I'm trying to using a fluent interface to build a collection, similar to this (simplified) example:
var a = StartWith(1).Add(2).Add(3).Add(4).ToArray();
/* a = int[] {1,2,3,4}; */
The best solution I can come up with add Add() as:
IEnumerable<T> Add<T>(this IEnumerable<T> coll, T item)
{
foreach(var t in coll) yield return t;
yield return item;
}
Which seems to add a lot of overhead that going to be repeated in each call.
IS there a better way?
UPDATE:
in my rush, I over-simplified the example, and left out an important requirement. The last item in the existing coll influences the next item. So, a slightly less simplified example:
var a = StartWith(1).Times10Plus(2).Times10Plus(3).Times10Plus(4).ToArray();
/* a = int[] {1,12,123,1234}; */
public static IEnumerable<T> StartWith<T>(T x)
{
yield return x;
}
static public IEnumerable<int> Times10Plus(this IEnumerable<int> coll, int item)
{
int last = 0;
foreach (var t in coll)
{
last = t;
yield return t;
}
yield return last * 10 + item;
}
A bit late to this party, but here are a couple ideas.
First, consider solving the more general problem:
public static IEnumerable<A> AggregateSequence<S, A>(
this IEnumerable<S> items,
A initial,
Func<A, R, A> f)
{
A accumulator = initial;
yield return accumulator;
foreach(S item in items)
{
accumulator = f(accumulator, item);
yield return accumulator;
}
}
And now your program is just new[]{2, 3, 4}.AggregateSequence(1,
(a, s) => a * 10 + s).ToArray()
However that lacks the "fluency" you want and it assumes that the same operation is applied to every element in the sequence.
You are right to note that deeply nested iterator blocks are problematic; they have quadratic performance in time and linear consumption of stack, both of which are bad.
Here's an entertaining way to implement your solution efficiently.
The problem is that you need both cheap access to the "right" end of the sequence, in order to do an operation on the most recently added element, but you also need cheap access to the left end of the sequence to enumerate it. Normal queues and stacks only have cheap access to one end.
Therefore: start by implementing an efficient immutable double-ended queue. This is a fascinating datatype; I have an implementation here using finger trees:
https://blogs.msdn.microsoft.com/ericlippert/2008/01/22/immutability-in-c-part-10-a-double-ended-queue/
https://blogs.msdn.microsoft.com/ericlippert/2008/02/12/immutability-in-c-part-eleven-a-working-double-ended-queue/
Once you have that, your operations are one-liners:
static IDeque<T> StartWith<T>(T t) => Deque<T>.Empty.EnqueueRight(t);
static IDeque<T> Op<T>(this IDeque<T> d, Func<T, T> f) => d.EnqueueRight(f(d.PeekRight()));
static IDeque<int> Times10Plus(this IDeque<int> d, int j) => d.Op(i => i * 10 + j);
Modify IDeque<T> and Deque<T> to implement IEnumerable<T> in the obvious way and you then get ToArray for free. Or do it as an extension method:
static IEnumerable<T> EnumerateFromLeft(this IDeque<T> d)
{
var c = d;
while (!c.IsEmpty)
{
yield return c.PeekLeft();
c = c.DequeueLeft();
}
}
You could do the following:
public static class MySequenceExtensions
{
public static IReadOnlyList<int> Times10Plus(
this IReadOnlyList<int> sequence,
int value) => Add(sequence,
value,
v => sequence[sequence.Count - 1] * 10 + v);
public static IReadOnlyList<T> Starts<T>(this T first)
=> new MySequence<T>(first);
public static IReadOnlyList<T> Add<T>(
this IReadOnlyList<T> sequence,
T item,
Func<T, T> func)
{
var mySequence = sequence as MySequence<T> ??
new MySequence<T>(sequence);
return mySequence.AddItem(item, func);
}
private class MySequence<T>: IReadOnlyList<T>
{
private readonly List<T> innerList;
public MySequence(T item)
{
innerList = new List<T>();
innerList.Add(item);
}
public MySequence(IEnumerable<T> items)
{
innerList = new List<T>(items);
}
public T this[int index] => innerList[index];
public int Count => innerList.Count;
public MySequence<T> AddItem(T item, Func<T, T> func)
{
Debug.Assert(innerList.Count > 0);
innerList.Add(func(item));
return this;
}
public IEnumerator<T> GetEnumerator() => innerList.GetEnumerator();
IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
}
}
Note that I'm using IReadOnlyList to make it possible to index into the list in a performant way and be able to get the last element if needed. If you need a lazy enumeration then I think you are stuck with your original idea.
And sure enough, the following:
var a = 1.Starts().Times10Plus(2).Times10Plus(3).Times10Plus(4).ToArray();
Produces the expected result ({1, 12, 123, 1234}) with, what I think is, reasonable performance.
You can do like this:
public interface ISequence
{
ISequenceOp StartWith(int i);
}
public interface ISequenceOp
{
ISequenceOp Times10Plus(int i);
int[] ToArray();
}
public class Sequence : ISequence
{
public ISequenceOp StartWith(int i)
{
return new SequenceOp(i);
}
}
public class SequenceOp : ISequenceOp
{
public List<int> Sequence { get; set; }
public SequenceOp(int startValue)
{
Sequence = new List<int> { startValue };
}
public ISequenceOp Times10Plus(int i)
{
Sequence.Add(Sequence.Last() * 10 + i);
return this;
}
public int[] ToArray()
{
return Sequence.ToArray();
}
}
An then just:
var x = new Sequence();
var a = x.StartWith(1).Times10Plus(2).Times10Plus(3).Times10Plus(4).ToArray();
Related
I need to accumulate values into a collection, based on an arbitrary function. Each value is derived from calling a function on the previous value.
My current attempt:
public static T[] Aggregate<T>(this T source, Func<T, T> func)
{
var arr = new List<T> { };
var current = source;
while(current != null)
{
arr.Add(current);
current = func(current);
};
return arr.ToArray();
}
Is there a built-in .Net Framework function to do this?
This operation is usually called Unfold. There's no built-in version but it is implemented in FSharp.Core, so you could wrap that:
public static IEnumerable<T> Unfold<T, TState>(TState init, Func<TState, T> gen)
{
var liftF = new Converter<TState, Microsoft.FSharp.Core.FSharpOption<Tuple<T, TState>>>(x =>
{
var r = gen(x);
if (r == null)
{
return Microsoft.FSharp.Core.FSharpOption<Tuple<T, TState>>.None;
}
else
{
return Microsoft.FSharp.Core.FSharpOption<Tuple<T, TState>>.Some(Tuple.Create(r, x));
}
});
var ff = Microsoft.FSharp.Core.FSharpFunc<TState, Microsoft.FSharp.Core.FSharpOption<Tuple<T, TState>>>.FromConverter(liftF);
return Microsoft.FSharp.Collections.SeqModule.Unfold<TState, T>(ff, init);
}
public static IEnumerable<T> Unfold<T>(T source, Func<T, T> func)
{
return Unfold<T>(source, func);
}
however writing your own version would be simpler:
public static IEnumerable<T> Unfold<T>(T source, Func<T, T> func)
{
T current = source;
while(current != null)
{
yield return current;
current = func(current);
}
}
You are referring to an anamorphism as mentioned here linq-unfold-operator, which is the dual of a catamorphism.
Unfold is the dual of Aggregate. Aggregate exists in the .Net Framework; Unfold does not (for some unknown reason). Hence your confusion.
/// seeds: the initial data to unfold
/// stop: if stop(seed) is True, don't go any further
/// map: transform the seed into the final data
/// next: generate the next seed value from the current seed
public static IEnumerable<R> UnFold<T,R>(this IEnumerable<T> seeds, Predicate<T> stop,
Func<T,R> map, Func<T,IEnumerable<T>> next) {
foreach (var seed in seeds) {
if (!stop(seed)) {
yield return map(seed);
foreach (var val in next(seed).UnFold(stop, map, next))
yield return val;
}
}
}
Usage Example:
var parents = new[]{someType}.UnFold(t => t == null, t => t,
t => t.GetInterfaces().Concat(new[]{t.BaseType}))
.Distinct();
I have a library that only accepts a proprietary immutable collection type. I would like to have a function that accepts one of these collections and performs some changes to this collection by returning a new collection that contains the changes made.
I would like to use a LINQ syntax instead of copying this collection to a List and back.
Add operations is easy for me: concat the enumerable with another one.
But what about Replace (at the given index, return the value given instead of that IEnumerable's value), Insert (at given index, return the given value and then continue iterating over the IEnumerable) or Delete (at given index, skip the IEnumerable's value)?
Are there functions like this available in the .NET framework or in another library? If not, how would I go about implementing these functions?
You can make your own extensions for these operations:
Add
public static IEnumerable<T> Add<T>(this IEnumerable<T> enumerable, T value)
{
foreach (var item in enumerable)
yield return item;
yield return value;
}
or:
public static IEnumerable<T> Add<T>(this IEnumerable<T> enumerable, T value)
{
return enumerable.Concat(new T[] { value });
}
Insert
public static IEnumerable<T> Insert<T>(this IEnumerable<T> enumerable, int index, T value)
{
int current = 0;
foreach (var item in enumerable)
{
if (current == index)
yield return value;
yield return item;
current++;
}
}
or
public static IEnumerable<T> Insert<T>(this IEnumerable<T> enumerable, int index, T value)
{
return enumerable.SelectMany((x, i) => index == i ? new T[] { value, x } : new T[] { x });
}
Replace
public static IEnumerable<T> Replace<T>(this IEnumerable<T> enumerable, int index, T value)
{
int current = 0;
foreach (var item in enumerable)
{
yield return current == index ? value : item;
current++;
}
}
or
public static IEnumerable<T> Replace<T>(this IEnumerable<T> enumerable, int index, T value)
{
return enumerable.Select((x, i) => index == i ? value : x);
}
Remove
public static IEnumerable<T> Remove<T>(this IEnumerable<T> enumerable, int index)
{
int current = 0;
foreach (var item in enumerable)
{
if (current != index)
yield return item;
current++;
}
}
or
public static IEnumerable<T> Remove<T>(this IEnumerable<T> enumerable, int index)
{
return enumerable.Where((x, i) => index != i);
}
Then you can make calls like this:
IEnumerable<int> collection = new int[] { 1, 2, 3, 4, 5 };
var added = collection.Add(6); // 1, 2, 3, 4, 5, 6
var inserted = collection.Insert(0, 0); // 0, 1, 2, 3, 4, 5
var replaced = collection.Replace(1, 22); // 1, 22, 3, 4, 5
var removed = collection.Remove(2); // 1, 2, 4, 5
The question is a little broad, so I'll demonstrate a possibility for a Replace method. There are no methods for that in the framework that replace something in an IEnumerable, as IEnumerable should represent an immutable sequence.
So a naive way to return a new IEnumerable with replaced elements:
public static class Extensions
{
public static IEnumerable<T> Replace<T>(this IEnumerable<T> source, T oldValue, T newValue)
{
return source.Select(element => element == oldValue ? newValue : element);
}
}
This will iterate through the source sequence and return the source elements except for those who Equal the oldValue. Note that this uses the == operator and how this works depends on the type argument for T.
Also note that this uses deferred execution. The source sequence is only enumerated when you start to enumerate the resulting IEnumerable. So if you change the source sequence after a call to Replace, the resulting sequence will yield this change, too.
Implementations for Insert and Delete are straight forward, too, though you'll need to count an index in the source sequence.
IEnumerable is by definition a immutable enumerable collection of elements of a given type. Immutable means that you cannot modify it directly and you always have to create a new instance.
You can however use the yield keyword to implement this behavior, preferably using extension methods.
For example replace could look like this:
public static IEnumerable<T> ReplaceAt<T>(this IEnumerable<T> collection, int index, T item)
{
var currentIndex = 0;
foreach (var originalItem in collection)
{
if (currentIndex != index)
{
//keep the original item in place
yield return originalItem;
}
else
{
//we reached the index where we want to replace
yield return item;
}
currentIndex++;
}
}
For a functional, more LINQ-ey feeling solution, inspired by Arturo's answer:
public static IEnumerable<T> Replace<T>(this IEnumerable<T> enumerable, Func<T, bool> selector, T value)
{
foreach (var item in enumerable)
{
yield return selector(item) ? value : item;
}
}
Used like this: var newEnumerable = oldEnumerable.Replace(x => x.Id == 1, newItem)
I would like to know if any of the classes in the .net framework that implement IEnumerable doesn't implement the ICollection interface.
I'm asking it because I can't get 100% code coverage in the following extension method that I wrote:
public static int GetSafeCount<T>(this IEnumerable<T> nullableCollaction)
{
if (nullableCollaction == null)
{
return 0;
}
var collection = nullableCollaction as ICollection<T>;
if (collection != null)
{
return collection.Count;
}
return nullableCollaction.Count();
}
The last line is not covered in any of my tests and I can't find the correct class to instantiate in order to cover it.
my test code is:
[Test]
public void GetSafeCount_NullObject_Return0()
{
IEnumerable<string> enumerable=null;
Assert.AreEqual(0, enumerable.GetSafeCount());
}
[Test]
public void GetSafeCount_NonICollectionObject_ReturnCount()
{
IEnumerable<string> enumerable = new string[]{};
Assert.AreEqual(0, enumerable.GetSafeCount());
}
Just use any LINQ operation, e.g. Where:
[Test]
public void GetSafeCount_NonICollectionObject_ReturnCount()
{
IEnumerable<string> enumerable = new string[0].Where(x => x.Length == 0);
Assert.AreEqual(0, enumerable.GetSafeCount());
}
However, you can simplify your implementation by just deferring to Enumerable.Count(), which I'd expect to be optimized every way you'd like it to be:
public static int GetSafeCount<T>(this IEnumerable<T> nullableCollection)
=> nullableCollection == null ? 0 : nullableCollection.Count();
Or:
public static int GetSafeCount<T>(this IEnumerable<T> nullableCollection)
=> nullableCollection?.Count() ?? 0;
(Both assume C# 6...)
At that point, it makes sense to only have two tests: one for a null argument, one for a non-null argument.
You can use the Stack<T> class, it implements ICollection and IEnumerable<T> but not ICollection<T>.
Here is how the class is defined:
public class Stack<T> : IEnumerable<T>, IEnumerable, ICollection,
IReadOnlyCollection<T>
He's an example of a IEnumerable<T> that is not a ICollection<T>:
public class MyClass : IEnumerable<int>
{
public List<int> ints = new List<int> { 1, 2, 3, 4, 5 };
public IEnumerator<int> GetEnumerator()
{
foreach (var i in ints)
{
yield return i;
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return this as IEnumerator;
}
}
Now you can do this:
foreach(var item in new MyClass())
{
// do something
}
But can't do this, since it's not an ICollection
var coll = new MyClass() as ICollection<int>; // null!!!
What is the best way to get exactly x values from an Enumerable in C#.
If i use Enumerable .Take() like this:
var myList = Enumerable.Range(0,10);
var result = myList.Take(20);
The result will only have 10 elements.
I want to fill the missing entries with a default value.
Something like this:
var myList = Enumerable.Range(0,10);
var result = myList.TakeOrDefault(20, default(int)); //Is there anything like this?
Is there such a function in C# and if not, what would be the best way to achieve this?
You could do something like:
var result = myList.Concat(Enumerable.Repeat(default(int), 20)).Take(20);
And it would be easy to turn this into an extension method:
public static IEnumerable<T> TakeOrDefault<T>(this IEnumerable<T> list, int count, T defaultValue)
{
return list.Concat(Enumerable.Repeat(defaultValue, count)).Take(count);
}
But there is a subtle gotcha here. This would work perfectly fine for value types, for a reference type, if your defaultValue isn't null, you are adding the same object multiple times. Which probably isn't want you want. For example, if you had this:
var result = myList.TakeOrDefault(20, new Foo());
You are going to add the same instance of Foo to pad your collection. To solve that problem, you'd need something like this:
public static IEnumerable<T> TakeOrDefault<T>(this IEnumerable<T> list, int count, Func<T> defaultFactory)
{
return list.Concat(Enumerable.Range(0, count).Select(i => defaultFactory())).Take(count);
}
Which you'd call like this:
var result = myList.TakeOrDefault(20, () => new Foo())
Of course, both methods can co-exist, so you could easily have:
// pad a list of ints with zeroes
var intResult = myIntList.TakeOrDefault(20, default(int));
// pad a list of objects with null
var objNullResult = myObjList.TakeOrDefault(20, (object)null);
// pad a list of Foo with new (separate) instances of Foo
var objPadNewResult = myFooList.TakeOrDefault(20, () => new Foo());
Its not there by default, but it's easy enough to write as an extension method
public static IEnumerable<T> TakeOrDefault<T>(this IEnumerable<T> items, int count, T defaultValue)
{
var i = 0;
foreach(var item in items)
{
i++;
yield return item;
if(i == count)
yield break;
}
while(i++<count)
{
yield return defaultValue;
}
}
Live example: http://rextester.com/XANF91263
What you're looking for is a general-purpose PadTo method, which extends the collection's length if needed using a given value.
public static IEnumerable<T> PadTo<T>(this IEnumerable<T> source, int len)
{
return source.PadTo(len, default(T));
}
public static IEnumerable<T> PadTo<T>(this IEnumerable<T> source, int len, T elem)
{
return source.PadTo(len, () => elem);
}
public static IEnumerable<T> PadTo<T>(this IEnumerable<T> source, int len, Func<T> elem)
{
int i = 0;
foreach(var t in source)
{
i++;
yield return t;
}
while(i++ < len)
yield return elem();
}
You can now express:
myList.Take(20).PadTo(20);
This is analogous to Scala's List[A].padTo
You could use Concat for this purpose. You can use a simple helper method to join this all together:
public IEnumerable<T> TakeSpawn(this IEnumerable<T> #this, int take, T defaultElement)
{
return #this.Concat(Enumerable.Repeat(defaultElement, take)).Take(take);
}
The idea is that you always append another enumerable on the end of the original enumerable, so if the input doesn't have enough elements, it will start enumerating from the Repeat.
There isn't anything in the .NET Framework, not that I'm aware of. This can be achieved easily using an extension method though and it works for all types if you supply a default value yourself:
public static class ListExtensions
{
public static IEnumerable<T> TakeOrDefault<T>(this List<T> list, int count, T defaultValue)
{
int missingItems = count - list.Count;
List<T> extra = new List<T>(missingItems);
for (int i = 0; i < missingItems; i++)
extra.Add(defaultValue);
return list.Take(count).Concat(extra);
}
}
I wrote a quick extension for this which depends on T being a value type.
public static class Extensions
{
public static IEnumerable<T> TakeOrDefault<T>(this IEnumerable<T> list, int totalElements)
{
List<T> finalList = list.ToList();
if (list.Count() < totalElements)
{
for (int i = list.Count(); i < totalElements; i++)
{
finalList.Add(Activator.CreateInstance<T>());
}
}
return finalList;
}
}
Why not just write an extension method that checks the count and returns the default value for remaining entries:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsoleApplication3
{
class Program
{
static void Main(string[] args)
{
List<int> values = new List<int>{1, 2, 3, 4};
IEnumerable<int> moreValues = values.TakeOrDefault(3, 100);
Console.WriteLine(moreValues.Count());
moreValues = values.TakeOrDefault(4, 100);
Console.WriteLine(moreValues.Count());
moreValues = values.TakeOrDefault(10, 100);
Console.WriteLine(moreValues.Count());
}
}
public static class ExtensionMethods
{
public static IEnumerable<T> TakeOrDefault<T>(this IEnumerable<T> enumerable, int count, T defaultValue)
{
int returnedCount = 0;
foreach (T variable in enumerable)
{
returnedCount++;
yield return variable;
if (returnedCount == count)
{
yield break;
}
}
if (returnedCount < count)
{
for (int i = returnedCount; i < count; i++)
{
yield return defaultValue;
}
}
}
}
}
I have a class and want to work with it as Lists: e.g. List<int>, List<string>, ... , List<T>
I have a class Randomizor which will take the collection data type that will be shuffled. How can I do so?
class Randomizor<T>
{
public Randomizor()
{
}
public Array Shuffle(Array toShuffle)
{
}
}
Create a generic class like so:
class Randomizer<TList, TType> where TList : IList<TType>
{
public TList Randomize(TList list)
{
// ...
}
}
Or like so:
class Randomizer<T>
{
public IList<T> Randomize(IList<T> list)
{
// ...
}
}
Not very clear question... do you mean something like this?
public static class Randomizer<T>
{
public static T GetRandom(List<T> list)
{
T value = default(T);
// Perform some random logic.
return value;
}
}
EDIT: I found two superior impementations after a little digging so I would suggest those in preference.
An extension method for this purpose and already been suggested previously here
I include the code paraphrased to Shuffle below.
public static IEnumerable<T> Shuffle<T> (this IEnumerable<T> source)
{
Random random = new Random ();
T [] copy = source.ToArray ();
for (int i = copy.Length - 1; i >= 0; i--)
{
int index = random.Next (i + 1);
yield return copy [index];
copy [index] = copy [i];
}
}
And an interesting solution adapted from this linq approach
public static IEnumerable<T> Shuffle<T> (this IEnumerable<T> source)
{
Random random = new Random ();
return source.OrderBy(i => Random.Next()).AsEnumerable();
}
The orignal answer but slower than the edits
public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> sequence)
{
Random random = new Random();
List<T> copy = sequence.ToList();
while (copy.Count > 0)
{
int index = random.Next(copy.Count);
yield return copy[index];
copy.RemoveAt(index);
}
}
If you like one of these you should up vote the linked answer.
If you are very concerned about randomness, you could upgrade to one of the RNG algorithms from the Crypto API and seed it with some non deterministic value, like somthing generated from recent mouse activity. I suspect that would be overkill and it would degrade performance.
class Randomizor<T>
{
public Randomizor()
{
}
public List<T> Shuffle(List<T> toShuffle)
{
}
}
class Randomizer<T>
{
public Randomizer(ICollection<T> collection)
{
//Do something with collection using T as the type of the elements
}
}
However you may want to go for a generic extension method
static class Randomizer
{
public static void Randomize<T>(this ICollection<T> collection)
{
//randomize the collection
}
}
and the usage:
List<int> list = new List<int> { 1, 2, 3, 4, 5 };
list.Randomize();
Maybe like this:
public List<T> Shuffle<T>(List<T> toShuffle)
{
return toShuffle.OrderBy(x => Guid.NewGuid()).ToList();
}
Or as an extension method
public static class Extensions
{
public static List<T> Shuffle<T>(this List<T> toShuffle)
{
return toShuffle.OrderBy(x => Guid.NewGuid()).ToList();
}
}