Preference for C# in adding, multiplication, and division - c#

How does C# execute this?
static void Main(string[] args)
{
int i = 4;
i *= 4 + 8 / 2;
Console.WriteLine(i);
}
This was asked in one of the interview Questions. And I applied BODMAS to it.
But it was wrong. Please Explain.

It will be executed equivalent to the following code:
int i = 4;
int temp = 8 / 2;
temp = 4 + temp;
i = i * temp;
The compiler will shorten it down because it can calculate the constant that is on the right of i *=, so in reality it will compile to this:
int i = 4;
i *= 8;

i *= 4 + 8 / 2 is executed as:
i = i * (4 + (8 / 2))
That's the correct way of reading it.

Operator precedence is very clear on this: The / is a multiplicative operator and is applied first, then the +. The *= is an assignment operator and is applied last.
So:
8 / 2 = 4
4 + 4 = 8
i *= 8;
so i will be 4 * 8 = 32;

Related

How to incrementally increase a variable using an equation in c#?

sorry if this is quite a simple question, I am just currently in the process of teaching myself C#.
foreach(int n in Enumerable.Range(0, Range)) {
double s += (1 / Math.Pow(n, 2));
double s6 = s * 6;
double pi = Math.Sqrt(s6);
Console.WriteLine("Pi is equal to {0}", pi);
}
This returns the error "invalid expression term '+='".
I previously wrote a program in python which performs the same task however, I want the line;
double s = (1 / Math.Pow(n, 2));
to add to itself while the foreach loop is true, in a similar fashion to my python variation;
s += 1/n**2;
Thanks in advance for any help!
As mentioned in the comments, there is a scope issue. s must be declared outside the loop and set an initial value to use += in the intended way.
double s = 0;
foreach(int n in Enumerable.Range(0, Range))
{
s += (1 / Math.Pow(n, 2));
double s6 = s * 6;
double pi = Math.Sqrt(s6);
Console.WriteLine("Pi is equal to {0}", pi);
}
Just need to initialize it first.
double s = 0;
foreach(int n in Enumerable.Range(0, Range)) {
s += (1 / Math.Pow(n, 2));
double s6 = s * 6;
double pi = Math.Sqrt(s6);
Console.WriteLine("Pi is equal to {0}", pi);
}

Shortcut syntax for doing var = var + n? [duplicate]

This question already has answers here:
How to increase value of an integer higher than 1 in one command?
(2 answers)
Closed 2 years ago.
I'd like to increment my var value of n, using a similar structure of the post-increment solution like var++.
The post-increment is like this:
int var = 0;
var++; // var = var + 1
I'd like to increment var of n, with n = 4 for example. What's the correct syntax ?
int var = 0;
var++4; // var = var + 4 but obviously not working;
what you are looking for is actually a Compound assignment with arithmetic operators
int a = 5;
a += 9;
Console.WriteLine(a); // output: 14
a -= 4;
Console.WriteLine(a); // output: 10
a *= 2;
Console.WriteLine(a); // output: 20
a /= 4;
Console.WriteLine(a); // output: 5
a %= 3;
Console.WriteLine(a); // output: 2

BBP algorithm get nth digit of PI?

I am trying to turn the BBP Formula (Bailey-Borwein-Plouffe) in to C# code, it is digit extraction of pi in base 16 (spigot algorithm), the idea is give the input of what index/decimal place you want of pi then get that single digit. Let's say I want the digit that are at the decimal place/index 40000 (in base 16) without having to calculate pi with 40000 decimals because I don't care about the other digits.
Anyhow here is the math formula, (doesn't look like it should be to much code? )
Can't say I understand 100% what the formal mean, if I did I probably be able to make it in to code, but from my understanding looking at it.
Is this correct?
pseudo code
Pi = SUM = (for int n = 0; n < infinity;n++) { SUM += ((4/((8*n)+1))
- (2/((8*n)+4)) - (1/((8*n)+5)) - (1/((8*n)+6))*((1/16)^n)) }
Capital sigma basically is like a "for loop" to sum sequences together?
example
and in C# code:
static int CapSigma(int _start, int _end)
{
int sum = 0;
for(int n = _start; n <= _end; n++)
{
sum += n;
}
return (sum);
}
Code so far (not working):
static int BBPpi(int _precision)
{
int pi = 0;
for(int n = 0; n < _precision; n++)
{
pi += ((16 ^ -n) * (4 / (8 * n + 1) - 2 / (8 * n + 4) - 1 / (8 * n + 5) - 1 / (8 * n + 6)));
}
return (pi);
}
I'm not sure how to make it in to actual code also if my pseudo code math is correct?
How to sum 0 to infinity? Can't do it in a for loop and also where in the formula is the part ("input") that specify what nth (index) digit you want to get out? is it the start n (n = 0)? so too get digit 40000 would be n =40000?
You need to cast to double :
class Program
{
static void Main(string[] args)
{
double sum = 0;
for (int i = 1; i < 100; i++)
{
sum += BBPpi(i);
Console.WriteLine(sum.ToString());
}
Console.ReadLine();
}
static double BBPpi(int n)
{
double pi = ((16 ^ -n) * (4.0 / (8.0 * (double)n + 1.0) - 2 / (8.0 * (double)n + 4.0) - 1 / (8.0 * (double)n + 5.0) - 1.0 / (8.0 * (double)n + 6.0)));
return (pi);
}
}

Average of 3 long integers

I have 3 very large signed integers.
long x = long.MaxValue;
long y = long.MaxValue - 1;
long z = long.MaxValue - 2;
I want to calculate their truncated average. Expected average value is long.MaxValue - 1, which is 9223372036854775806.
It is impossible to calculate it as:
long avg = (x + y + z) / 3; // 3074457345618258600
Note: I read all those questions about average of 2 numbers, but I don't see how that technique can be applied to average of 3 numbers.
It would be very easy with the usage of BigInteger, but let's assume I cannot use it.
BigInteger bx = new BigInteger(x);
BigInteger by = new BigInteger(y);
BigInteger bz = new BigInteger(z);
BigInteger bavg = (bx + by + bz) / 3; // 9223372036854775806
If I convert to double, then, of course, I lose precision:
double dx = x;
double dy = y;
double dz = z;
double davg = (dx + dy + dz) / 3; // 9223372036854780000
If I convert to decimal, it works, but also let's assume that I cannot use it.
decimal mx = x;
decimal my = y;
decimal mz = z;
decimal mavg = (mx + my + mz) / 3; // 9223372036854775806
Question: Is there a way to calculate the truncated average of 3 very large integers only with the usage of long type? Don't consider that question as C#-specific, just it is easier for me to provide samples in C#.
This code will work, but isn't that pretty.
It first divides all three values (it floors the values, so you 'lose' the remainder), and then divides the remainder:
long n = x / 3
+ y / 3
+ z / 3
+ ( x % 3
+ y % 3
+ z % 3
) / 3
Note that the above sample does not always work properly when having one or more negative values.
As discussed with Ulugbek, since the number of comments are exploding below, here is the current BEST solution for both positive and negative values.
Thanks to answers and comments of Ulugbek Umirov, James S, KevinZ, Marc van Leeuwen, gnasher729 this is the current solution:
static long CalculateAverage(long x, long y, long z)
{
return (x % 3 + y % 3 + z % 3 + 6) / 3 - 2
+ x / 3 + y / 3 + z / 3;
}
static long CalculateAverage(params long[] arr)
{
int count = arr.Length;
return (arr.Sum(n => n % count) + count * (count - 1)) / count - (count - 1)
+ arr.Sum(n => n / count);
}
NB - Patrick has already given a great answer. Expanding on this you could do a generic version for any number of integers like so:
long x = long.MaxValue;
long y = long.MaxValue - 1;
long z = long.MaxValue - 2;
long[] arr = { x, y, z };
var avg = arr.Select(i => i / arr.Length).Sum()
+ arr.Select(i => i % arr.Length).Sum() / arr.Length;
Patrick Hofman has posted a great solution. But if needed it can still be implemented in several other ways. Using the algorithm here I have another solution. If implemented carefully it may be faster than the multiple divisions in systems with slow hardware divisors. It can be further optimized by using divide by constants technique from hacker's delight
public class int128_t {
private int H;
private long L;
public int128_t(int h, long l)
{
H = h;
L = l;
}
public int128_t add(int128_t a)
{
int128_t s;
s.L = L + a.L;
s.H = H + a.H + (s.L < a.L);
return b;
}
private int128_t rshift2() // right shift 2
{
int128_t r;
r.H = H >> 2;
r.L = (L >> 2) | ((H & 0x03) << 62);
return r;
}
public int128_t divideby3()
{
int128_t sum = {0, 0}, num = new int128_t(H, L);
while (num.H || num.L > 3)
{
int128_t n_sar2 = num.rshift2();
sum = add(n_sar2, sum);
num = add(n_sar2, new int128_t(0, num.L & 3));
}
if (num.H == 0 && num.L == 3)
{
// sum = add(sum, 1);
sum.L++;
if (sum.L == 0) sum.H++;
}
return sum;
}
};
int128_t t = new int128_t(0, x);
t = t.add(new int128_t(0, y));
t = t.add(new int128_t(0, z));
t = t.divideby3();
long average = t.L;
In C/C++ on 64-bit platforms it's much easier with __int128
int64_t average = ((__int128)x + y + z)/3;
You can calculate the mean of numbers based on the differences between the numbers rather than using the sum.
Let's say x is the max, y is the median, z is the min (as you have). We will call them max, median and min.
Conditional checker added as per #UlugbekUmirov's comment:
long tmp = median + ((min - median) / 2); //Average of min 2 values
if (median > 0) tmp = median + ((max - median) / 2); //Average of max 2 values
long mean;
if (min > 0) {
mean = min + ((tmp - min) * (2.0 / 3)); //Average of all 3 values
} else if (median > 0) {
mean = min;
while (mean != tmp) {
mean += 2;
tmp--;
}
} else if (max > 0) {
mean = max;
while (mean != tmp) {
mean--;
tmp += 2;
}
} else {
mean = max + ((tmp - max) * (2.0 / 3));
}
Patching Patrick Hofman's solution with supercat's correction, I give you the following:
static Int64 Avg3 ( Int64 x, Int64 y, Int64 z )
{
UInt64 flag = 1ul << 63;
UInt64 x_ = flag ^ (UInt64) x;
UInt64 y_ = flag ^ (UInt64) y;
UInt64 z_ = flag ^ (UInt64) z;
UInt64 quotient = x_ / 3ul + y_ / 3ul + z_ / 3ul
+ ( x_ % 3ul + y_ % 3ul + z_ % 3ul ) / 3ul;
return (Int64) (quotient ^ flag);
}
And the N element case:
static Int64 AvgN ( params Int64 [ ] args )
{
UInt64 length = (UInt64) args.Length;
UInt64 flag = 1ul << 63;
UInt64 quotient_sum = 0;
UInt64 remainder_sum = 0;
foreach ( Int64 item in args )
{
UInt64 uitem = flag ^ (UInt64) item;
quotient_sum += uitem / length;
remainder_sum += uitem % length;
}
return (Int64) ( flag ^ ( quotient_sum + remainder_sum / length ) );
}
This always gives the floor() of the mean, and eliminates every possible edge case.
Because C uses floored division rather than Euclidian division, it may easier to compute a properly-rounded average of three unsigned values than three signed ones. Simply add 0x8000000000000000UL to each number before taking the unsigned average, subtract it after taking the result, and use an unchecked cast back to Int64 to get a signed average.
To compute the unsigned average, compute the sum of the top 32 bits of the three values. Then compute the sum of the bottom 32 bits of the three values, plus the sum from above, plus one [the plus one is to yield a rounded result]. The average will be 0x55555555 times the first sum, plus one third of the second.
Performance on 32-bit processors might be enhanced by producing three "sum" values each of which is 32 bits long, so that the final result is ((0x55555555UL * sumX)<<32) + 0x55555555UL * sumH + sumL/3; it might possibly be further enhanced by replacing sumL/3 with ((sumL * 0x55555556UL) >> 32), though the latter would depend upon the JIT optimizer [it might know how to replace a division by 3 with a multiply, and its code might actually be more efficient than an explicit multiply operation].
If you know you have N values, can you just divide each value by N and sum them together?
long GetAverage(long* arrayVals, int n)
{
long avg = 0;
long rem = 0;
for(int i=0; i<n; ++i)
{
avg += arrayVals[i] / n;
rem += arrayVals[i] % n;
}
return avg + (rem / n);
}
You could use the fact that you can write each of the numbers as y = ax + b, where x is a constant. Each a would be y / x (the integer part of that division). Each b would be y % x (the rest/modulo of that division). If you choose this constant in an intelligent way, for example by choosing the square root of the maximum number as a constant, you can get the average of x numbers without having problems with overflow.
The average of an arbitrary list of numbers can be found by finding:
( ( sum( all A's ) / length ) * constant ) +
( ( sum( all A's ) % length ) * constant / length) +
( ( sum( all B's ) / length )
where % denotes modulo and / denotes the 'whole' part of division.
The program would look something like:
class Program
{
static void Main()
{
List<long> list = new List<long>();
list.Add( long.MaxValue );
list.Add( long.MaxValue - 1 );
list.Add( long.MaxValue - 2 );
long sumA = 0, sumB = 0;
long res1, res2, res3;
//You should calculate the following dynamically
long constant = 1753413056;
foreach (long num in list)
{
sumA += num / constant;
sumB += num % constant;
}
res1 = (sumA / list.Count) * constant;
res2 = ((sumA % list.Count) * constant) / list.Count;
res3 = sumB / list.Count;
Console.WriteLine( res1 + res2 + res3 );
}
}
I also tried it and come up with a faster solution (although only by a factor about 3/4). It uses a single division
public static long avg(long a, long b, long c) {
final long quarterSum = (a>>2) + (b>>2) + (c>>2);
final long lowSum = (a&3) + (b&3) + (c&3);
final long twelfth = quarterSum / 3;
final long quarterRemainder = quarterSum - 3*twelfth;
final long adjustment = smallDiv3(lowSum + 4*quarterRemainder);
return 4*twelfth + adjustment;
}
where smallDiv3 is division by 3 using multipliation and working only for small arguments
private static long smallDiv3(long n) {
assert -30 <= n && n <= 30;
// Constants found rather experimentally.
return (64/3*n + 10) >> 6;
}
Here is the whole code including a test and a benchmark, the results are not that impressive.
This function computes the result in two divisions. It should generalize nicely to other divisors and word sizes.
It works by computing the double-word addition result, then working out the division.
Int64 average(Int64 a, Int64 b, Int64 c) {
// constants: 0x10000000000000000 div/mod 3
const Int64 hdiv3 = UInt64(-3) / 3 + 1;
const Int64 hmod3 = UInt64(-3) % 3;
// compute the signed double-word addition result in hi:lo
UInt64 lo = a; Int64 hi = a>=0 ? 0 : -1;
lo += b; hi += b>=0 ? lo<b : -(lo>=UInt64(b));
lo += c; hi += c>=0 ? lo<c : -(lo>=UInt64(c));
// divide, do a correction when high/low modulos add up
return hi>=0 ? lo/3 + hi*hdiv3 + (lo%3 + hi*hmod3)/3
: lo/3+1 + hi*hdiv3 + Int64(lo%3-3 + hi*hmod3)/3;
}
Math
(x + y + z) / 3 = x/3 + y/3 + z/3
(a[1] + a[2] + .. + a[k]) / k = a[1]/k + a[2]/k + .. + a[k]/k
Code
long calculateAverage (long a [])
{
double average = 0;
foreach (long x in a)
average += (Convert.ToDouble(x)/Convert.ToDouble(a.Length));
return Convert.ToInt64(Math.Round(average));
}
long calculateAverage_Safe (long a [])
{
double average = 0;
double b = 0;
foreach (long x in a)
{
b = (Convert.ToDouble(x)/Convert.ToDouble(a.Length));
if (b >= (Convert.ToDouble(long.MaxValue)-average))
throw new OverflowException ();
average += b;
}
return Convert.ToInt64(Math.Round(average));
}
Try this:
long n = Array.ConvertAll(new[]{x,y,z},v=>v/3).Sum()
+ (Array.ConvertAll(new[]{x,y,z},v=>v%3).Sum() / 3);

C# math statement not working while doing it in parts works

I am wondering if this could be some kind of associativity problem, because when I do the problem on paper, I get the correct answer, but when I run the code I keep getting 4 over and over. Here is the code. Why aren't these equal? What am I missing?
The whole problem (returns 4 on every iteration):
for (int x = 1; x <= stackCount; x++) {
temp = ((x - 1) / stackCount * uBound) + lBound + 1;
Base[x] = Top[x] = Convert.ToInt32(Math.Floor(temp));
}
Broken into pieces (runs correctly):
double temp, temp1, temp2, temp3, temp4;
for (int x = 1; x <= stackCount; x++) {
temp1 = (x - 1);
temp2 = temp1 / stackCount;
temp3 = temp2 * uBound;
temp4 = temp3 + lBound + 1;
Base[x] = Top[x] = Convert.ToInt32(Math.Floor(temp4));
}
Added:
Yes, I am sorry, I forgot about that declarations:
//the main memory for the application
private string[] Memory;
//arrays to keep track of the bottom and top of stacks
private int[] Base;
private int[] Top;
//keep track of the upper and lower bounds and usable size
private int LowerBound;
private int UpperBound;
private int usableSize;
I also think I had that backwards. I thought that if you used a double in a division operation with integers that the result would be a double, but it appears that is not the case. That makes sense! Thank you all!
Speculation: stackCount, uBound, and lBound are all integers or longs.
Result: The entire expression is computed as though you're doing integer arithmetic.
Solution: temp = ((double)(x -1) / stackCount * uBound) + lBound + 1;
You haven't given us the full code. In particular, the declarations for stackCount, uBound and lBound and temp have all been omitted. You've also omitted the values of the first 3.
If, as seems likely, all the bits involved in your expression
((x - 1) / stackCount * uBound) + lBound + 1;
are integral types, the result will also be an integral type since integer division is performed:
int x = 9 ;
int y = 4 ;
double z = x / y ;
yields the expected double precision value 2.0.
((5 - 1) / 9 * 11) + 3 + 1
The particular integral type that the expression resolves two is depends on the various types involved and whether or not they are signed, and whether or not they are all compatible.

Categories

Resources