I have an interface
public interface IOfflineBackedRepo<TSummary,TDetail>
{
Task SyncAsync();
}
this has different concrete implementations. I am trying to develop a service lets developers register different implementations of IOfflineBackedRepo interface and separately call SyncAsync at a later point in time. The new interface should be similar to the below, except this is not a valid syntax.
public interface ISyncManager<T> where T : IOfflineBackedRepo<TSummary, TDetail>
{
void Register(T repo);
Task SyncNowAsync(); // this loops through and calls SyncAsync on the repo
}
How to fix the syntax issue?
ISyncManager does not have anywhere mentioning TSummary,TDetail in it's scope
TSummary and TDetail is defined and exist only around IOfflineBackedRepo. When you try to use it anywhere else you must define a type you will use in substitute for them. It could be actual type or a type that you would get from generic argument but you must define it somewhere around ISyncManager
At the most basic ways,
public interface ISyncManager<T,U,V> where T : IOfflineBackedRepo<U,V>
{
void Register(T repo);
Task SyncNowAsync(); // this loops through and calls SyncAsync on the repo
}
For the ease of use I think you should just separate interface
public interface IOfflineBackedRepo
{
Task SyncAsync(); // this function is not typed specific right?
}
public interface IOfflineBackedRepo<TSummary,TDetail> : IOfflineBackedRepo
{
// other definition about type specific
}
public interface ISyncManager<T> where T : IOfflineBackedRepo
{
void Register(T repo);
Task SyncNowAsync(); // this loops through and calls SyncAsync on the repo
}
And I guess ISyncManager is actually just a collection. I think it would be better if you could just make extension method for collection
public static class SyncManagerExt
{
// Register is just Add to collection
public static Task SyncNowAsync(this ICollection<T> items) where T : IOfflineBackedRepo
{
// loops through items and calls SyncAsync on the repo
}
}
Related
I have the following method, which is to add product using the injected service! It is called inside a static calls hence it is static!
public static async Task AddNewProducts(Guid shopId)
{
var productAService = IoC.Services.GetService<IProductAService>();
var added = await productAService.AddProduct(shopId);
}
It works fine but I need to make it generic so that I can use different services with it.
Something like this!
public static async Task AddNewProducts<T>(Guid shopId)
where T : IProductAService, IProductBService
{
var productService = IoC.Services.GetService<T>();
var added = await productService.AddProduct(shopId);
}
However the second methods complains that the AddProduct method is ambiguous, not sure how I can make sure it is calling the right method from the related service!
Your 2 services need a common interface
public interface IProductService
{
void AddProduct(Guid shopId);
}
public interface IProductAService : IProductService
{
//specifics to service A
}
public interface IProductBService : IProductService
{
//specifics to service B
}
Then your static, generic method just constrains to the shared interface
public static async Task AddNewProducts<TProductService>(Guid shopId)
where TProductService : IProductService
{
var productService = IoC.Services.GetService<TProductService>();
await productService.AddProduct(shopId);
}
This gets slippery very quickly. You hinted that AddProduct is not a void, but returns a particular object. That's fine, you can make IProductService itself generic
public interface IProductService<TProduct>
{
TProduct AddProduct(Guid shopId);
}
public interface IProductAService : IProductService<ProductA>
{
//specifics to service A
}
public interface IProductBService : IProductService<ProductB>
{
//specifics to service B
}
But now you need to also pass the product type to the generic method, as I said - it gets slippery quickly (but maybe it'll do!)
public static async Task AddNewProducts<TProductService, TProduct>(Guid shopId)
where TProductService : IProductService<TProduct>
{
var productService = IoC.Services.GetService<TProductService<TProduct>>();
var added = await productService.AddProduct(shopId);
// Note "added" is of type TProduct
}
I call this situation "Generic hell". You are better of rethinking your design!
public static async Task AddNewProducts<T>(Guid shopId) where T : IProductAService, IProductBService
The problem with that line is that you're requiring T to implement both interfaces at once, not just one of them. You haven't even gotten to the errors that will spring up when you try to call this function, because presumably your class won't implement both.
Which leads me to question why you think you need to constrain your T like this. The only usage of T is to call Services.GetService<T>(), so the only constraint on it should be exactly the constraints that function requires, which are definitely not your two interfaces.
I have a generic class that deals with widgets that can be deserialized from strings. Instances of the generic class will take the type of one of these widgets as a template parameter, and then create these widgets from strings. I wish to use the covariance properties of C#'s generics to write code like WidgetUser<IWidget> to deal with objects that may be WidgetUser<RedWidget> or WidgetUser<BlueWidget>. The problem is that to create a widget from a string inside of WidgetUser<T>, I'm forced to add new() as a guard. This makes WidgetUser<IWidget> an invalid type. Currently, I have code like this:
interface IWidget
{
// Makes this widget into a copy of the serializedWidget
void Deserialize(string serializedWidget);
}
class WidgetUser<T> where T : IWidget, new()
{
public void MakeAndUse(string serializedWidget)
{
var widget = new T();
widget.Deserialize(serializedWidget);
Use(widget);
}
}
With this code, I can make WidgetUser<BlueWidget> just fine, because BigWidget satisfies new(). I cannot write WidgetUser<IWidget> because instances of IWidget (or an equivalent abstract class) are not guaranteed to work with new(). A workaround could be this:
abstract class WidgetUser
{
public abstract void MakeAndUse();
}
class WidgetUser<T> : WidgetUser
where T : IWidget, new()
{
/* same as before but with an 'override' on MakeAndUse */
}
With this code, I can create a WidgetUser<BlueWidget> then write code that deals with just WidgetUser. I could have similar code with an abstract class BaseWidget instead of IWidget that accomplishes almost the same thing. This is functional, but I suspect there is a more direct approach that doesn't force me to define a dummy class. How can I convey my intent to the type system without creating dummy classes or extra factories. I just want an interface that says "you can make one of these from a string".
TL;DR:
Is there some way to write an interface or abstract class that lets me create an instance from a string but doesn't require me to have new() as a guard on WidgetUser<T>?
The problem here is that your Deserialize() method should be a static method. Therefore it should not be a member of IWidget itself - it should be a member of a factory interface, or it should be a static member of a concrete Widget class which is called from a concrete factory method. I show the latter approach below.
(Alternatively, you could use a Func<IWidget> delegate to specify it, but it's more usual to provide a full factory interface.)
So I suggest you create the factory interface:
interface IWidgetFactory
{
IWidget Create(string serialisedWidget);
}
Then remove the Deserialize() from IWidget:
interface IWidget
{
// .. Whatever
}
Then add a static Deserialize() method to each concrete implementation of IWidget:
class MyWidget: IWidget
{
public static MyWidget Deserialize(string serializedWidget)
{
// .. Whatever you need to deserialise into myDeserializedObject
return myDeserializedObject;
}
// ... Any needed IWidget-implementing methods and properties.
}
Then implement the factory for your concrete widget class using the static Deserialize() method from the concrete widget class:
sealed class MyWidgetFactory : IWidgetFactory
{
public IWidget Create(string serialisedWidget)
{
return MyWidget.Deserialize(serialisedWidget);
}
}
Then add a constructor to your WidgetUser class which accepts an IWidgetFactory and use it in MakeAndUse():
class WidgetUser
{
public WidgetUser(IWidgetFactory widgetFactory)
{
this.widgetFactory = widgetFactory;
}
public void MakeAndUse(string serializedWidget)
{
var widget = widgetFactory.Create(serializedWidget);
Use(widget);
}
private readonly IWidgetFactory widgetFactory;
}
Note that in this scenario, you no longer need the type argument for WidgetUser, so I have removed it.
Then when you create the WidgetUser you must supply a factory:
var widgetUser = new WidgetUser(new MyWidgetFactory());
...
widgetUser.MakeAndUse("MySerializedWidget1");
widgetUser.MakeAndUse("MySerializedWidget2");
Passing in a factory allows a lot more flexibility.
For example, imagine that your serialization scheme included a way of telling from the serialized string which kind of widget it is. For the purposes of simplicity, assume that it starts with "[MyWidget]" if it's a MyWidget and starts with ["MyOtherWidget"] if it's a MyOtherWidget.
Then you could implement a factory that works as a "virtual constructor" that can create any kind of Widget given a serialization string as follows:
sealed class GeneralWidgetFactory: IWidgetFactory
{
public IWidget Create(string serialisedWidget)
{
if (serialisedWidget.StartsWith("[MyWidget]"))
return myWidgetFactory.Create(serialisedWidget);
else if (serialisedWidget.StartsWith("[MyOtherWidget]"))
return myOtherWidgetFactory.Create(serialisedWidget);
else
throw new InvalidOperationException("Don't know how to deserialize a widget from: " + serialisedWidget);
}
readonly MyWidgetFactory myWidgetFactory = new MyWidgetFactory();
readonly MyOtherWidgetFactory myOtherWidgetFactory = new MyOtherWidgetFactory();
}
Note that this is generally not the best way to do things - you are better using a Dependency Container such as Autofac to manage this kind of thing.
I would implement WidgetFactory and call WidgetFactory.Create<T>(serializedWidget) to avoid the usage of new T()
We are trying to build some kind of a layer above the DAL in order to expose an interface of a certain repository methods using generics.
For example:
public interface A
{
void Do_A();
}
public interface B
{
void Do_B();
}
public void Main()
{
Exposer<A>.Do_A();
Exposer<B>.Do_B();
}
Is it possible to do that ?
Tecnically, that isn't a "single class", since Exposer<A> is a different Type to Exposer<B>; however, ultimately, this doesn't look much different to most IoC/DI containers... if this was, say, StructureMap (purely for an example), you might consider:
container.GetInstance<A>().Do_A();
container.GetInstance<B>().Do_B();
you would, of course, need to configure the container to know where the concrete A and B implementations are coming from! Which for StructureMap is shown here, but there are plenty to choose from.
If you mean directly, then: no. You cannot have:
class Exposer<T> : T {...} // non-working code to implement the interface T
You can, however, have some class:
class Exposer : A, B {...}
and just cast:
A a = Exposer;
a.Do_A();
B b = Exposer;
b.Do_B();
A type Foo<T> cannot implement (or extend) the actual T, as T is unknown at compile time. What you could do is expose a T as a property, and invoke methods on it. However, as Ondrej wrote, the question may be a little unclear.
Are you describing IoC when you write?
Exposer<A>.Do_A();
Your Exposer class makes me think to StructureMap API:
ObjectFactory.GetInstance<T>().Do_A();
If you want to get rid of the keyword new and get in a generic way an instance for a specified interface, take a look to this article or check StructureMap
To choose which interface implementation you want when consuming a given class, you don't use generics, you just cast the class to the interface:
public interface A
{
void Do_A();
}
public interface B
{
void Do_B();
}
public class Exposer : A, B
{
public void Do_A() { ; }
public void Do_B() { ; }
}
public void Main()
{
// the casts are redundant here,
// because the interface implementation
// is implicit
((A)Exposer).Do_A();
((B)Exposer).Do_B();
}
If you want to exclude members that are not implementations of members of the given interface, use explicit implementation:
public class Exposer : A, B
{
void A.Do_A() { ; }
void B.Do_B() { ; }
}
public void Main()
{
// the casts are now required;
// otherwise, you'll get a compiler error
// telling you that the method is inaccessible
((A)Exposer).Do_A();
((B)Exposer).Do_B();
}
I got an interface like this
public interface IService
{
void InterceptedMethod();
}
A class that implements that interface and also has another method
public class Service : IService
{
public virtual void InterceptedMethod()
{
Console.WriteLine("InterceptedMethod");
}
public virtual void SomeMethod()
{
Console.WriteLine("SomeMethod");
}
}
And an Interceptor
public class MyInterceptor : IInterceptor
{
public void Intercept(IInvocation invocation)
{
Console.WriteLine("Intercepting");
invocation.Proceed();
}
}
I want to intercept only the methods on Service that exists on IService (i.e I want to intercept InterceptedMethod() but not SomeMethod()), but I don't want to use ShouldInterceptMethod from IProxyGenerationHook.
I can do like this, but since its return an Interface, I can't call SomeMethod on this object
var generator = new ProxyGenerator();
var proxy = generator.CreateInterfaceProxyWithTargetInterface<IService>(new Service(), new MyInterceptor());
proxy.InterceptedMethod(); // works
proxy.SomeMethod(); // Compile error, proxy is an IService
One thing that can work is removing the virtual from SomeMethod() and do like this
var proxy = generator.CreateClassProxy<Service>(new MyInterceptor());
But I don't like this solution.
I dont like using ShouldInterceptMethod from IProxyGenerationHook, because everytime that I change the interface I also need to change ShouldInterceptMethod, also someone someday can refactor the method name and the method is not intercepted anymore.
There's any other way to do this?
If you want to create a proxy for the class, you need to use classproxy.
If you want to exclude certain members you have to use IProxyGenerationHook.
If you want your code to be agnostic to changes to members of interface/class like names signatures being added or removed - than make it so!
Simplest code I could think of is something like this:
private InterfaceMap interfaceMethods = typeof(YourClass).GetInterfaceMap(typeof(YourInterface));
public bool ShouldInterceptMethod(Type type, MethodInfo methodInfo)
{
return Array.IndexOf(interfaceMethods.ClassMethods,methodInfo)!=-1;
}
I'm still trying to get a better understanding of Interfaces. I know about what they are and how to implement them in classes.
What I don't understand is when you create a variable that is of one of your Interface types:
IMyInterface somevariable;
Why would you do this? I don't understand how IMyInterface can be used like a class...for example to call methods, so:
somevariable.CallSomeMethod();
Why would you use an IMyInterface variable to do this?
You are not creating an instance of the interface - you are creating an instance of something that implements the interface.
The point of the interface is that it guarantees that what ever implements it will provide the methods declared within it.
So now, using your example, you could have:
MyNiftyClass : IMyInterface
{
public void CallSomeMethod()
{
//Do something nifty
}
}
MyOddClass : IMyInterface
{
public void CallSomeMethod()
{
//Do something odd
}
}
And now you have:
IMyInterface nifty = new MyNiftyClass()
IMyInterface odd = new MyOddClass()
Calling the CallSomeMethod method will now do either something nifty or something odd, and this becomes particulary useful when you are passing in using IMyInterface as the type.
public void ThisMethodShowsHowItWorks(IMyInterface someObject)
{
someObject.CallSomeMethod();
}
Now, depending on whether you call the above method with a nifty or an odd class, you get different behaviour.
public void AnotherClass()
{
IMyInterface nifty = new MyNiftyClass()
IMyInterface odd = new MyOddClass()
// Pass in the nifty class to do something nifty
this.ThisMethodShowsHowItWorks(nifty);
// Pass in the odd class to do something odd
this.ThisMethodShowsHowItWorks(odd);
}
EDIT
This addresses what I think your intended question is - Why would you declare a variable to be of an interface type?
That is, why use:
IMyInterface foo = new MyConcreteClass();
in preference to:
MyConcreteClass foo = new MyConcreteClass();
Hopefully it is clear why you would use the interface when declaring a method signature, but that leaves the question about locally scoped variables:
public void AMethod()
{
// Why use this?
IMyInterface foo = new MyConcreteClass();
// Why not use this?
MyConcreteClass bar = new MyConcreteClass();
}
Usually there is no technical reason why the interface is preferred. I usually use the interface because:
I typically inject dependencies so the polymorphism is needed
Using the interface clearly states my intent to only use members of the interface
The one place where you would technically need the interface is where you are utilising the polymorphism, such as creating your variable using a factory or (as I say above) using dependency injection.
Borrowing an example from itowlson, using concrete declaration you could not do this:
public void AMethod(string input)
{
IMyInterface foo;
if (input == "nifty")
{
foo = new MyNiftyClass();
}
else
{
foo = new MyOddClass();
}
foo.CallSomeMethod();
}
Because this:
public void ReadItemsList(List<string> items);
public void ReadItemsArray(string[] items);
can become this:
public void ReadItems(IEnumerable<string> items);
Edit
Think of it like this:
You have to be able to do this.
rather than:
You have to be this.
Essentially this is a contract between the method and it's callers.
Using interface variables is the ONLY way to allow handler methods to be written which can accept data from objects that have different base classes.
This is about as clear as anyone is going to get.
An interface is used so you do not need to worry about what class implements the interface. An example of this being useful is when you have a factory method that returns a concrete implementation that may be different depending on the environment you are running in. It also allows an API designer to define the API while allowing 3rd parties to implement the API in any way they see fit. Sun does this with it's cryptographic API's for Java.
public interface Foo {
}
public class FooFactory {
public static Foo getInstance() {
if(os == 'Windows') return new WinFoo();
else if(os == 'OS X') return new MacFoo();
else return new GenricFoo();
}
}
Your code that uses the factory only needs to know about Foo, not any of the specific implementations.
I was in same position and took me few days to figure out why do we have to use interface variable.
IDepartments rep = new DepartmentsImpl();
why not
DepartmentsImpl rep = new DepartmentsImpl();
Imagine If a class implements two interfaces that contain a member with the same signature, then implementing that member on the class will cause both interfaces to use that member as their implementation.
class Test
{
static void Main()
{
SampleClass sc = new SampleClass();
IControl ctrl = (IControl)sc;
ISurface srfc = (ISurface)sc;
// The following lines all call the same method.
sc.Paint();
ctrl.Paint();
srfc.Paint();
}
}
interface IControl
{
void Paint();
}
interface ISurface
{
void Paint();
}
class SampleClass : IControl, ISurface
{
// Both ISurface.Paint and IControl.Paint call this method.
public void Paint()
{
Console.WriteLine("Paint method in SampleClass");
}
}
// Output:
// Paint method in SampleClass
// Paint method in SampleClass
// Paint method in SampleClass
If the two interface members do not perform the same function, however, this can lead to an incorrect implementation of one or both of the interfaces.
public class SampleClass : IControl, ISurface
{
void IControl.Paint()
{
System.Console.WriteLine("IControl.Paint");
}
void ISurface.Paint()
{
System.Console.WriteLine("ISurface.Paint");
}
}
The class member IControl.Paint is only available through the IControl interface, and ISurface.Paint is only available through ISurface. Both method implementations are separate, and neither is available directly on the class. For example:
IControl c = new SampleClass();
ISurface s = new SampleClass();
s.Paint();
Please do correct me if i am wrong as i am still learning this Interface concept.
Lets say you have class Boat, Car, Truck, Plane.
These all share a common method TakeMeThere(string destination)
You would have an interface:
public interface ITransportation
{
public void TakeMeThere(string destination);
}
then your class:
public class Boat : ITransportation
{
public void TakeMeThere(string destination) // From ITransportation
{
Console.WriteLine("Going to " + destination);
}
}
What you're saying here, is that my class Boat will do everything ITransportation has told me too.
And then when you want to make software for a transport company. You could have a method
Void ProvideServiceForClient(ITransportation transportationMethod, string whereTheyWantToGo)
{
transportationMethod.TakeMeThere(whereTheyWantToGo); // Cause ITransportation has this method
}
So it doesn't matter which type of transportation they want, because we know it can TakeMeThere
This is not specific to C#,so i recommend to move to some othere flag.
for your question,
the main reason why we opt for interface is to provide a protocol between two components(can be a dll,jar or any othere component).
Please refer below
public class TestClass
{
static void Main()
{
IMyInterface ob1, obj2;
ob1 = getIMyInterfaceObj();
obj2 = getIMyInterfaceObj();
Console.WriteLine(ob1.CallSomeMethod());
Console.WriteLine(obj2.CallSomeMethod());
Console.ReadLine();
}
private static bool isfirstTime = true;
private static IMyInterface getIMyInterfaceObj()
{
if (isfirstTime)
{
isfirstTime = false;
return new ImplementingClass1();
}
else
{
return new ImplementingClass2();
}
}
}
public class ImplementingClass1 : IMyInterface
{
public ImplementingClass1()
{
}
#region IMyInterface Members
public bool CallSomeMethod()
{
return true;
}
#endregion
}
public class ImplementingClass2 : IMyInterface
{
public ImplementingClass2()
{
}
#region IMyInterface Members
public bool CallSomeMethod()
{
return false;
}
#endregion
}
public interface IMyInterface
{
bool CallSomeMethod();
}
Here the main method does not know about the classes still it is able to get different behaviour using the interface.
The purpose of the Interface is to define a contract between several objects, independent of specific implementation.
So you would usually use it when you have an Intrace ISomething, and a specific implementation
class Something : ISomething
So the Interface varialbe would come to use when you instantiate a contract:
ISomething myObj = new Something();
myObj.SomeFunc();
You should also read interface C#
Update:
I will explaing the logic of using an Interface for the variable and not the class itself by a (real life) example:
I have a generic repositor interace:
Interface IRepository {
void Create();
void Update();
}
And i have 2 seperate implementations:
class RepositoryFile : interface IRepository {}
class RepositoryDB : interface IRepository {}
Each class has an entirely different internal implementation.
Now i have another object, a Logger, that uses an already instansiated repository to do his writing. This object, doesn't care how the Repository is implemented, so he just implements:
void WriteLog(string Log, IRepository oRep);
BTW, this can also be implemented by using standard classes inheritance. But the difference between using interfaces and classes inheritance is another discussion.
For a slightly more details discussion on the difference between abstract classes and interfaces see here.
Say, for example, you have two classes: Book and Newspaper. You can read each of these, but it wouldn't really make sense for these two to inherit from a common superclass. So they will both implement the IReadable interface:
public interface IReadable
{
public void Read();
}
Now say you're writing an application that will read books and newspapers for the user. The user can select a book or newspaper from a list, and that item will be read to the user.
The method in your application that reads to the user will take this Book or Newspaper as a parameter. This might look like this in code:
public static void ReadItem(IReadable item)
{
item.Read();
}
Since the parameter is an IReadable, we know that the object has the method Read(), thus we call it to read it to the user. It doesn't matter whether this is a Book, Newspaper, or anything else that implements IReadable. The individual classes implement exactly how each item will be read by implementing the Read() method, since it will most likely be different for the different classes.
Book's Read() might look like this:
public void Read()
{
this.Open();
this.TurnToPage(1);
while(!this.AtLastPage)
{
ReadText(this.CurrentPage.Text);
this.TurnPage();
}
this.Close();
}
Newspaper's Read() would likely be a little different:
public void Read()
{
while(!this.OnBackPage)
{
foreach(Article article in this.CurrentPage.Articles)
{
ReadText(article.Text);
}
}
}
The point is that the object contained by a variable that is an interface type is guaranteed to have a specific set of methods on it, even if the possible classes of the object are not related in any other way. This allows you to write code that will apply to a variety of classes that have common operations that can be performed on them.
No, it is not possible. Designers did not provide a way. Of course, it is of common sense also. Because interface contains only abstract methods and as abstract methods do not have a body (of implementation code), we cannot create an object..
Suppose even if it is permitted, what is the use. Calling the abstract method with object does not yield any purpose as no output. No functionality to abstract methods.
Then, what is the use of interfaces in Java design and coding. They can be used as prototypes from which you can develop new classes easily. They work like templates for other classes that implement interface just like a blue print to construct a building.
I believe everyone is answering the polymorphic reason for using an interface and David Hall touches on partially why you would reference it as an interface instead of the actual object name. Of course, being limited to the interface members etc is helpful but the another answer is dependency injection / instantiation.
When you engineer your application it is typically cleaner, easier to manage, and more flexible if you do so utilizing dependency injection. It feels backwards at first if you've never done it but when you start backtracking you'll wish you had.
Dependency injection normally works by allowing a class to instantiate and control the dependencies and you just rely on the interface of the object you need.
Example:
Layer the application first. Tier 1 logic, tier 2 interface, tier 3 dependency injection. (Everyone has their own way, this is just for show).
In the logic layer you reference the interfaces and dependency layer and then finally you create logic based on only the interfaces of foreign objects.
Here we go:
public IEmployee GetEmployee(string id)
{
IEmployee emp = di.GetInstance<List<IEmployee>>().Where(e => e.Id == id).FirstOrDefault();
emp?.LastAccessTimeStamp = DateTime.Now;
return emp;
}
Notice above how we use di.GetInstance to get an object from our dependency. Our code in that tier will never know or care about the Employee object. In fact if it changes in other code it will never affect us here. If the interface of IEmployee changes then we may need to make code changes.
The point is, IEmployee emp = never really knows what the actual object is but does know the interface and how to work with it. With that in mind, this is when you want to use an interface as opposed to an object becase we never know or have access to the object.
This is summarized.. Hopefully it helps.
This is a fundamental concept in object-oriented programming -- polymorphism. (wikipedia)
The short answer is that by using the interface in Class A, you can give Class A any implementation of IMyInterface.
This is also a form of loose coupling (wikipedia) -- where you have many classes, but they do not rely explicitly on one another -- only on an abstract notion of the set of properties and methods that they provide (the interface).