How to close a thread from a different function in c# [duplicate] - c#

This question already has answers here:
Question about terminating a thread cleanly in .NET
(8 answers)
Closed 1 year ago.
I am coding an application that starts and stops a thread by a command. If client receives "start" it starts the thread, and if client receives "stop" -- it stops. My concern is in thread-safety in my code and the proper practice for this problem.
My code:
Thread thread = new Thread(doStuff);
...
//wait for the commands
if(command.Equals("start")
{
thread.Start();
}
if(command.Equals("stop")
{
//this code won't work of course
thread.Abort();
}
public static void doStuff()
{
while(true)
{
//do stuff
}
}
The problem is that abort will not work, because it does not know if it was even started. Also, i need to somehow know if the thread is actually alive..
Maybe I need to wrap it around abort statement and check thread.isAlive status
But what I tried to do is to create a common variable for the function.
bool running = true;
Thread thread = new Thread(doStuff);
...
//wait for the commands
if(command.Equals("start")
{
thread.Start();
}
if(command.Equals("stop")
{
//this code won't work of course
running = false;
}
public void doStuff()
{
while(running)
{
//do stuff
}
}
This implementation is horrible and causes a crash sometimes within 15 seconds.
Could someone please show me an appropriate way to achieve my goal? Thank you

You cannot call Thread.Abort() safely or at all - depending on your version of the framework.
The way to do this safely is to have co-operative cancellation.
Here's how:
public static void doStuff(CancellationToken ct)
{
while (true)
{
//do stuff
if (ct.IsCancellationRequested)
{
return;
}
}
}
And then call it like this:
var cts = new CancellationTokenSource();
Thread thread = new Thread(() => doStuff(cts.Token));
//wait for the commands
if (command.Equals("start")
{
thread.Start();
}
if (command.Equals("stop")
{
cts.Cancel();
}
Do note that the CancellationTokenSource is disposable so it should be disposed when it has been finished with.

Related

Is there a way to abort a thread and then open it again with a new variable?

I want to open a thread to do the things it needs to do until a new command is given by the user. Then this thread should either close or receive a new command.
I have seen many posts that sending a variable to a running thread is hard, that is why I decided to kill the thread and start it again with the new variable.
I used the following post: https://stackoverflow.com/a/1327377 but without success. When I start the thread again (after it has done abort()) it gives me an exception: System.Threading.ThreadStateException.
private static Thread t = new Thread(Threading);
private static bool _running = false;
static void Main(string[] args)
{
[get arg]
if (CanRedo(arg))
{
if (t.IsAlive)
{
_running = false;
t.Interrupt();
if (t.Join(2000)) // with a '!' like in the post, abort() would not be called
{
t.Abort();
}
}
_running = true;
t.Start(arg); // gives System.Threading.ThreadStateException
}
}
private static void Threading(object obj)
{
_stopped = false;
string arg = obj.ToString();
while(_running)
{
if (bot._isDone)
{
ExecuteInstruction(arg);
}
}
}
What am I doing wrong?
I'm going to guess that you don't literally mean to abort the thread and start that same thread again. That's because if we start a thread to do some work we don't care which thread it is. If you cancel one thing and start something else, you probably don't care if it's the same thread or a different one. (In fact it's probably better if you don't care. If you need precise control over which thread is doing what then something has gotten complicated.) You can't "abort" a thread and restart it anyway.
Regarding Thread.Abort:
The Thread.Abort method should be used with caution. Particularly when you call it to abort a thread other than the current thread, you do not know what code has executed or failed to execute when the ThreadAbortException is thrown, nor can you be certain of the state of your application or any application and user state that it is responsible for preserving. For example, calling Thread.Abort may prevent static constructors from executing or prevent the release of unmanaged resources.
It's like firing an employee by teleporting them out of the building without warning. What if they were in the middle of a phone call or carrying a stack of papers? That might be okay in an emergency, but it wouldn't be a normal way to operate. It would be better to let the employee know that they need to wrap up what they're doing immediately. Put down what you're carrying. Tell the customer that you can't finish entering their order and they'll need to call back.
You're describing an expected behavior, so it would be better to cancel the thread in an orderly way.
That's where we might use a CancellationToken. In effect you're passing an object to the thread and telling it to check it from time to time to see if it should cancel what it's doing.
So you could start your thread like this:
class Program
{
static void Main(string[] args)
{
using (var cts = new CancellationTokenSource())
{
ThreadPool.QueueUserWorkItem(DoSomethingOnAnotherThread, cts.Token);
// This is just for demonstration. It allows the other thread to run for a little while
// before it gets canceled.
Thread.Sleep(5000);
cts.Cancel();
}
}
private static void DoSomethingOnAnotherThread(object obj)
{
var cancellationToken = (CancellationToken) obj;
// This thread does its thing. Once in a while it does this:
if (cancellationToken.IsCancellationRequested)
{
return;
}
// Keep doing what it's doing.
}
}
Whatever the method is that's running in your separate thread, it's going to check IsCancellationRequested from time to time. If it's right in the middle of doing something it can stop. If it has unmanaged resources it can dispose them. But the important thing is that you can cancel what it does in a predictable way that leaves your application in a known state.
CancellationToken is one way to do this. In other really simple scenarios where the whole thing is happening inside one class you could also use a boolean field or property that acts as a flag to tell the thread if it needs to stop. The separate thread checks it to see if cancellation has been requested.
But using the CancellationToken makes it more manageable if you want to refactor and now the method executing on another thread is a in separate class. When you use a known pattern it makes it easier for the next person to understand what's going on.
Here's some documentation.
What about doing it this way:
private static Task t = null;
private static CancellationTokenSource cts = null;
static void Main(string[] args)
{
[get arg]
if (CanRedo(out var arg))
{
if (t != null)
{
cts.Cancel();
t.Wait();
}
// Set up a new task and matching cancellation token
cts = new CancellationTokenSource();
t = Task.Run(() => liveTask(arg, cts.Token));
}
}
private static void liveTask(object obj, CancellationToken ct)
{
string arg = obj.ToString();
while(!ct.IsCancellationRequested)
{
if (bot._isDone)
{
ExecuteInstruction(arg);
}
}
}
Tasks are cancellable, and I can see nothing in your thread that requires the same physical thread to be re-used.

Managing task cancellation and completion on a concurrent thread

[ This question needs to be reimagined. One of my thread queues MUST run on an STA thread, and the code below does not accommodate that. In particular it seems Task<> chooses its own thread and that just is not going to work for me. ]
I have a task queue (BlockingCollection) that I'm running through on a dedicated thread. That queue receives a series of Task<> objects that it runs sequentially within that thread via a while loop.
I need a means of Cancelling that series of tasks, and a means of knowing that the tasks are all complete. I have not been able to figure out how to do this.
Here's a fragment of my queuing class. ProcessQueue is run on a separate thread from main. QueueJob calls occur on the main thread.
using Job = Tuple<Task<bool>, string>;
public class JobProcessor
{
private readonly BlockingCollection<Job> m_queue = new BlockingCollection<Job>();
volatile bool cancel_queue = false;
private bool ProcessQueue()
{
while (true)
{
if (m_queue.IsAddingCompleted)
break;
Job tuple;
if (!m_queue.TryTake(out tuple, Timeout.Infinite))
break;
var task = tuple.Item1;
var taskName = tuple.Item2;
try
{
Console.WriteLine("Task {0}::{1} starting", this.name, taskName);
task.RunSynchronously();
Console.WriteLine("Task {0}::{1} completed", this.name, taskName);
}
catch (Exception e)
{
string message = e.Message;
}
if (cancel_queue) // CANCEL BY ERASING TASKS AND NOT RUNNING.
{
while (m_queue.TryTake(out tuple))
{
}
}
} // while(true)
return true;
}
public Task<bool> QueueJob(Func<bool> input)
{
var task = new Task<bool>(input);
try
{
m_queue.Add(Tuple.Create(task, input.Method.Name));
}
catch (InvalidOperationException)
{
Task<bool> dummy = new Task<bool>(() => false);
dummy.Start();
return dummy;
}
return task;
}
Here are the functions that trouble me:
public void ClearQueue()
{
cancel_queue = true;
// wait for queue to become empty. HOW?
cancel_queue = false;
}
public void WaitForCompletion()
{
// wait for all tasks to be completed.
// not sufficient to wait for empty queue because the last task
// must also execute and finish. HOW?
}
}
Here is some usage:
class SomeClass
{
void Test()
{
JobProcessor jp = new JobProcessor();
// launch Processor loop on separate thread... code not shown.
// send a bunch of jobs via QueueJob... code not show.
// launch dialog... code not shown.
if (dialog_result == Result.Cancel)
jp.ClearQueue();
if (dialog_result == Result.Proceed)
jp.WaitForCompletion();
}
}
The idea is after the work is completed or cancelled, new work may be posted. In general though, new work may come in asynchronously. WaitForCompletion might in fact be "when all work is done, inform the user and then do other stuff", so it doesn't strictly have to be a synchronous function call like above, but I can't figure how to make these happen.
(One further complication, I expect to have several queues that interact. While I am careful to keep things parallelized in a way to prevent deadlocks, I am not confident what happens when cancellation is introduced into the mix, but this is probably beyond scope for this question.)
WaitForCompletion() sounds easy enough. Create a semaphore or event, create a task whose only action is to signal the semaphore, queue up the task, wait on the semaphore.
When the thread finishes the last 'real' task, the semaphore task will be run and so the thread that called WaitForCompletion will become ready/running:)
Would not a similar approach work for cancellation? Have a very high priority thread that you create/signal that drains the queue of all pending jobs, disposing them, queueing up the semaphore task and waiting for the 'last task done' signal?

Cancel Long Running task [duplicate]

In a thread, I create some System.Threading.Task and start each task.
When I do a .Abort() to kill the thread, the tasks are not aborted.
How can I transmit the .Abort() to my tasks ?
You can't. Tasks use background threads from the thread pool. Also canceling threads using the Abort method is not recommended. You may take a look at the following blog post which explains a proper way of canceling tasks using cancellation tokens. Here's an example:
class Program
{
static void Main()
{
var ts = new CancellationTokenSource();
CancellationToken ct = ts.Token;
Task.Factory.StartNew(() =>
{
while (true)
{
// do some heavy work here
Thread.Sleep(100);
if (ct.IsCancellationRequested)
{
// another thread decided to cancel
Console.WriteLine("task canceled");
break;
}
}
}, ct);
// Simulate waiting 3s for the task to complete
Thread.Sleep(3000);
// Can't wait anymore => cancel this task
ts.Cancel();
Console.ReadLine();
}
}
Like this post suggests, this can be done in the following way:
int Foo(CancellationToken token)
{
Thread t = Thread.CurrentThread;
using (token.Register(t.Abort))
{
// compute-bound work here
}
}
Although it works, it's not recommended to use such approach. If you can control the code that executes in task, you'd better go with proper handling of cancellation.
Aborting a Task is easily possible if you capture the thread in which the task is running in. Here is an example code to demonstrate this:
void Main()
{
Thread thread = null;
Task t = Task.Run(() =>
{
//Capture the thread
thread = Thread.CurrentThread;
//Simulate work (usually from 3rd party code)
Thread.Sleep(1000);
//If you comment out thread.Abort(), then this will be displayed
Console.WriteLine("Task finished!");
});
//This is needed in the example to avoid thread being still NULL
Thread.Sleep(10);
//Cancel the task by aborting the thread
thread.Abort();
}
I used Task.Run() to show the most common use-case for this - using the comfort of Tasks with old single-threaded code, which does not use the CancellationTokenSource class to determine if it should be canceled or not.
This sort of thing is one of the logistical reasons why Abort is deprecated. First and foremost, do not use Thread.Abort() to cancel or stop a thread if at all possible. Abort() should only be used to forcefully kill a thread that is not responding to more peaceful requests to stop in a timely fashion.
That being said, you need to provide a shared cancellation indicator that one thread sets and waits while the other thread periodically checks and gracefully exits. .NET 4 includes a structure designed specifically for this purpose, the CancellationToken.
I use a mixed approach to cancel a task.
Firstly, I'm trying to Cancel it politely with using the Cancellation.
If it's still running (e.g. due to a developer's mistake), then misbehave and kill it using an old-school Abort method.
Checkout an example below:
private CancellationTokenSource taskToken;
private AutoResetEvent awaitReplyOnRequestEvent = new AutoResetEvent(false);
void Main()
{
// Start a task which is doing nothing but sleeps 1s
LaunchTaskAsync();
Thread.Sleep(100);
// Stop the task
StopTask();
}
/// <summary>
/// Launch task in a new thread
/// </summary>
void LaunchTaskAsync()
{
taskToken = new CancellationTokenSource();
Task.Factory.StartNew(() =>
{
try
{ //Capture the thread
runningTaskThread = Thread.CurrentThread;
// Run the task
if (taskToken.IsCancellationRequested || !awaitReplyOnRequestEvent.WaitOne(10000))
return;
Console.WriteLine("Task finished!");
}
catch (Exception exc)
{
// Handle exception
}
}, taskToken.Token);
}
/// <summary>
/// Stop running task
/// </summary>
void StopTask()
{
// Attempt to cancel the task politely
if (taskToken != null)
{
if (taskToken.IsCancellationRequested)
return;
else
taskToken.Cancel();
}
// Notify a waiting thread that an event has occurred
if (awaitReplyOnRequestEvent != null)
awaitReplyOnRequestEvent.Set();
// If 1 sec later the task is still running, kill it cruelly
if (runningTaskThread != null)
{
try
{
runningTaskThread.Join(TimeSpan.FromSeconds(1));
}
catch (Exception ex)
{
runningTaskThread.Abort();
}
}
}
To answer Prerak K's question about how to use CancellationTokens when not using an anonymous method in Task.Factory.StartNew(), you pass the CancellationToken as a parameter into the method you're starting with StartNew(), as shown in the MSDN example here.
e.g.
var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;
Task.Factory.StartNew( () => DoSomeWork(1, token), token);
static void DoSomeWork(int taskNum, CancellationToken ct)
{
// Do work here, checking and acting on ct.IsCancellationRequested where applicable,
}
You should not try to do this directly. Design your tasks to work with a CancellationToken, and cancel them this way.
In addition, I would recommend changing your main thread to function via a CancellationToken as well. Calling Thread.Abort() is a bad idea - it can lead to various problems that are very difficult to diagnose. Instead, that thread can use the same Cancellation that your tasks use - and the same CancellationTokenSource can be used to trigger the cancellation of all of your tasks and your main thread.
This will lead to a far simpler, and safer, design.
Tasks have first class support for cancellation via cancellation tokens. Create your tasks with cancellation tokens, and cancel the tasks via these explicitly.
You can use a CancellationToken to control whether the task gets cancelled. Are you talking about aborting it before it's started ("nevermind, I already did this"), or actually interrupting it in middle? If the former, the CancellationToken can be helpful; if the latter, you will probably need to implement your own "bail out" mechanism and check at appropriate points in the task execution whether you should fail fast (you can still use the CancellationToken to help you, but it's a little more manual).
MSDN has an article about cancelling Tasks:
http://msdn.microsoft.com/en-us/library/dd997396.aspx
Task are being executed on the ThreadPool (at least, if you are using the default factory), so aborting the thread cannot affect the tasks. For aborting tasks, see Task Cancellation on msdn.
I tried CancellationTokenSource but i can't do this. And i did do this with my own way. And it works.
namespace Blokick.Provider
{
public class SignalRConnectProvider
{
public SignalRConnectProvider()
{
}
public bool IsStopRequested { get; set; } = false; //1-)This is important and default `false`.
public async Task<string> ConnectTab()
{
string messageText = "";
for (int count = 1; count < 20; count++)
{
if (count == 1)
{
//Do stuff.
}
try
{
//Do stuff.
}
catch (Exception ex)
{
//Do stuff.
}
if (IsStopRequested) //3-)This is important. The control of the task stopping request. Must be true and in inside.
{
return messageText = "Task stopped."; //4-) And so return and exit the code and task.
}
if (Connected)
{
//Do stuff.
}
if (count == 19)
{
//Do stuff.
}
}
return messageText;
}
}
}
And another class of the calling the method:
namespace Blokick.Views
{
[XamlCompilation(XamlCompilationOptions.Compile)]
public partial class MessagePerson : ContentPage
{
SignalRConnectProvider signalR = new SignalRConnectProvider();
public MessagePerson()
{
InitializeComponent();
signalR.IsStopRequested = true; // 2-) And this. Make true if running the task and go inside if statement of the IsStopRequested property.
if (signalR.ChatHubProxy != null)
{
signalR.Disconnect();
}
LoadSignalRMessage();
}
}
}
You can abort a task like a thread if you can cause the task to be created on its own thread and call Abort on its Thread object. By default, a task runs on a thread pool thread or the calling thread - neither of which you typically want to abort.
To ensure the task gets its own thread, create a custom scheduler derived from TaskScheduler. In your implementation of QueueTask, create a new thread and use it to execute the task. Later, you can abort the thread, which will cause the task to complete in a faulted state with a ThreadAbortException.
Use this task scheduler:
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException(); // Unused
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException(); // Unused
}
Start your task like this:
var scheduler = new SingleThreadTaskScheduler();
var task = Task.Factory.StartNew(action, cancellationToken, TaskCreationOptions.LongRunning, scheduler);
Later, you can abort with:
scheduler.TaskThread.Abort();
Note that the caveat about aborting a thread still applies:
The Thread.Abort method should be used with caution. Particularly when you call it to abort a thread other than the current thread, you do not know what code has executed or failed to execute when the ThreadAbortException is thrown, nor can you be certain of the state of your application or any application and user state that it is responsible for preserving. For example, calling Thread.Abort may prevent static constructors from executing or prevent the release of unmanaged resources.
You can use this class..:
It works for all typs of returned Values..
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace CarNUChargeTester
{
public class TimeOutTaskRunner<T>
{
private Func<T> func;
private int sec;
private T result;
public TimeOutTaskRunner(Func<T> func, int sec)
{
this.func = func;
this.sec = sec;
}
public bool run()
{
var scheduler = new SingleThreadTaskScheduler();
Task<T> task = Task<T>.Factory.StartNew(func, (new CancellationTokenSource()).Token, TaskCreationOptions.LongRunning, scheduler);
if (!task.Wait(TimeSpan.FromSeconds(sec)))
{
scheduler.TaskThread.Abort();
return false;
}
result = task.Result;
return true;
}
public T getResult() { return result; }
}
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException();
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException();
}
}
To use it you can write:
TimeOutTaskRunner<string> tr = new TimeOutTaskRunner<string>(f, 10); // 10 sec to run f
if (!tr.run())
errorMsg("TimeOut"); !! My func
tr.getResult() // get the results if it done without timeout..

Aborting a .NET thread

I am creating a thread A and in that thread creating a new thread B.
So how is the thread hierarchy? Thread B is child of Thread A? Or the threads are created as peers?
I want to abort the parent thread A which in turn kills/aborts its child threads.
How is that possible in C#?
Threads should ideally never be aborted. It simply isn't safe. Consider this as a way of putting down an already sick process. Otherwise, avoid like the plague.
The more correct way of doing this is to have something that the code can periodically check, and itself decide to exit.
An example of stopping threads the polite way:
using System;
using System.Threading;
namespace Treading
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Main program starts");
Thread firstThread = new Thread(A);
ThreadStateMessage messageToA = new ThreadStateMessage(){YouShouldStopNow = false};
firstThread.Start(messageToA);
Thread.Sleep(50); //Let other threads do their thing for 0.05 seconds
Console.WriteLine("Sending stop signal from main program!");
messageToA.YouShouldStopNow = true;
firstThread.Join();
Console.WriteLine("Main program ends - press any key to exit");
Console.Read();//
}
private class ThreadStateMessage
{
public bool YouShouldStopNow = false; //this assignment is not really needed, since default value is false
}
public static void A(object param)
{
ThreadStateMessage myMessage = (ThreadStateMessage)param;
Console.WriteLine("Hello from A");
ThreadStateMessage messageToB = new ThreadStateMessage();
Thread secondThread = new Thread(B);
secondThread.Start(messageToB);
while (!myMessage.YouShouldStopNow)
{
Thread.Sleep(10);
Console.WriteLine("A is still running");
}
Console.WriteLine("Sending stop signal from A!");
messageToB.YouShouldStopNow = true;
secondThread.Join();
Console.WriteLine("Goodbye from A");
}
public static void B(object param)
{
ThreadStateMessage myMessage = (ThreadStateMessage)param;
Console.WriteLine("Hello from B");
while(!myMessage.YouShouldStopNow)
{
Thread.Sleep(10);
Console.WriteLine("B is still running");
}
Console.WriteLine("Goodbye from B");
}
}
}
Using Thread.Abort(); causes an exception to be thrown if your thread is in a waiting state of any kind. This is sort of annoying to handle, since there are quite a number of ways that a thread can be waiting. As others have said, you should generally avoid doing it.
Thread.Abort will do what you want, but it is not recommended to abort thread, better choose is to think a way for finishing threads correctly by Thread synchronization mechanism
Here's yet another way to politely signal a thread to die:
Note that this fashion favors finite state automatons where the slave periodically checks for permission to live, then performs a task if allowed. Tasks are not interrupted and are 'atomic'. This works great with simple loops or with command queues. Also this makes sure the thread doesn't spin 100% cpu by giving the slave thread a rest period, set this one to 0 if you don't want any rest in your slave.
var dieEvent = new AutoResetEvent(false);
int slaveRestPeriod = 20;// let's not hog the CPU with an endless loop
var master = new Thread(() =>
{
doStuffAMasterDoes(); // long running operation
dieEvent.Set(); // kill the slave
});
var slave = new Thread(() =>
{
while (!dieEvent.WaitOne(restPeriod))
{
doStuffASlaveDoes();
}
});
slave.Start();
master.Start();
Threads are created as peers, obtain a handle to Thread A and then call ThreadA.Abort()
to forcefully end it. It's better to check a boolean in the thread and if it evaluates to false exit the thread.
public class MyClass
{
public static Thread ThreadA;
public static Thread ThreadB;
private void RunThings()
{
ThreadA = new Thread(new ThreadStart(ThreadAWork));
ThreadB = new Thread(new ThreadStart(ThreadBWork));
ThreadA.Start();
ThreadB.Start();
}
static void ThreadAWork()
{
// do some stuff
// thread A will close now, all work is done.
}
static void ThreadBWork()
{
// do some stuff
ThreadA.Abort(); // close thread A
// thread B will close now, all work is done.
}
}

How to effectively timeout a COM method call from C# code

I have had to set a fixed time out for a particular COM method call from a service that we have (which is written in C#). Not having used the System.Threading namespace for anything other than Thread.Sleep, I have had a play and have come up with a working prototype:
bool _comCallSuccessful = false;
bool _timedOut = false;
private void MakeACOMCallThatCouldTakeALongTime()
{
Thread.Sleep(2500);
_comCallSuccessful = true;
}
private void CheckForOneSecondTimeOut()
{
Thread.Sleep(1000);
_timedOut = true;
}
private void ThreadTester()
{
Thread t1 = new Thread(new ThreadStart(MakeACOMCallThatCouldTakeALongTime));
Thread t2 = new Thread(new ThreadStart(CheckForOneSecondTimeOut));
t1.Start();
t2.Start();
while (!_timedOut && !_comCallSuccessful) { }
if (_comCallSuccessful)
{
Console.WriteLine("Finished!");
}
else
{
t1.Abort();
Console.WriteLine("Timed out!");
}
Console.ReadLine();
}
Practically speaking, are there any problems with this approach? For instance, would there be a problem if I were to abort the thread that makes the COM method call (perhaps in terms of cleaning up used resources, etc)?
Thread.Abort() is always a problem.
Do you know anything about the COM server? Does it run in-process, out of process or remotely? If the COM server is buggy and you actually need to terminate it, consider wrapping the call in a sacrificial process (or at least a separate AppDomain) which can be terminated safely (and perhaps you can do some cheating and terminate the offending COM app as well). Don't abort threads in your own process if you can help it.
Yeah, big problem: it won't work in many cases. If your COM thread is busy in native code when you call Abort(), nothing will happen-it just sets a flag so when the thread comes back into managed code, it will pop the ThreadAbortException. There isn't a 100% reliable way to abort a call to unmanaged code. You can try killing the underlying OS thread, but the CLR won't respond well to that and you'll likely destabilize the process.
I must add to already mentioned by other commenters that waiting like
while (!_timedOut && !_comCallSuccessful) { }
is wrong, since it makes your CPU to spend its cyles stupidly.
You'd better to use System.Threading.EventWaitHandle:
EventwaitHandle _comCallSuccessful = new ManualResetEvent(false);
EventwaitHandle _timedOut = new ManualResetEvent(false);
private void MakeACOMCallThatCouldTakeALongTime() {
Thread.Sleep(2500);
_comCallSuccessful.Set();
}
private void CheckForOneSecondTimeOut() {
Thread.Sleep(1000);
_timedOut.Set();
}
private void ThreadTester() {
/* thread starting*/
var handles = new WaitHandle[]{_comCallSuccessful, _timedOut};
int indexFirstSet = Waithandle.WaitAny(handles);
if (indexFirstSet == 0) // _comCallSuccessful
{
Console.WriteLine("Finished!");
}
else
{
t1.Abort();
Console.WriteLine("Timed out!");
}
}
If there's nothing to do on your main thread, you may start only one thread and use _comCallSuccessful.WaitOne(timeout), which returns true if event was Set() before timeout.
And anyway, you'd better have an explicit way to cancel operation at your service (e.g. COM object method)

Categories

Resources