How to convert negative number to positive in c#? [duplicate] - c#

This question already has answers here:
Always return positive value
(9 answers)
Closed 5 years ago.
Where taking away a minus value i.e. 5 - (-5), we are working this out as 10, which yes, mathematically it is correct.
But in this case, our logic should treat each number as a positive and not minus negative numbers. It should be 5 - (-5) = 0 as per our requirement.

Other people have provided Math.Abs as a solution. I don't know whether this inlines Math.Abs or not... But measure the performance gain from something like this vs Math.Abs:
int d = X > 0 ? X : -X;
to verify that it's really worth it.
if Math.Abs throws an OverflowException. You can force this in the straight C# as well using checked arithmetic:
int d = X > 0 ? X : checked(-X);
I ran some quick tests on different methods you can use:
Math.Abs(i) 5839 ms Factor 1
i > 0 ? i : -i 6395 ms Factor 1.09
(i + (i >> 31)) ^ (i >> 31) 5053 ms Factor 0.86
Winner: ([only int] as you can't bitshift floating point numbers in C#):
public static int ConvertToPositive(int i) {
return (i + (i >> 31)) ^ (i >> 31);
}
ConvertToPositive(-5); // 5

Try Math.Abs this will solve the purpose.
So before applying any arithmetic operation you should apply Math.Abs(value) which will convert your negative value to positive.
class Program
{
static void Main()
{
//
// Compute two absolute values.
//
int value1 = -1000;
int value2 = 20;
int abs1 = Math.Abs(value1);
int abs2 = Math.Abs(value2);
//
// Write integral results.
//
Console.WriteLine(value1);
Console.WriteLine(abs1);
Console.WriteLine(value2);
Console.WriteLine(abs2);
}
}

You need to use Math.Abs()
You will have to convert every number that may be negative into a positive value like so
var result = 5 - (Math.Abs(-5))

Related

c sharp finding a specific digit in an int [duplicate]

This question already has answers here:
Get the seventh digit from an integer
(9 answers)
Get individual digits from an Int without using strings?
(1 answer)
Closed 4 years ago.
I'm trying to find the nth digit of an integer (from right to left). I'm new to programming but have been using this site a lot for reference - up until now I've resisted passing my problems on but I cannot understand this one in the least, even after hours of effort.
This is the code I have so far but for FindDigit(int 5673, int 4) it gives 53 instead of 5, FindDigit(int 5673, int 3) gives 51 instead of 6
public class DigitFinder
{
public static int FindDigit(int num, int nth)
{
num = Math.Abs(num);
string answer = Convert.ToString(num);
int i = answer.Length;
return ans[i-nth];
}
}
I cannot understand at all why it returns a 2 digit number. Any guidance at all appreciated!
I'd just use
int result = (num / (int)Math.Pow(10,nth-1)) % 10;
Where num is the number to get the nth digit from (counted right to left) and nth is the "index" of digits you want (again: counted from right to left). Mind that it is 1-based. That is "1" is the rightmost digit. "0" would be out of range.
To explain the math:
(int)Math.Pow(10,nth-1) takes your desired index and decreases it by 1, then takes that as the power of 10. So if you want the 3rd digit, that makes 10 to the power of two equals 100.
BTW: the cast to int is necessary because Math.Pow works on double and returns double. But we want to keep on working in integer arithmetic.
Dividing by the result of above equation "shifts" your number to the right, so your desired digit becomes the rightmost digit. Example: 1234, we want 3rd digit from right ("2") => 1234 / (10^(3-1))= 1234 / 100 = 12
You then "cut out" that rightmost digit by applying the "remainder" (modulo) operator with divisor 10. Example: 12 % 10 = [12 / 10 = 1, Remainder =] 2.
Mind that I also would check nth to be > 0 and num >= 10 ^ (nth-1). (never trust user input)
53 is the ASCII code of the character 5. Just subtract the character 0, i.e. numeric 48.
However, it is usually a good idea to avoid string manipulation for things like this; if possible you should probably prefer division/remainder (modulo) arithmetic.
Just because no one else did, and also because i have Printable Character OCD
public static int GetLeastSignificantDigit(int number, int digit)
{
for (var i = 0; i < digit - 1; i++)
number /= 10;
return number % 10;
}
Demo here

Get the sign of a number in C# without conditional statement

Just out of curiosity, is there a way to get the sign of a number, any kind (but obviously a signed type), not just integer using some bitwise/masking, or other kind of, operation?
That is without using any conditional statement or calling the Math.Sign() function.
Thanks in advance!
EDIT: I recognize it was a misleading question. What I had in mind more likely something like: "get the same output of the Math.Sign() or, simplifying get 0 if x <= 0, 1 otherwise".
EDIT #2: to all those asking for code, I didn't have any in mind when I posted the question, but here's an example I came up with, just to give a context of a possible application:
x = (x < 0) ? 0 : x;
Having the sign into a variable could lead to:
x = sign * x; //where sign = 0 for x <= 0, otherwise sign = 1;
The aim would be to achieve the same result as the above :)
EDIT #3: FOUND IT! :D
// THIS IS NOT MEANT TO BE PLAIN C#!
// Returns 0 if x <= 0, 1 otherwise.
int SignOf(x)
{
return (1+x-(x+1)%x)/x;
}
Thanks to everyone!
is there a way to get the sign of a number (any kind, not just integer)
Not for any number type, no. For an integer, you can test the most significant bit: if it's 1, the number is negative. You could theoretically do the same with a floating point number, but bitwise operators don't work on float or double.
Here's a "zero safe" solution that works for all value types (int, float, double, decimal...etc):
(value.GetHashCode() >> 31) + 1;
Output: 1 = 1, -1 = 0, 0.5 = 1, -0.5 = 0, 0 = 1
It's also roughly 10% cheaper than (1+x-(x+1)%x)/x; in C#. Additionally if "value" is an integer, you can drop the GetHashCode() function call in which case (1+x-(x+1)%x)/x; is 127% more expensive ((value >> 31) + 1; is 56% cheaper).
Since 0 is positive it is illogical for a result of 1 for positive numbers & a result of 0 for 0. If you could parametrise -0 you would get an output of 0.
I understand that GetHashCode() is a function call, but the inner workings of the function in the C# language implementation is entirely "arithmetic". Basically the GetHashCode() function reads the memory section, that stores your float type, as an integer type:
*((int*)&singleValue);
How the GetHashCode function works (best source I could find quickly) - https://social.msdn.microsoft.com/Forums/vstudio/en-US/3c3fde60-1b4a-449f-afdc-fe5bba8fece3/hash-code-of-floats?forum=netfxbcl
If you want the output value to be 1 with the same sign as the input, use:
((float.GetHashCode() >> 31) * 2) + 1;
The above floating-point method is roughly 39% cheaper than System.Math.Sign(float) (System.Math.Sign(float) is roughly 65% more expensive). Where System.Math.Sign(float) throws an exception for float.NaN, ((float.NaN.GetHashCode() >> 31) * 2) + 1; does not and will return -1 instead of crashing.
or for integers:
((int >> 31) * 2) + 1;
The above integer method is roughly 56% cheaper than System.Math.Sign(int) (System.Math.Sign(int) is roughly 125% more expensive).
It depends on the type of number value type you are targeting.
For signed Integers C# and most computer systems use the so called Ones' complement representation.
That means the sign is stored in the first bit of the value.
So you can extract the sign like this:
Int16 number = -2;
Int16 sign = (number & Int16.MinValue) >> 16;
Boolean isNegative = Convert.ToBoolean(sign);
Note that up until now we have not used any conditional operator (explicitly anyways)
But: You still don't know whether the number has a sign or not.
The logical equivalent of your question: "How do I know, if my number is negative?" explicitly requires the usage of a conditional operator as the question is, after all conditional.
So you won't be able to dodge:
if(isNegative)
doThis();
else
doThat();
to just get the sign, you can avoid conditional operators as you will see below in Sign extension of int32 struct. however to get the name I dont think you can avoid conditional operator
class Program
{
static void Main(string[] args)
{
Console.WriteLine(0.Sign());
Console.WriteLine(0.SignName());
Console.WriteLine(12.Sign());
Console.WriteLine(12.SignName());
Console.WriteLine((-15).Sign());
Console.WriteLine((-15).SignName());
Console.ReadLine();
}
}
public static class extensions
{
public static string Sign(this int signedNumber)
{
return (signedNumber.ToString("+00;-00").Substring(0, 1));
}
public static string SignName(this int signedNumber)
{
return (signedNumber.ToString("+00;-00").Substring(0, 1)=="+"?"positive":"negative");
}
}
if x==0 you will have a divby0 exception with this code you posted:
int SignOf(x) {
return (1+x-(x+1)%x)/x; }

1/BigInteger in c#

I want to make
BigInteger.ModPow(1/BigInteger, 2,5);
but 1/BigInteger always return 0, which causes, that the result is 0 too. I tried to look for some BigDecimal class for c# but I have found nothing. Is there any way how to count this even if there is no BigDecimal?
1/a is 0 for |a|>1, since BigIntegers use integer division where the fractional part of a division is ignored. I'm not sure what result you're expecting for this.
I assume you want to modular multiplicative inverse of a modulo m, and not a fractional number. This inverse exists iff a and m are co-prime, i.e. gcd(a, m) = 1.
The linked wikipedia page lists the two standard algorithms for calculating the modular multiplicative inverse:
Extended Euclidean algorithm, which works for arbitrary moduli
It's fast, but has input dependent runtime.
I don't have C# code at hand, but porting the pseudo code from wikipedia should be straight forward.
Using Euler's theorem:
This requires knowledge of φ(m) i.e. you need to know the prime factors of m. It's a popular choice when m is a prime and thus φ(m) = m-1 when it simply becomes . If you need constant runtime and you know φ(m), this is the way to go.
In C# this becomes BigInteger.ModPow(a, phiOfM-1, m)
The overload of the / operator chosen, is the following:
public static BigInteger operator /(
BigInteger dividend,
BigInteger divisor
)
See BigInteger.Division Operator. If the result is between 0 and 1 (which is likely when dividend is 1 as in your case), because the return value is an integer, 0 is returned, as you see.
What are you trying to do with the ModPow method? Do you realize that 2,5 are two arguments, two and five, not "two-point-five"? Is your intention "take square modulo 5"?
If you want floating-point division, you can use:
1.0 / (double)yourBigInt
Note the cast to double. This may lose precision and even "underflow" to zero if yourBigInt is too huge.
For example you need to get d in the next:
3*d = 1 (mod 9167368)
this is equally:
3*d = 1 + k * 9167368, where k = 1, 2, 3, ...
rewrite it:
d = (1 + k * 9167368)/3
Your d must be the integer with the lowest k.
Let's write the formula:
d = (1 + k * fi)/e
public static int MultiplicativeInverse(int e, int fi)
{
double result;
int k = 1;
while (true)
{
result = (1 + (k * fi)) / (double) e;
if ((Math.Round(result, 5) % 1) == 0) //integer
{
return (int)result;
}
else
{
k++;
}
}
}
let's test this code:
Assert.AreEqual(Helper.MultiplicativeInverse(3, 9167368), 6111579); // passed

How to convert number to next higher multiple of five?

I am coding a program where a form opens for a certain period of time before closing. I am giving the users to specify the time in seconds. But i'd like this to be in mutliples of five. Or the number gets rounded off to the nearest multiple.
if they enter 1 - 4, then the value is automatically set to 5.
If they enter 6 - 10 then the value is automatically set to 10.
max value is 60, min is 0.
what i have, but i am not happy with this logic since it resets it to 10 seconds.
if (Convert.ToInt32(maskedTextBox1.Text) >= 60 || Convert.ToInt32(maskedTextBox1.Text) <= 0)
mySettings.ToastFormTimer = 10000;
else
mySettings.ToastFormTimer = Convert.ToInt32 (maskedTextBox1.Text) * 1000;
use the Modulus Operator
if(num % 5 == 0)
{
// the number is a multiple of 5.
}
what about this:
int x = int.Parse(maskedTextBox1.Text)/5;
int y = Math.Min(Math.Max(x,1),12)*5; // between [5,60]
// use y as the answer you need
5 * ((num - 1) / 5 + 1)
Should work if c# does integer division.
For the higher goal of rounding to the upper multiple of 5, you don't need to test whether a number is a multiple. Generally speaking, you can round-up or round-to-nearest by adding a constant, then rounding down. To round up, the constant is one less than n. Rounding an integer down to a multiple of n is simple: divide by n and multiply the result by n. Here's a case where rounding error works in your favor.
int ceil_n(int x, int n) {
return ((x+n-1) / n) * n;
}
In dynamic languages that cast the result of integer division to prevent rounding error (which doesn't include C#), you'd need to cast the quotient back to an integer.
Dividing by n can be viewed as a right-shift by 1 place in base n; similarly, multiplying by n is equivalent to a left-shift by 1. This is why the above approach works: it sets the least-significant digit of the number in base n to 0.
2410=445, 2510=505, 2610=515
((445+4 = 535) >>5 1) <<5 1 = 505 = 2510
((505+4 = 545) >>5 1) <<5 1 = 505 = 2510
((515+4 = 605) >>5 1) <<5 1 = 605 = 3010
Another way of zeroing the LSD is to subtract the remainder to set the least significant base n digit to 0, as Jeras does in his comment.
int ceil_n(int x, int n) {
x += n-1;
return x - x%n;
}

How can I ensure that a division of integers is always rounded up?

I want to ensure that a division of integers is always rounded up if necessary. Is there a better way than this? There is a lot of casting going on. :-)
(int)Math.Ceiling((double)myInt1 / myInt2)
UPDATE: This question was the subject of my blog in January 2013. Thanks for the great question!
Getting integer arithmetic correct is hard. As has been demonstrated amply thus far, the moment you try to do a "clever" trick, odds are good that you've made a mistake. And when a flaw is found, changing the code to fix the flaw without considering whether the fix breaks something else is not a good problem-solving technique. So far we've had I think five different incorrect integer arithmetic solutions to this completely not-particularly-difficult problem posted.
The right way to approach integer arithmetic problems -- that is, the way that increases the likelihood of getting the answer right the first time - is to approach the problem carefully, solve it one step at a time, and use good engineering principles in doing so.
Start by reading the specification for what you're trying to replace. The specification for integer division clearly states:
The division rounds the result towards zero
The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs
If the left operand is the smallest representable int and the right operand is –1, an overflow occurs. [...] it is implementation-defined as to whether [an ArithmeticException] is thrown or the overflow goes unreported with the resulting value being that of the left operand.
If the value of the right operand is zero, a System.DivideByZeroException is thrown.
What we want is an integer division function which computes the quotient but rounds the result always upwards, not always towards zero.
So write a specification for that function. Our function int DivRoundUp(int dividend, int divisor) must have behaviour defined for every possible input. That undefined behaviour is deeply worrying, so let's eliminate it. We'll say that our operation has this specification:
operation throws if divisor is zero
operation throws if dividend is int.minval and divisor is -1
if there is no remainder -- division is 'even' -- then the return value is the integral quotient
Otherwise it returns the smallest integer that is greater than the quotient, that is, it always rounds up.
Now we have a specification, so we know we can come up with a testable design. Suppose we add an additional design criterion that the problem be solved solely with integer arithmetic, rather than computing the quotient as a double, since the "double" solution has been explicitly rejected in the problem statement.
So what must we compute? Clearly, to meet our spec while remaining solely in integer arithmetic, we need to know three facts. First, what was the integer quotient? Second, was the division free of remainder? And third, if not, was the integer quotient computed by rounding up or down?
Now that we have a specification and a design, we can start writing code.
public static int DivRoundUp(int dividend, int divisor)
{
if (divisor == 0 ) throw ...
if (divisor == -1 && dividend == Int32.MinValue) throw ...
int roundedTowardsZeroQuotient = dividend / divisor;
bool dividedEvenly = (dividend % divisor) == 0;
if (dividedEvenly)
return roundedTowardsZeroQuotient;
// At this point we know that divisor was not zero
// (because we would have thrown) and we know that
// dividend was not zero (because there would have been no remainder)
// Therefore both are non-zero. Either they are of the same sign,
// or opposite signs. If they're of opposite sign then we rounded
// UP towards zero so we're done. If they're of the same sign then
// we rounded DOWN towards zero, so we need to add one.
bool wasRoundedDown = ((divisor > 0) == (dividend > 0));
if (wasRoundedDown)
return roundedTowardsZeroQuotient + 1;
else
return roundedTowardsZeroQuotient;
}
Is this clever? No. Beautiful? No. Short? No. Correct according to the specification? I believe so, but I have not fully tested it. It looks pretty good though.
We're professionals here; use good engineering practices. Research your tools, specify the desired behaviour, consider error cases first, and write the code to emphasize its obvious correctness. And when you find a bug, consider whether your algorithm is deeply flawed to begin with before you just randomly start swapping the directions of comparisons around and break stuff that already works.
All the answers here so far seem rather over-complicated.
In C# and Java, for positive dividend and divisor, you simply need to do:
( dividend + divisor - 1 ) / divisor
Source: Number Conversion, Roland Backhouse, 2001
The final int-based answer
For signed integers:
int div = a / b;
if (((a ^ b) >= 0) && (a % b != 0))
div++;
For unsigned integers:
int div = a / b;
if (a % b != 0)
div++;
The reasoning for this answer
Integer division '/' is defined to round towards zero (7.7.2 of the spec), but we want to round up. This means that negative answers are already rounded correctly, but positive answers need to be adjusted.
Non-zero positive answers are easy to detect, but answer zero is a little trickier, since that can be either the rounding up of a negative value or the rounding down of a positive one.
The safest bet is to detect when the answer should be positive by checking that the signs of both integers are identical. Integer xor operator '^' on the two values will result in a 0 sign-bit when this is the case, meaning a non-negative result, so the check (a ^ b) >= 0 determines that the result should have been positive before rounding. Also note that for unsigned integers, every answer is obviously positive, so this check can be omitted.
The only check remaining is then whether any rounding has occurred, for which a % b != 0 will do the job.
Lessons learned
Arithmetic (integer or otherwise) isn't nearly as simple as it seems. Thinking carefully required at all times.
Also, although my final answer is perhaps not as 'simple' or 'obvious' or perhaps even 'fast' as the floating point answers, it has one very strong redeeming quality for me; I have now reasoned through the answer, so I am actually certain it is correct (until someone smarter tells me otherwise -furtive glance in Eric's direction-).
To get the same feeling of certainty about the floating point answer, I'd have to do more (and possibly more complicated) thinking about whether there is any conditions under which the floating-point precision might get in the way, and whether Math.Ceiling perhaps does something undesirable on 'just the right' inputs.
The path travelled
Replace (note I replaced the second myInt1 with myInt2, assuming that was what you meant):
(int)Math.Ceiling((double)myInt1 / myInt2)
with:
(myInt1 - 1 + myInt2) / myInt2
The only caveat being that if myInt1 - 1 + myInt2 overflows the integer type you are using, you might not get what you expect.
Reason this is wrong: -1000000 and 3999 should give -250, this gives -249
EDIT:
Considering this has the same error as the other integer solution for negative myInt1 values, it might be easier to do something like:
int rem;
int div = Math.DivRem(myInt1, myInt2, out rem);
if (rem > 0)
div++;
That should give the correct result in div using only integer operations.
Reason this is wrong: -1 and -5 should give 1, this gives 0
EDIT (once more, with feeling):
The division operator rounds towards zero; for negative results this is exactly right, so only non-negative results need adjustment. Also considering that DivRem just does a / and a % anyway, let's skip the call (and start with the easy comparison to avoid modulo calculation when it is not needed):
int div = myInt1 / myInt2;
if ((div >= 0) && (myInt1 % myInt2 != 0))
div++;
Reason this is wrong: -1 and 5 should give 0, this gives 1
(In my own defence of the last attempt I should never have attempted a reasoned answer while my mind was telling me I was 2 hours late for sleep)
Perfect chance to use an extension method:
public static class Int32Methods
{
public static int DivideByAndRoundUp(this int number, int divideBy)
{
return (int)Math.Ceiling((float)number / (float)divideBy);
}
}
This makes your code uber readable too:
int result = myInt.DivideByAndRoundUp(4);
You could write a helper.
static int DivideRoundUp(int p1, int p2) {
return (int)Math.Ceiling((double)p1 / p2);
}
You could use something like the following.
a / b + ((Math.Sign(a) * Math.Sign(b) > 0) && (a % b != 0)) ? 1 : 0)
For signed or unsigned integers.
q = x / y + !(((x < 0) != (y < 0)) || !(x % y));
For signed dividends and unsigned divisors.
q = x / y + !((x < 0) || !(x % y));
For unsigned dividends and signed divisors.
q = x / y + !((y < 0) || !(x % y));
For unsigned integers.
q = x / y + !!(x % y);
Zero divisor fails (as with a native operation).
Cannot overflow.
Elegant and correct.
The key to understanding the behavior is to recognize the difference in truncated, floored and ceilinged division. C#/C++ is natively truncated. When the quotient is negative (i.e. the operators signs are different) then truncation is a ceiling (less negative). Otherwise truncation is a floor (less positive).
So, if there is a remainder, add 1 if the result is positive. Modulo is the same, but you instead add the divisor. Flooring is the same, but you subtract under the reversed conditions.
By round up, I take it you mean away form zero always. Without any castings, use the Math.DivRem() function
/// <summary>
/// Divide a/b but always round up
/// </summary>
/// <param name="a">The numerator.</param>
/// <param name="b">The denominator.</param>
int DivRndUp(int a, int b)
{
// remove sign
int s = Math.Sign(a) * Math.Sign(b);
a = Math.Abs(a);
b = Math.Abs(b);
var c = Math.DivRem(a, b, out int r);
// if remainder >0 round up
if (r > 0)
{
c++;
}
return s * c;
}
If roundup means always up regardless of sign, then
/// <summary>
/// Divide a/b but always round up
/// </summary>
/// <param name="a">The numerator.</param>
/// <param name="b">The denominator.</param>
int DivRndUp(int a, int b)
{
// remove sign
int s = Math.Sign(a) * Math.Sign(b);
a = Math.Abs(a);
b = Math.Abs(b);
var c = Math.DivRem(a, b, out int r);
// if remainder >0 round up
if (r > 0)
{
c+=s;
}
return s * c;
}
Some of the above answers use floats, this is inefficient and really not necessary. For unsigned ints this is an efficient answer for int1/int2:
(int1 == 0) ? 0 : (int1 - 1) / int2 + 1;
For signed ints this will not be correct
The problem with all the solutions here is either that they need a cast or they have a numerical problem. Casting to float or double is always an option, but we can do better.
When you use the code of the answer from #jerryjvl
int div = myInt1 / myInt2;
if ((div >= 0) && (myInt1 % myInt2 != 0))
div++;
there is a rounding error. 1 / 5 would round up, because 1 % 5 != 0. But this is wrong, because rounding will only occur if you replace the 1 with a 3, so the result is 0.6. We need to find a way to round up when the calculation give us a value greater than or equal to 0.5. The result of the modulo operator in the upper example has a range from 0 to myInt2-1. The rounding will only occur if the remainder is greater than 50% of the divisor. So the adjusted code looks like this:
int div = myInt1 / myInt2;
if (myInt1 % myInt2 >= myInt2 / 2)
div++;
Of course we have a rounding problem at myInt2 / 2 too, but this result will give you a better rounding solution than the other ones on this site.

Categories

Resources