c sharp finding a specific digit in an int [duplicate] - c#

This question already has answers here:
Get the seventh digit from an integer
(9 answers)
Get individual digits from an Int without using strings?
(1 answer)
Closed 4 years ago.
I'm trying to find the nth digit of an integer (from right to left). I'm new to programming but have been using this site a lot for reference - up until now I've resisted passing my problems on but I cannot understand this one in the least, even after hours of effort.
This is the code I have so far but for FindDigit(int 5673, int 4) it gives 53 instead of 5, FindDigit(int 5673, int 3) gives 51 instead of 6
public class DigitFinder
{
public static int FindDigit(int num, int nth)
{
num = Math.Abs(num);
string answer = Convert.ToString(num);
int i = answer.Length;
return ans[i-nth];
}
}
I cannot understand at all why it returns a 2 digit number. Any guidance at all appreciated!

I'd just use
int result = (num / (int)Math.Pow(10,nth-1)) % 10;
Where num is the number to get the nth digit from (counted right to left) and nth is the "index" of digits you want (again: counted from right to left). Mind that it is 1-based. That is "1" is the rightmost digit. "0" would be out of range.
To explain the math:
(int)Math.Pow(10,nth-1) takes your desired index and decreases it by 1, then takes that as the power of 10. So if you want the 3rd digit, that makes 10 to the power of two equals 100.
BTW: the cast to int is necessary because Math.Pow works on double and returns double. But we want to keep on working in integer arithmetic.
Dividing by the result of above equation "shifts" your number to the right, so your desired digit becomes the rightmost digit. Example: 1234, we want 3rd digit from right ("2") => 1234 / (10^(3-1))= 1234 / 100 = 12
You then "cut out" that rightmost digit by applying the "remainder" (modulo) operator with divisor 10. Example: 12 % 10 = [12 / 10 = 1, Remainder =] 2.
Mind that I also would check nth to be > 0 and num >= 10 ^ (nth-1). (never trust user input)

53 is the ASCII code of the character 5. Just subtract the character 0, i.e. numeric 48.
However, it is usually a good idea to avoid string manipulation for things like this; if possible you should probably prefer division/remainder (modulo) arithmetic.

Just because no one else did, and also because i have Printable Character OCD
public static int GetLeastSignificantDigit(int number, int digit)
{
for (var i = 0; i < digit - 1; i++)
number /= 10;
return number % 10;
}
Demo here

Related

How can I get the last two digits of any 3+ digit integer?

I'm trying to get the last two digits of an int that is a minimum of 3 digits long. Here is my (rather sloppy) attempt:
char[] number = num.ToString().ToCharArray();
int firstnum;
int secondnum;
string strLastTwoDigits = "";
int intLastTwoDigits;
firstnum = number[number.ToString().Length - 1];
secondnum = number[number.ToString().Length - 2];
strLastTwoDigits = (firstnum.ToString() + secondnum.ToString());
intLastTwoDigits = int.Parse(strLastTwoDigits);
The num variable is the number I'm trying to get the last two digits of. I'm trying to turn them into strings and use the string functions to do it, probably not the way it's done. The logic to check whether it's 3 digits or more isn't included, I don't need help with that, just getting those last two digits.
Any ideas?
Do you need those two numbers as a String? Or do you plan to convert them back to a number.
Because if you want to have a number at the end, just use the modulo- operator %.
You can find an example on how to use it here: https://www.dotnetperls.com/modulo
Edit: to state the obvious: last2 = number % 100;
Just perform a modulo operation.
var intLastTwoDigits = num % 100;
You can use the modulo of that number, it should be something like
int lastTwoDigits = num % 100;
This function will divide num / 100and gives you the rest as integer.
If you need the last to digits as int, you could just use modulo:
int lasttwo = num % 100;
the modulo operator (%) will return you the remainder of the division of one integer is by another - in this case your number divided by 100 - the remainder will always be the last two digits
If you want to use strings for that, string.Substring method will help you
var numString = num.ToString();
var strLastTwoDigits = numString.Substring(numString.Length - 2, 2);
var intLastTwoDigits = int.Parse(strLastTwoDigits);
Another (and more simpler option) is to use remainder % operator for that
int intLastTwoDigits = num % 100;
You get a remainder of division into 100, because you need the 2 last digits

How to convert negative number to positive in c#? [duplicate]

This question already has answers here:
Always return positive value
(9 answers)
Closed 5 years ago.
Where taking away a minus value i.e. 5 - (-5), we are working this out as 10, which yes, mathematically it is correct.
But in this case, our logic should treat each number as a positive and not minus negative numbers. It should be 5 - (-5) = 0 as per our requirement.
Other people have provided Math.Abs as a solution. I don't know whether this inlines Math.Abs or not... But measure the performance gain from something like this vs Math.Abs:
int d = X > 0 ? X : -X;
to verify that it's really worth it.
if Math.Abs throws an OverflowException. You can force this in the straight C# as well using checked arithmetic:
int d = X > 0 ? X : checked(-X);
I ran some quick tests on different methods you can use:
Math.Abs(i) 5839 ms Factor 1
i > 0 ? i : -i 6395 ms Factor 1.09
(i + (i >> 31)) ^ (i >> 31) 5053 ms Factor 0.86
Winner: ([only int] as you can't bitshift floating point numbers in C#):
public static int ConvertToPositive(int i) {
return (i + (i >> 31)) ^ (i >> 31);
}
ConvertToPositive(-5); // 5
Try Math.Abs this will solve the purpose.
So before applying any arithmetic operation you should apply Math.Abs(value) which will convert your negative value to positive.
class Program
{
static void Main()
{
//
// Compute two absolute values.
//
int value1 = -1000;
int value2 = 20;
int abs1 = Math.Abs(value1);
int abs2 = Math.Abs(value2);
//
// Write integral results.
//
Console.WriteLine(value1);
Console.WriteLine(abs1);
Console.WriteLine(value2);
Console.WriteLine(abs2);
}
}
You need to use Math.Abs()
You will have to convert every number that may be negative into a positive value like so
var result = 5 - (Math.Abs(-5))

C# - Constantly adding 9 digits

As the title says, I'm developing in C#.
I'd like to generate a number which has more than 9 numbers, so I thought about generating numbers, follow by 9.
For instance, if I want to generate a number which has 10 digits - I'd generate first a number which has 9 numbers, and then a number which has 1 digit.
If I generate the number 20, I'd generate first 2 numbers with 9 digits each, and then a number with 2 digits.
This is what I've tried:
for (int i = 0, j = (int.Parse(inputRandom.Text) % 9 == 0 ? int.Parse(inputRandom.Text) % 9 : int.Parse(inputRandom.Text) % 9 + 1); i < j; i++)
if (i < (int.Parse(inputRandom.Text) % 9 == 0 ? j % 9 : j % 9 + 1) - 1)
numToSend += (BigInteger)r.Next(int.Parse(1 + Zero((int.Parse(inputRandom.Text) % 9 + 8) * (inputRandom.Text.Length - 1))));
else
numToSend += (BigInteger)r.Next(int.Parse(1 + Zero(int.Parse(inputRandom.Text) % 9 * 9)));
The method Zero returns a string with 0, times the number specified in. I.e Zero(1) would return: "0"
I need this method because the method Next(Int32) can return a number, up to what specified between the brackets. I.e Next(10) would return a number between 0 and 9.
My goal
I want to generate a number with a number of digit above 9, and put the number into the string numToSend. I cannot simply do this, because the method Next() can only generate ints.
Even after your edit, I don't find the question very clear. However, I do think I understand that you are essentially trying to generate a random BigInteger value, and that you want the random value to be within a range defined by some specific number of digits.
For example, if you ask for a 10-digit value, some value between 0 and 9999999999 should be returned. If you ask for a 20-digit value, some value between 0 and 99999999999999999999 should be returned.
Based on that understanding, I believe this method should accomplish what you are asking:
BigInteger NextRandom(Random random, int digitCount)
{
BigInteger result = 0;
while (digitCount-- > 0)
{
result = result * 10 + random.Next(10);
}
return result;
}
Note that the number returned could have fewer than digitCount actual digits in it. In fact, there's always a 1-in-10 chance of that happening. And a 1-in-100 chance of the result having fewer than (digitCount - 1) digits, etc.
If you want something different from that, please be more specific about the exact requirements of the output you want (read https://stackoverflow.com/help/how-to-ask for advice on how to present your question in a clear, answerable way).
For example, the above won't generate a random value within some arbitrary range; the (exclusive) max value can only ever be a power of 10. Also, due to the way BigInteger works, if you are looking for a value with a specific number of binary digits, you can do that simply by using the Random.NextBytes() method, passing the resulting array (making modifications as appropriate to ensure e.g. positive values).
See also C# A random BigInt generator for more inspiration (I would've voted as that for a duplicate, but it seems from your description that you might be looking for a slightly different result than what's requested in that question).

How can you separate a string of numbers to single digits using division and the modulo operator?

Lets say someone enter a four digit number 1234 in the console. How can you separate this number in to 1 2 3 4 using only division and the modulo operator?
public static void MathProblem()
{
Console.WriteLine("Type a four digit number:");
//Ex input: 1234
string inputNumber = Console.ReadLine();
// I'm guessing you first need to parse the
// string as an int in some way?
// And then assign it to some variable
// Now, for seperating the digits to be: 1 2 3 4,
// you can (and must) use both division (/), and the remainder (%).
// The first one will be simple, just dividing value with 1000, but
// how about the others? (Remember, % also need to be used at least
// once)
Console.Write("{0},{1},{2},{3}", value/1000, ?, ?, ?;
}
Any guidelines for making this possible for any given four digit input?
Since this seems like a homework problem, I'll simply explain the method in a few steps rather than giving you the code. Having parsed the input as an integer,
A number modulo 10 allows you to obtain its last digit.
Dividing (integer division) the number by 10 removes the last digit.
Repeat while the number is greater than 0.
int num = int.Parse(inputNumber);
Console.Write(string.Format("{0},{1},{2},{3}", (num/1000) % 100, (num/100) % 10, (num/10) % 10, num % 10));
OR
List<int> listOfInts = new List<int>();
while(num > 0)
{
listOfInts.Add(num % 10);
num = num / 10;
}
Console.Write("{0},{1},{2},{3}", listOfInts[3], listOfInts[2], listOfInts[1], listOfInts[0]);
No need to do this by division or modulo operators. Use LINQ. You can get an integer array using LINQ as below:
string inputNumber= "1234"
var intList = inputNumber.Select(digit => int.Parse(digit.ToString()));
Then, you can simply use it as you want like this:
Console.Write("{0},{1},{2},{3}", intList[0]/1000, intList[1], intList[2], intList[3]);
Or simply the way you wanted it using Division and Modulo Operator:
public int[] ParseIntString(int number)
{
List<int> digits= new List<int>();
while(number> 0)
{
digits.Add(number% 10);
number= number/ 10;
}
digits.Reverse();
return digits.ToArray();
}
I hope this helps you
int[] values;
Seperate(inputNumber, out values);
Console.Write("{0},{1},{2},{3}", values[0] / 1000, values[1], values[2], values[3]);
Console.ReadKey();
}
public static void Seperate(string numbers, out int[] values)
{
values = new int[numbers.Length];
for (int x = 0; x <= numbers.Length - 1; x++)
{
values[x] = int.Parse(numbers[x].ToString());
}
}
I just started a course in coding and had this as homework as well. I did it in excel first because I thought it was easier than running code over and over and it's more a math problem than a coding one.
Say the number is 4352.
The first digit is easy, it's the integer of the number / 1000 = 4.
Then you simply multilpy by 1000 to get 4000. Remove that and you get 352. The integer of that / 100 is 3.
Then you times that by 100 to get 300 and remove that and you get 52, the integer of that / 10 is 5. Multiply that by 10 and remove that and you're left with 2.
Just read that you must use % so I suggest getting the last number as a modular of 10

How to remove a number from another number using bitwise operators?

How do I remove for example 2 from 123 and returns 13, by using bitwise operators? I have no idea how to do this.. it's possible? Thanks in advance.
What you're suggesting is possible, but wouldn't really make sense to do. Below are the values representations in bits (only showing relevant bits, everything further left is a zero):
2: 000010 || 123: 1111011 || 13: 001101
There's no logical way to change 123 into 13 with bitwise operations. It would better to turn it into a string or character array, remove the two then cast it back to an int.
What other cases are there? It may be possible to generalize this at an integer level if there is some sort of pattern, otherwise you're really just looking at string replacement.
The 2 in 123 is actually 2E1 (10100), and the 2 in 1234 would be 2E2 (11001000) neither of which are related to 2 (10), at least in bitwise form. Also, the "number" on the right side of the removed number would need to be added to the number on the left side of the removed number / 10.
i.e, to go from 123 to 13:
Located "2".
Number on left (x): 100
Number on right (y): 3
y + (x / 10) = 13
and to go from 1324 to 134
Located "2"
Number on left (x): 1300
Number on right (y): 4
y + (x / 10) = 134
Unless there's some pattern (i.e you know what positions the numbers are in), you'll just have to .ToString() the number, then do a .Replace("2", ""), before doing an int.Parse() on the result.
EDIT: Someone upvoted this answer and I realised my previous implementation was unnecessarily complicated. It is relatively straightforward to 'iterate' over the digits in a base-10 number and shouldn't require recursion.
New solution below, performance is better but this is a huge micro-optimisation:
static int OmitDigit(int number, int digit) {
var output = 0;
var multiplier = 1;
while (number > 0) {
var n = number % 10;
number /= 10;
if (n != digit) {
output += (n * multiplier);
multiplier *= 10;
}
}
return output;
}
Result:
1554443
Since we're working with base 10 numbers, manipulation in base 2 is ugly to say the least. Using some math, removing the nth digit from k, and shifting over is
(k/pow(10,n))*pow(10, n-1) + k%pow(10, n-1)
In base 2, the << and >> operator acts like multiplying by a pow(2, n), and & with a mask does the work of %, but in base 10 the bits don't line up.
This is very awkward, but if you really do must have bitwise operations only, I suggest you convert the number to BCD. Once in BCD, you basically have an hexadecimal numbers with digits between 0 and 9, so removing a digit is very simple. Once you're done, convert back to binary.
I don't believe anybody would want to do that.

Categories

Resources