValue), "Value", new XmlAttributes() { XmlAttribute = new XmlAttributeAttribute("object") });
XmlSerializer serializer = new XmlSerializer(typeof(Document), overrides);
serializer.Serialize(Console.Out, doc);
Console.WriteLine();
Console.ReadLine();
}
}
...doesn't do the trick.
I'm going to answer this question myself, so that I can accept this answer. I don't like the answer, but I suppose it's the only valid answer.
The answer is: No, you can't do it.
Could you perhaps use the overload XmlSerializer constructor that lets you pass in the attributes to apply at runtime? Then you don't have to worry about it...
caveat: you want to cache the serializer instance and re-use it; otherwise (with the complex constructors) it does dynamic type generation each time.
Example:
using System;
using System.Xml.Serialization;
public class Simple {
public string Value { get; set; }
static void Main() {
XmlAttributeOverrides overrides = new XmlAttributeOverrides();
overrides.Add(typeof(Simple), "Value", new XmlAttributes {
XmlAttribute = new XmlAttributeAttribute("path")
});
XmlSerializer pathSerializer = new XmlSerializer(
typeof(Simple), overrides);
// cache and re-use pathSerializer!!!
Simple obj = new Simple();
obj.Value = "abc";
pathSerializer.Serialize(Console.Out, obj);
}
}
Output:
<Simple xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" path="abc" />
How about this:
public class Simple
{
[XmlIgnore]
public string Value { get; set; }
}
public class PathValue : Simple
{
[XmlAttribute("path")]
public string Path {
get { return base.Value != null ? base.Value : null; }
set { base.Value = value != null ? value : null; }
}
}
public class ObjectValue : Simple
{
[XmlAttribute("object")]
public string Object {
get { return base.Value != null ? base.Value : null; }
set { base.Value = value != null ? value : null; }
}
}
This is the same technique used to serialize an unserializable type like a Uri that takes a serializable type in the constructor.
You are probably aware of this, but as an idea (although the code structure would completely change in that case):
One way would be to serialize the base class as a collection of name-value pairs, using custom serialization (there is also XDocument and similar helpful stuff to make it easier). Although it doesn't enforce type safety, it would spare you from doing lots of manual work.
I also prefer going for custom serialization because it allows a wider range of possibilities (serializing immutable classes, for example). XmlSerializer is also really nasty sometimes (e.g. I hate adding the "MyFieldSpecified" property to create optional attributes).
Perhaps you can mark the base class property with a common mapping, than you only override the property in inherited classes where it should be different. At least you would save some overriding.

Serializing and restoring an unknown class

A base project contains an abstract base class Foo. In separate client projects, there are classes implementing that base class.
I'd like to serialize and restore an instance of a concrete class by calling some method on the base class:
// In the base project:
public abstract class Foo
{
abstract void Save (string path);
abstract Foo Load (string path);
}
It can be assumed that at the time of deserialization, all needed classes are present. If possible in any way, the serialization should be done in XML. Making the base class implement IXmlSerializable is possible.
I'm a bit stuck here. If my understanding of things is correct, then this is only possible by adding an [XmlInclude(typeof(UnknownClass))] to the base class for every implementing class - but the implementing classes are unknown!
Is there a way to do this? I've got no experience with reflection, but i also welcome answers using it.
Edit: The problem is Deserializing. Just serializing would be kind of easy. :-)
You can also do this at the point of creating an XmlSerializer, by providing the additional details in the constructor. Note that it doesn't re-use such models, so you'd want to configure the XmlSerializer once (at app startup, from configuration), and re-use it repeatedly... note many more customizations are possible with the XmlAttributeOverrides overload...
using System;
using System.Collections.Generic;
using System.IO;
using System.Xml.Serialization;
static class Program
{
static readonly XmlSerializer ser;
static Program()
{
List<Type> extraTypes = new List<Type>();
// TODO: read config, or use reflection to
// look at all assemblies
extraTypes.Add(typeof(Bar));
ser = new XmlSerializer(typeof(Foo), extraTypes.ToArray());
}
static void Main()
{
Foo foo = new Bar();
MemoryStream ms = new MemoryStream();
ser.Serialize(ms, foo);
ms.Position = 0;
Foo clone = (Foo)ser.Deserialize(ms);
Console.WriteLine(clone.GetType());
}
}
public abstract class Foo { }
public class Bar : Foo {}
You don't have to put the serialization functions into any base class, instead, you can add it to your Utility Class.
e.g. ( the code is for example only, rootName is optional )
public static class Utility
{
public static void ToXml<T>(T src, string rootName, string fileName) where T : class, new()
{
XmlSerializer serializer = new XmlSerializer(typeof(T), new XmlRootAttribute(rootName));
XmlTextWriter writer = new XmlTextWriter(fileName, Encoding.UTF8);
serializer.Serialize(writer, src);
writer.Flush();
writer.Close();
}
}
Simply make call to
Utility.ToXml( fooObj, "Foo", #"c:\foo.xml");
Not only Foo's family types can use it, but all other serializable objects.
EDIT
OK full service... (rootName is optional)
public static T FromXml<T>(T src, string rootName, string fileName) where T : class, new()
{
XmlSerializer serializer = new XmlSerializer(typeof(T), new XmlRootAttribute(rootName));
TextReader reader = new StreamReader(fileName);
return serializer.Deserialize(reader) as T;
}
Well the serialization shouldn't be a problem, the XmlSerializer constructor takes a Type argument, even calling GetType on an instance of a derived class through a method on the abstract base will return the derived types actual Type. So in essence as long as you know the proper type upon deserialization then the serialization of the proper type is trivial. So you can implement a method on the base called serialize or what have you that passes this.GetType() to the constructor of the XmlSerializer.. or just passes the current reference out and lets the serialize method take care of it and you should be fine.
Edit: Update for OP Edit..
If you don't know the type at deserialization then you really have nothing but a string or byte array, without some sort of identifier somewhere you are kind of up a creek. There are some things you can do like trying to deserialize as every known derived type of the xx base class, I would not recommend this.
Your other option is to walk the XML manually and reconstruct an object by embedding the type as a property or what have you, maybe that is what you originally meant in the article, but as it stands I don't think there is a way for the built in serialization to take care of this for you without you specifying the type.
Somewhere deep inside the XML namespaces lies a wonderful class called XmlReflectionImporter.
This may be of help to you if you need to create a schema at runtime.
You can also do this by creating an XmlSerializer passign in all possible types to the constructor. Be warned that when you use this constructor the xmlSerializer will be compiled each and every time and will result in a leak if you constantly recreate it. You will want to create a single serializer and reuse it in your application.
You can then bootstrap the serializer and using reflection look for any descendants of foo.
These links will probably be helpful to you:
CodeProject article
Blog post
Stack Overflow question
I have a complex remoting project and wanted very tight control over the serialized XML. The server could receive objects that it had no idea how to deserialize and vice versa, so I needed a way to identify them quickly.
All of the .NET solutions I tried lacked the needed flexibility for my project.
I store an int attribute in the base xml to identify the type of object.
If I need to create a new object from xml I created a factory class that checks the type attribute then creates the appropriate derived class and feeds it the xml.
I did something like this (pulling this out of memory, so syntax may be a little off):
(1) Created an interface
interface ISerialize
{
string ToXml();
void FromXml(string xml);
};
(2) Base class
public class Base : ISerialize
{
public enum Type
{
Base,
Derived
};
public Type m_type;
public Base()
{
m_type = Type.Base;
}
public virtual string ToXml()
{
string xml;
// Serialize class Base to XML
return string;
}
public virtual void FromXml(string xml)
{
// Update object Base from xml
}
};
(3) Derived class
public class Derived : Base, ISerialize
{
public Derived()
{
m_type = Type.Derived;
}
public override virtual string ToXml()
{
string xml;
// Serialize class Base to XML
xml = base.ToXml();
// Now serialize Derived to XML
return string;
}
public override virtual void FromXml(string xml)
{
// Update object Base from xml
base.FromXml(xml);
// Update Derived from xml
}
};
(4) Object factory
public ObjectFactory
{
public static Base Create(string xml)
{
Base o = null;
Base.Type t;
// Extract Base.Type from xml
switch(t)
{
case Base.Type.Derived:
o = new Derived();
o.FromXml(xml);
break;
}
return o;
}
};
This method reads the XML root element and checks if the current executing assembly contains a type with such a name. If so, the XML document is deserialized. If not, an error is thrown.
public static T FromXml<T>(string xmlString)
{
Type sourceType;
using (var stringReader = new StringReader(xmlString))
{
var rootNodeName = XElement.Load(stringReader).Name.LocalName;
sourceType =
Assembly.GetExecutingAssembly().GetTypes()
.FirstOrDefault(t => t.IsSubclassOf(typeof(T))
&& t.Name == rootNodeName)
??
Assembly.GetAssembly(typeof(T)).GetTypes()
.FirstOrDefault(t => t.IsSubclassOf(typeof(T))
&& t.Name == rootNodeName);
if (sourceType == null)
{
throw new Exception();
}
}
using (var stringReader = new StringReader(xmlString))
{
if (sourceType.IsSubclassOf(typeof(T)) || sourceType == typeof(T))
{
var ser = new XmlSerializer(sourceType);
using (var xmlReader = new XmlTextReader(stringReader))
{
T obj;
obj = (T)ser.Deserialize(xmlReader);
xmlReader.Close();
return obj;
}
}
else
{
throw new InvalidCastException(sourceType.FullName
+ " cannot be cast to "
+ typeof(T).FullName);
}
}
}
Marking the classes as Serializable and using SoapBinaryFormatter instead of XmlSerializer will give you this functionality automatically. When serializing the type information of the instance being serialized will be written to the XML, and SoapBinaryFormatter can instantiate the subclasses when deserializing.
I used the XmlType attribute of the unknown (but expected) classes to determine the Type for the deserialization. The to be expected types are load during the instantiation of the AbstractXmlSerializer class and placed in a dictionary. During the deserialization the root element is read and with this the type is retrieved form the dictionary. After that it can be deserialized normally.
XmlMessage.class:
public abstract class XmlMessage
{
}
IdleMessage.class:
[XmlType("idle")]
public class IdleMessage : XmlMessage
{
[XmlElement(ElementName = "id", IsNullable = true)]
public string MessageId
{
get;
set;
}
}
AbstractXmlSerializer.class:
public class AbstractXmlSerializer<AbstractType> where AbstractType : class
{
private Dictionary<String, Type> typeMap;
public AbstractXmlSerializer(List<Type> types)
{
typeMap = new Dictionary<string, Type>();
foreach (Type type in types)
{
if (type.IsSubclassOf(typeof(AbstractType))) {
object[] attributes = type.GetCustomAttributes(typeof(XmlTypeAttribute), false);
if (attributes != null && attributes.Count() > 0)
{
XmlTypeAttribute attribute = attributes[0] as XmlTypeAttribute;
typeMap[attribute.TypeName] = type;
}
}
}
}
public AbstractType Deserialize(String xmlData)
{
if (string.IsNullOrEmpty(xmlData))
{
throw new ArgumentException("xmlData parameter must contain xml");
}
// Read the Data, Deserializing based on the (now known) concrete type.
using (StringReader stringReader = new StringReader(xmlData))
{
using (XmlReader xmlReader = XmlReader.Create(stringReader))
{
String targetType = GetRootElementName(xmlReader);
if (targetType == null)
{
throw new InvalidOperationException("XML root element was not found");
}
AbstractType result = (AbstractType)new
XmlSerializer(typeMap[targetType]).Deserialize(xmlReader);
return result;
}
}
}
private static string GetRootElementName(XmlReader xmlReader)
{
if (xmlReader.IsStartElement())
{
return xmlReader.Name;
}
return null;
}
}
UnitTest:
[TestMethod]
public void TestMethod1()
{
List<Type> extraTypes = new List<Type>();
extraTypes.Add(typeof(IdleMessage));
AbstractXmlSerializer<XmlMessage> ser = new AbstractXmlSerializer<XmlMessage>(extraTypes);
String xmlMsg = "<idle></idle>";
MutcMessage result = ser.Deserialize(xmlMsg);
Assert.IsTrue(result is IdleMessage);
}

Categories

Resources