How to break the chain of Task when an exception occurs? - c#

I create the chain of the works. They are to work inside of my additional thread. I use the Task for this purpose. Also, I want to break the chain's work if any exception occurred and throw it in the calling thread. But I see my chain wasn't broken and the act2 with act3 was completed too.
How can I fix it?
using System;
using System.Threading.Tasks;
namespace Bushman.Sandbox.Threads {
class Program {
static void Main(string[] args) {
Console.Title = "Custom thread";
try {
// First work
Action act1 = () => {
for (int i = 0; i < 5; i++) {
// I throw the exeption here
if (i == 3) throw new Exception("Oops!!!");
Console.WriteLine("Do first work");
}
};
// Second work
Action act2 = () => {
for (int i = 0; i < 5; i++)
Console.WriteLine(" Do second work");
};
// Third work
Func<int> act3 = () => {
for (int i = 0; i < 5; i++)
Console.WriteLine(" Do third work");
return 12345;
};
Task task = new Task(act1);
// Build the chain of the works
var awaiter = task.ContinueWith(_ => act2(),
TaskContinuationOptions.ExecuteSynchronously)
.ContinueWith(_ => act3(),
TaskContinuationOptions.ExecuteSynchronously)
.GetAwaiter();
Console.WriteLine("Work started...");
// launch the chain
task.Start();
// Here I get some result
int result = awaiter.GetResult(); // 12345
if (task.IsCanceled || task.IsFaulted) {
throw task.Exception.InnerException;
}
Console.WriteLine("The result: {0}",
result.ToString());
}
catch (Exception ex) {
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine(ex.Message);
Console.ResetColor();
}
Console.WriteLine("Press any key for exit...");
Console.ReadKey();
}
}
}

You have to use the NotOnFaulted Task Continuation Option.
Since TaskContinuationOptions is decorated with the Flags attribute, you can combine NotFaulted with other options.
var awaiter = task.ContinueWith(_ => act2(),
TaskContinuationOptions.ExecuteSynchronously | TaskContinuationOptions.NotOnFaulted)
.ContinueWith(_ => act3(),
TaskContinuationOptions.ExecuteSynchronously | TaskContinuationOptions.NotOnFaulted)
.GetAwaiter();
Even if you are using the async/await keywords, this approach is still valid (but you get rid of GetAwaiter call)

The code is trying to use tasks in an unconventional way, almost as if they were threads. They aren't - tasks are a job that will get scheduled to run on a threadpool thread, not the thread itself. Calling Task.Start won't execute anything, it will schedule its delegate to run on a thread. That's why tasks are never created using the constructor.
The easiest way to start and coordinate tasks is to use Task.Run and async/await, eg:
public static async Task<int> MyMethodAsync()
{
try
{
await Task.Run(()=>act1());
await Task.Run(()=>act2());
var result=await Task.Run(()=>act3());
return result;
}
catch (Exception exc)
{
//Do something
}
}
You can't use async/await on a console application's Main function, so you'll have to call the method in the following way:
var result=MyMethodAsync().Result;
Calling .Wait() or .Result on a task rethrows any exceptions raised inside it.
Without async/await, you'd need to use ContinueWith and actually check the result of the previous task. If you simply want to stop processing, you can pass TaskContinuationOptions.NotOnFaulted :
var result = Task.Run(()=>act1())
.ContinueWith( t1=>act2(),TaskContinuationOptions.NotOnFaulted)
.ContinueWith( t2=>act3(),TaskContinuationOptions.NotOnFaulted)
.Result;
You don't need to get explicit access to the awaiter. The final call to .Result will either return the integer result or throw an AggregateException if one of the previous tasks faulted

Related

How can I await an array of tasks and stop waiting on first exception?

I have an array of tasks and I am awaiting them with Task.WhenAll. My tasks are failing frequently, in which case I inform the user with a message box so that she can try again. My problem is that reporting the error is delayed until all tasks are completed. Instead I would like to inform the user as soon as the first task has thrown an exception. In other words I want a version of Task.WhenAll that fails fast. Since no such build-in method exists I tried to make my own, but my implementation does not behave the way I want. Here is what I came up with:
public static async Task<TResult[]> WhenAllFailFast<TResult>(
params Task<TResult>[] tasks)
{
foreach (var task in tasks)
{
await task.ConfigureAwait(false);
}
return await Task.WhenAll(tasks).ConfigureAwait(false);
}
This generally throws faster than the native Task.WhenAll, but usually not fast enough. A faulted task #2 will not be observed before the completion of task #1. How can I improve it so that it fails as fast as possible?
Update: Regarding cancellation, it is not in my requirements right now, but lets say that for consistency the first cancelled task should stop the awaiting immediately. In this case the combining task returned from WhenAllFailFast should have Status == TaskStatus.Canceled.
Clarification: Τhe cancellation scenario is about the user clicking a Cancel button to stop the tasks from completing. It is not about cancelling automatically the incomplete tasks in case of an exception.
Your best bet is to build your WhenAllFailFast method using TaskCompletionSource. You can .ContinueWith() every input task with a synchronous continuation that errors the TCS when the tasks end in the Faulted state (using the same exception object).
Perhaps something like (not fully tested):
using System;
using System.Threading;
using System.Threading.Tasks;
namespace stackoverflow
{
class Program
{
static async Task Main(string[] args)
{
var cts = new CancellationTokenSource();
cts.Cancel();
var arr = await WhenAllFastFail(
Task.FromResult(42),
Task.Delay(2000).ContinueWith<int>(t => throw new Exception("ouch")),
Task.FromCanceled<int>(cts.Token));
Console.WriteLine("Hello World!");
}
public static Task<TResult[]> WhenAllFastFail<TResult>(params Task<TResult>[] tasks)
{
if (tasks is null || tasks.Length == 0) return Task.FromResult(Array.Empty<TResult>());
// defensive copy.
var defensive = tasks.Clone() as Task<TResult>[];
var tcs = new TaskCompletionSource<TResult[]>();
var remaining = defensive.Length;
Action<Task> check = t =>
{
switch (t.Status)
{
case TaskStatus.Faulted:
// we 'try' as some other task may beat us to the punch.
tcs.TrySetException(t.Exception.InnerException);
break;
case TaskStatus.Canceled:
// we 'try' as some other task may beat us to the punch.
tcs.TrySetCanceled();
break;
default:
// we can safely set here as no other task remains to run.
if (Interlocked.Decrement(ref remaining) == 0)
{
// get the results into an array.
var results = new TResult[defensive.Length];
for (var i = 0; i < tasks.Length; ++i) results[i] = defensive[i].Result;
tcs.SetResult(results);
}
break;
}
};
foreach (var task in defensive)
{
task.ContinueWith(check, default, TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Default);
}
return tcs.Task;
}
}
}
Edit: Unwraps AggregateException, Cancellation support, return array of results. Defend against array mutation, null and empty. Explicit TaskScheduler.
I recently needed once again the WhenAllFailFast method, and I revised #ZaldronGG's excellent solution to make it a bit more performant (and more in line with Stephen Cleary's recommendations). The implementation below handles around 3,500,000 tasks per second in my PC.
public static Task<TResult[]> WhenAllFailFast<TResult>(params Task<TResult>[] tasks)
{
if (tasks is null) throw new ArgumentNullException(nameof(tasks));
if (tasks.Length == 0) return Task.FromResult(new TResult[0]);
var results = new TResult[tasks.Length];
var remaining = tasks.Length;
var tcs = new TaskCompletionSource<TResult[]>(
TaskCreationOptions.RunContinuationsAsynchronously);
for (int i = 0; i < tasks.Length; i++)
{
var task = tasks[i];
if (task == null) throw new ArgumentException(
$"The {nameof(tasks)} argument included a null value.", nameof(tasks));
HandleCompletion(task, i);
}
return tcs.Task;
async void HandleCompletion(Task<TResult> task, int index)
{
try
{
var result = await task.ConfigureAwait(false);
results[index] = result;
if (Interlocked.Decrement(ref remaining) == 0)
{
tcs.TrySetResult(results);
}
}
catch (OperationCanceledException)
{
tcs.TrySetCanceled();
}
catch (Exception ex)
{
tcs.TrySetException(ex);
}
}
}
Your loop waits for each of the tasks in pseudo-serial, so that's why it waits for task1 to complete before checking if task2 failed.
You might find this article helpful on a pattern for aborting after the first failure: http://gigi.nullneuron.net/gigilabs/patterns-for-asynchronous-composite-tasks-in-c/
public static async Task<TResult[]> WhenAllFailFast<TResult>(
params Task<TResult>[] tasks)
{
var taskList = tasks.ToList();
while (taskList.Count > 0)
{
var task = await Task.WhenAny(taskList).ConfigureAwait(false);
if(task.Exception != null)
{
// Left as an exercise for the reader:
// properly unwrap the AggregateException;
// handle the exception(s);
// cancel the other running tasks.
throw task.Exception.InnerException;
}
taskList.Remove(task);
}
return await Task.WhenAll(tasks).ConfigureAwait(false);
}
I'm adding one more answer to this problem, not because I've found a faster solution, but because I am now a bit skeptical about starting multiple async void operations on an unknown SynchronizationContext. The solution I am proposing here is significantly slower. It's about 3 times slower than #ZaldronGG's excellent solution, and about 10 times slower than my previous async void-based implementation. It has though the advantage that after the completion of the returned Task<TResult[]>, it doesn't leak fire-and-forget continuations attached on the observed tasks. When this task is completed, all the continuations created internally by the WhenAllFailFast method have been cleaned up. Which is a desirable behavior for APIs is general, but in many scenarios it might not be important.
public static Task<TResult[]> WhenAllFailFast<TResult>(params Task<TResult>[] tasks)
{
ArgumentNullException.ThrowIfNull(tasks);
CancellationTokenSource cts = new();
Task<TResult> failedTask = null;
TaskContinuationOptions flags = TaskContinuationOptions.DenyChildAttach |
TaskContinuationOptions.ExecuteSynchronously;
Action<Task<TResult>> continuationAction = new(task =>
{
if (!task.IsCompletedSuccessfully)
if (Interlocked.CompareExchange(ref failedTask, task, null) is null)
cts.Cancel();
});
IEnumerable<Task> continuations = tasks.Select(task => task
.ContinueWith(continuationAction, cts.Token, flags, TaskScheduler.Default));
return Task.WhenAll(continuations).ContinueWith(allContinuations =>
{
cts.Dispose();
var localFailedTask = Volatile.Read(ref failedTask);
if (localFailedTask is not null)
return Task.WhenAll(localFailedTask);
// At this point all the tasks are completed successfully
Debug.Assert(tasks.All(t => t.IsCompletedSuccessfully));
Debug.Assert(allContinuations.IsCompletedSuccessfully);
return Task.WhenAll(tasks);
}, default, flags, TaskScheduler.Default).Unwrap();
}
This implementation is similar to ZaldronGG's in that it attaches one continuation on each task, with the difference being that these continuations are cancelable, and they are canceled en masse when the first non-successful task is observed. It also uses the Unwrap technique that I've discovered recently, which eliminates the need for the manual completion of a TaskCompletionSource<TResult[]> instance, and usually makes for a concise implementation.

C# How to await async task until it indicates to proceed

I have a C# method, which calls an external web service multiple times, in a loop. I need to call it asynchronously in a different thread.
But the caller process MUST wait until the async thread meets a certain condition, - this condition occurs much before the loop iterations complete.
Please suggest a C# code example which describes how to wait until the async block of code indicates that a certain condition has been met, so that the main process can proceed without waiting for loop to finish.
My code:
..
List<MyObject> objList = GetObjects();
int counter = 0;
await Task.Factory.StartNew(() =>
{
foreach (MyObject obj in objList)
{
counter++;
CallExtWebSvc(obj);
if (counter == 1)
{
// return an indication that main process can proceed.
}
}
});
// Do other stuff...
You could execute your method as fire and forget and then wait for a TaskCompletionSource. This TaskCompletionSource is given to the method that calls the webservice as parameter. The method then sets a result on the TaskCompletionSource at some point.
Here is an example code piece:
public async Task DoWebserviceStuffAsync(TaskCompletionSource<bool> taskCompletionSource)
{
for (int i = 0; i < 10; i++)
{
//your webservice call
await Task.Delay(5000);
//some condition
if (i == 1)
{
//after setting this your CallingMethod finishes
//waiting the await taskCompletionSource.Task;
taskCompletionSource.TrySetResult(true);
}
}
}
private async Task CallerMethod()
{
var taskCompletionSource = new TaskCompletionSource<bool>();
//call method without await
//care: You cannot catch exceptions without await
DoWebserviceStuffAsync(taskCompletionSource);
//wait for the DoWebserviceStuffAsync to set a result on the passed TaskCompletionSource
await taskCompletionSource.Task;
}
If you want to avoid the danger of "fire and forget" or you also need to wait for the full operation to complete, you could return two tasks (Task,Task) (C# v7 syntax). The caller would await both tasks in order.
public async Task Caller()
{
var (partOne,partTwo) = DoSomethingAsync();
await partOne;
//part one is done...
await partTwo;
//part two is done...
}
public (Task,Task) DoSomethingAsync()
{
var tcs = new TaskCompletionSource<bool>(TaskCreationOptions.RunContinuationsAsynchronously);
return (tcs.Task, DoWork(tcs));
}
public async Task DoWork(TaskCompletionSource<bool> tcs)
{
List<MyObject> objList = GetObjects();
int counter = 0;
await Task.Run(() =>
{
foreach (MyObject obj in objList)
{
counter++;
CallExtWebSvc(obj);
if (counter == 1)
{
// return an indication that main process can proceed.
tcs.SetResult(true);
}
}
});
// Do other stuff...
}

Exception is not caught at Cancelation of Task.Run

I have a class Worker which is doing some work (with simulated workload):
public class Worker
{ ...
public void DoWork(CancellationToken ct)
{
for (int i = 0; i < 10; i++)
{
ct.ThrowIfCancellationRequested();
Thread.Sleep(2000);
}
}
Now I want to use this method in a Task.Run (from my Windows Forms App,at button-click) which can be cancelled:
private CancellationTokenSource _ctSource;
try
{
Task.Run(() =>
{
_worker.DoWork(_ctSource.Token);
},_ctSource.Token);
}
catch (AggregateException aex)
{
String g = aex.Message;
}
catch (OperationCanceledException ex)
{
String g = ex.Message;
}
catch (Exception ex)
{
String g = ex.Message;
}
But when the task is started, I can't cancel it with _ctSource.Cancel();
I get an error in visual studio that the OperationCanceledException is not handled!
But I surrounded the Task.Run Call in a try-catch-clause! The Exception which ocurrs in the Worker object should thrown up or not?
What is the problem?
Your Task.Run call creates the task and then returns immediately. It doesn't ever throw. But the task it creates may fail or be canceled later on.
You have several solutions here:
Use await:
await Task.Run(...)
Attach a continuation depending on the failure/cancellation case:
var task = Task.Run(...);
task.ContinueWith(t => ..., TaskContinuationOptions.OnlyOnCanceled);
task.ContinueWith(t => ..., TaskContinuationOptions.OnlyOnFaulted);
Attach a single continuation on failure:
Task.Run(...).ContinueWith(t => ..., TaskContinuationOptions.NotOnRanToCompletion);
The solution you can/should use depends on the surrounding code.
You need to new the token
private CancellationTokenSource _ctSource = new CancellationTokenSource();
Why are throwing an expectation in DoWork?
Exception from one thread don't bubble up another thread that started the thread.
Cancellation in Managed Threads
If a parallel Task throws an exception it'll return execution and will have it's Exception property (as an AggregateException, you should check for its InnerException) set (and either its IsCanceled or IsFaulted property set to true). Some minimal sample code from a project of mine which escalates the exception to the main thread:
var t = new Task(Initialize);
t.Start();
while (!t.IsCompleted && !t.IsFaulted)
{
// Do other work in the main thread
}
if (t.IsFaulted)
{
if (t.Exception != null)
{
if(t.Exception.InnerException != null)
throw t.Exception.InnerException;
}
throw new InvalidAsynchronousStateException("Initialization failed for an unknown reason");
}
If you use a CancellationTokenSource it should be easy to enhance this to check for IsCanceled (instead of IsFaulted)
You can also use Task.Wait() instead of the while loop... in my project and in that precise case it seemed more appropiate to use the while loop, but you need to wait for the Task to end in one way or another.
If you use Task.Run() you can use a .ContinueWith(Task) which will have the original task passed in (where you can check for IsFaulted or IsCanceled), or have it run only on faulted execution, at your will.

How to make Task.WaitAll() to break if any exception happened?

I want to make Task.WaitAll() to break out if any of the running tasks throws an exception, so that I don't have to wait for 60 seconds to finish. How do I achieve such behavior? If WaitAll() cannot achieve that, is there any other c# feature or workaround?
Task task1 = Task.Run(() => throw new InvalidOperationException());
Task task2 = ...
...
try
{
Task.WaitAll(new Task[]{task1, task2, ...}, TimeSpan.FromSeconds(60));
}
catch (AggregateException)
{
// If any exception thrown on any of the tasks, break out immediately instead of wait all the way to 60 seconds.
}
The following should do it without altering the code of the original tasks (untested):
static bool WaitAll(Task[] tasks, int timeout, CancellationToken token)
{
var cts = CancellationTokenSource.CreateLinkedTokenSource(token);
var proxyTasks = tasks.Select(task =>
task.ContinueWith(t => {
if (t.IsFaulted) cts.Cancel();
return t;
},
cts.Token,
TaskContinuationOptions.ExecuteSynchronously,
TaskScheduler.Current).Unwrap());
return Task.WaitAll(proxyTasks.ToArray(), timeout, cts.Token);
}
Note it only tracks faulted tasks (those which threw). If you need to track cancelled tasks as well, make this change:
if (t.IsFaulted || t.IsCancelled) cts.Cancel();
Updated, waiting on the task proxies is redundant here, as pointed out by #svick in the comments. He proposes an improved version: https://gist.github.com/svick/9992598.
One way of doing that is to use CancellationTokenSource. You create cancellationtokensource, and pass it as an argument to Task.WaitAll. The idea is to wrap your task in try/catch block, and in case of exception, call cancel on cancellationtokensource.
Here's sample code
CancellationTokenSource mainCancellationTokenSource = new CancellationTokenSource();
Task task1 = new Task(() =>
{
try
{
throw new Exception("Exception message");
}
catch (Exception ex)
{
mainCancellationTokenSource.Cancel();
}
}, mainCancellationTokenSource.Token);
Task task2 = new Task(() =>
{
Thread.Sleep(TimeSpan.FromSeconds(3));
Console.WriteLine("Task is running");
}, mainCancellationTokenSource.Token);
task1.Start();
task2.Start();
Task.WaitAll(new[] { task1, task2},
6000, // 6 seconds
mainCancellationTokenSource.Token
);
}
catch (Exception ex)
{
// If any exception thrown on any of the tasks, break out immediately instead of wait all the way to 60 seconds.
}
Parallel class can do the job for you. You can use Parallel.For, ForEach or Invoke.
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Sample_04_04_2014_01
{
class Program
{
public static void Main(string[] args)
{
try
{
Parallel.For(0,20, i => {
Console.WriteLine(i);
if(i == 5)
throw new InvalidOperationException();
Thread.Sleep(100);
});
}
catch(AggregateException){}
Console.Write("Press any key to continue . . . ");
Console.ReadKey(true);
}
}
}
If one of these tasks throws an exception then no other task will be executed excepting those whose execution was already started. For, ForEach and Invoke are waiting for all tasks to complete before to resume control to the calling code. You can have even a finer grain control if you use ParallelLoopState.IsExceptional. Parallel.Invoke is more suited for your case.
I wanted to suggest a slight modification to Noseratio's excellent answer above. In my case I needed to preserve the original exception thrown, and in a surrounding try/catch distinguish between cancelled and exception states.
public static void WaitUnlessFault( Task[] tasks, CancellationToken token )
{
var cts = CancellationTokenSource.CreateLinkedTokenSource(token);
foreach ( var task in tasks ) {
task.ContinueWith(t =>
{
if ( t.IsFaulted ) cts.Cancel();
},
cts.Token,
TaskContinuationOptions.ExecuteSynchronously,
TaskScheduler.Current);
}
try {
Task.WaitAll(tasks, cts.Token);
}
catch ( OperationCanceledException ex ) {
var faultedTaskEx = tasks.Where(t => t.IsFaulted)
.Select(t => t.Exception)
.FirstOrDefault();
if ( faultedTaskEx != null )
throw faultedTaskEx;
else
throw;
}
}

Using Tasks with conditional continuations

I'm a little confused about how to use Tasks with conditional Continuations.
If I have a task, and then I want to continue with a tasks that handle success and error, and then wait on those to complete.
void FunctionThrows() {throw new Exception("faulted");}
static void MyTest()
{
var taskThrows = Task.Factory.StartNew(() => FunctionThrows());
var onSuccess = taskThrows.ContinueWith(
prev => Console.WriteLine("success"),
TaskContinuationOptions.OnlyOnRanToCompleted);
var onError = taskThrows.ContinueWith(
prev => Console.WriteLine(prev.Exception),
TaskContinuationOptions.OnlyOnFaulted);
//so far, so good
//this throws because onSuccess was cancelled before it was started
Task.WaitAll(onSuccess, onError);
}
Is this the preferred way of doing task success/failure branching? Also, how am I supposed to join all these tasks, suppose I've created a long line of continuations, each having their own error handling.
//for example
var task1 = Task.Factory.StartNew(() => ...)
var task1Error = task1.ContinueWith( //on faulted
var task2 = task1.ContinueWith( //on success
var task2Error = task2.ContinueWith( //on faulted
var task3 = task2.ContinueWith( //on success
//etc
Calling WaitAll on these invariably throws, because some of the continuations will be cancelled due to the TaskContinuationOptions, and calling Wait on a cancelled task throws.
How do I join these without getting the "A task was cancelled" exception"?
I think your main problem is that you're telling those two tasks to "Wait" with your call to
Task.WaitAll(onSuccess, onError);
The onSuccess and onError continuations are automatically setup for you and will be executed after their antecedent task completes.
If you simply replace your Task.WaitAll(...) with taskThrows.Start(); I believe you will get the desired output.
Here is a bit of an example I put together:
class Program
{
static int DivideBy(int divisor)
{
Thread.Sleep(2000);
return 10 / divisor;
}
static void Main(string[] args)
{
const int value = 0;
var exceptionTask = new Task<int>(() => DivideBy(value));
exceptionTask.ContinueWith(result => Console.WriteLine("Faulted ..."), TaskContinuationOptions.OnlyOnFaulted | TaskContinuationOptions.AttachedToParent);
exceptionTask.ContinueWith(result => Console.WriteLine("Success ..."), TaskContinuationOptions.OnlyOnRanToCompletion | TaskContinuationOptions.AttachedToParent);
exceptionTask.Start();
try
{
exceptionTask.Wait();
}
catch (AggregateException ex)
{
Console.WriteLine("Exception: {0}", ex.InnerException.Message);
}
Console.WriteLine("Press <Enter> to continue ...");
Console.ReadLine();
}
}
Use Task.WaitAny(onSuccess, onError);
Isn't that normal?
Looking at the MSDN documentation you're doing it fine and the logic you're implementing is sound. The only thing you're missing is wrapping the WaitAll call in an AggregateException wrapper like so:
// Exceptions thrown by tasks will be propagated to the main thread
// while it waits for the tasks. The actual exceptions will be wrapped in AggregateException.
try
{
// Wait for all the tasks to finish.
Task.WaitAll(tasks);
// We should never get to this point
Console.WriteLine("WaitAll() has not thrown exceptions. THIS WAS NOT EXPECTED.");
}
catch (AggregateException e)
{
Console.WriteLine("\nThe following exceptions have been thrown by WaitAll(): (THIS WAS EXPECTED)");
for (int j = 0; j < e.InnerExceptions.Count; j++)
{
Console.WriteLine("\n-------------------------------------------------\n{0}", e.InnerExceptions[j].ToString());
}
}
You can read more here:
http://msdn.microsoft.com/en-us/library/dd270695.aspx
In essence catching an AggregatedException gets you the same thing as completing WaitAll. It's a collection of all the exceptions returned from your tasks.

Categories

Resources