AsyncLock for multiple methods configuration - c#

What I need to achieve is:
When MasterAsync is executing, HumbleSlave1Async and HumbleSlave2Async can NOT.
Vice Versa- When one or both of Slaves are executing, MasterAsync can NOT.
Difficult part- Slaves can NOT block each other.
(Link to used AsyncLock).
private async Task MasterAsync()
{
using (await _asyncLock.LockAsync())
{
await Task.Delay(2000);
}
}
private async Task HumbleSlave1Async()
{
using (await _asyncLock.LockAsync())
{
await Task.Delay(5000);
}
}
private async Task HumbleSlave2Async()
{
using (await _asyncLock.LockAsync())
{
await Task.Delay(5000);
}
}
I am not sure how to solve it, was thinking about use of two different locks for each slave in MasterAsync but then one lock would be in another:
private async Task MasterAsync()
{
using (await _asyncLock1.LockAsync())
{
using (await _asyncLock2.LockAsync())
{
await Task.Delay(2000);
}
}
}
private async Task HumbleSlave1Async()
{
using (await _asyncLock1.LockAsync())
{
await Task.Delay(5000);
}
}
private async Task HumbleSlave2Async()
{
using (await _asyncLock2.LockAsync())
{
await Task.Delay(5000);
}
}
Does it make sense and is it safe(deadlocks, etc...) especially when I used AsyncLock ?

When MasterAsync is executing, HumbleSlave1Async and HumbleSlave2Async can NOT.
Vice Versa- When one or both of Slaves are executing, MasterAsync can NOT.
Difficult part- Slaves can NOT block each other.
First, double-check whether you really want this. The majority of the time, a restructuring of the code responsibilities will simplify what synchronization you need (and is usually more efficient, too).
That said, your scenario fits a reader/writer lock. A RWL is a lock that can be taken two different ways, as a "writer" (which does not allow any other locks at the same time) or as a "reader" (which allows other readers but not writers). Stephen Toub has an async-compatible one here and I have one as part of my AsyncEx library.
Update: Example code:
private readonly AsyncReaderWriterLock _lock = new AsyncReaderWriterLock();
private async Task MasterAsync()
{
using (await _lock.WriterLockAsync())
{
await Task.Delay(2000);
}
}
private async Task HumbleSlave1Async()
{
using (await _lock.ReaderLockAsync())
{
await Task.Delay(5000);
}
}
private async Task HumbleSlave2Async()
{
using (await _lock.ReaderLockAsync())
{
await Task.Delay(5000);
}
}

A possible problem with your approach is that when HumbleSlave2Async is executing, and MasterAsync has been called, acquired asyncLock1 and is awaiting asyncLock2, you won't be able to execute HumbleSlave1Async (because asyncLock1 is taken by MasterAsync). So, your condition #3 will not be satisfied.
Maybe you should use something like AsyncManualResetEvent to make this work.

This is certainly not going to deadlock because you acquire locks always in the same order:
_asyncLock1 (or you don't acquire it for HumbleSlave2Async)
_asyncLock2 (or you don't acquire it for HumbleSlave1Async)
A total lock order guarantees freedom of deadlocks.

Related

how to synchronize this lock across thread in C#

I have the following code:
private static async Task SaveAsync()
{
if (Monitor.TryEnter(_SaveLock, 1000))
{
try
{
Logging.Info(" writing bitmex data to database");
await SomelenghthyDbUpdate1.ConfigureAwait(false);
await SomelenghthyDbUpdate2.ConfigureAwait(false);
await SomelenghthyDbUpdate3.ConfigureAwait(false);
await SomelenghthyDbUpdate4.ConfigureAwait(false);
}
finally
{
Monitor.Exit(_SaveLock);
}
}
}
First, ConfigureAwait false vs true does yield a real speed difference.
So, knowing that the finally part can be executed in another thread than the caller there is an issue when releasing the lock.
I am trying to prevent two save operations to happen at the same time, since they're event driven AND can be skipped if needed as they happen periodically.
another option I was thinking about is to make an array of tasks and, in the caller thread do a Task.WaitAll(tasks). In that scenario, is it guaranteed I would still be on the same thread at exit?
But is there a clean solution to this problem? maybe setting a flag through a lock?
As per Docs "The SemaphoreSlim class doesn't enforce thread or task identity on calls to the Wait, WaitAsync, and Release methods."
private static SemaphoreSlim sem = new SemaphoreSlim(1);
private static async Task SaveAsync()
{
if(await sem.WaitAsync(TimeSpan.FromSeconds(1))) // Can be pimped with cancel token
{
try
{
Logging.Info(" writing bitmex data to database");
await SomelenghthyDbUpdate1.ConfigureAwait(false);
await SomelenghthyDbUpdate2.ConfigureAwait(false);
await SomelenghthyDbUpdate3.ConfigureAwait(false);
await SomelenghthyDbUpdate4.ConfigureAwait(false);
}
finally
{
sem.Release();
}
}
}

Combining CPU-bound and IO-bound work in async method

There is such application:
static void Main(string[] args)
{
HandleRequests(10).Wait();
HandleRequests(50).Wait();
HandleRequests(100).Wait();
HandleRequests(1000).Wait();
Console.ReadKey();
}
private static async Task IoBoundWork()
{
await Task.Delay(100);
}
private static void CpuBoundWork()
{
Thread.Sleep(100);
}
private static async Task HandleRequest()
{
CpuBoundWork();
await IoBoundWork();
}
private static async Task HandleRequests(int numberOfRequests)
{
var sw = Stopwatch.StartNew();
var tasks = new List<Task>();
for (int i = 0; i < numberOfRequests; i++)
{
tasks.Add(HandleRequest());
}
await Task.WhenAll(tasks.ToArray());
sw.Stop();
Console.WriteLine(sw.Elapsed);
}
Below the output of this app:
From my perspective having CPU-bound and IO-bound parts in one method it is quite regular situation, e.g. parsing/archiving/serialization of some object and saving that to the disk, so it should probably work well. However in the implementation above it works very slow. Could you please help me to understand why?
If we wrap the body of CpuBoundWork() in Task it significantly improve performance:
private static async Task CpuBoundWork()
{
await Task.Run(() => Thread.Sleep(100));
}
private static async Task HandleRequest()
{
await CpuBoundWork();
await IoBoundWork();
}
Why it works so slow without Task.Run? Why we can see performance boost after adding Task.Run? Should we always use such approach in similar methods?
for (int i = 0; i < numberOfRequests; i++)
{
tasks.Add(HandleRequest());
}
The returned task is created at the first await in the HandleRequest(). So you are executing all CPU bound code on one thread: the for loop thread. complete serialization, no parallelism at all.
When you wrap the CPU part in a task you are actually submitting the CPU part as Tasks, so they are executed in parallel.
The way you're doing, this is what happens:
|-----------HandleRequest Timeline-----------|
|CpuBoundWork Timeline| |IoBoundWork Timeline|
Try doing it like this:
private static async Task HandleRequest()
{
await IoBoundWork();
CpuBoundWork();
}
It has the advantage of starting the IO work and while it waits, the CpuBoundWork() can do the processing. You only await at the last moment you need the response.
The timeline would look somewhat like this:
|--HandleRequest Timeline--|
|Io...
|CpuBoundWork Timeline|
...BoundWork Timeline|
On a side note, open extra threads (Task.Run) with caution in an web environment, you already have a thread per request, so multiplying them will have a negative impact on scalability.
You've indicated that your method ought to be asynchronous, by having it return a Task, but you've not actually made it (entirely) asynchronous. You're implementation of the method does a bunch of expensive, long running, work synchronously, and then returns to the caller and does some other work asynchronously.
Your callers of the method, however, assume that it's actually asynchronous (in entirety) and that it doesn't do expensive work synchronously. They assume that they can call the method multiple times, have it return immediately, and then continue on, but since your implementation doesn't return immediately, and instead does a bunch of expensive work before returning, that code doesn't work properly (specifically, it's not able to start the next operation until the previous one returns, so that synchronous work isn't being done in parallel).
Note that your "fix" isn't quite idiomatic. You're using the async over sync anti-pattern. Rather than making CpuBoundWork async and having it return a Task, despite being a CPU bound operation, it should remain as is an HandleRequest should handle indicating that the CPU bound work should be done asynchronously in another thread by calling Task.Run:
private static async Task HandleRequest()
{
await Task.Run(() => CpuBoundWork());
await IoBoundWork();
}

Threading foreach that abides by async/await methods inside said foreach

I have been looking up a way to itterate through a foreach with multiple threads, for example, let's say I have a list
public List<MYclass> All()
{
// fill the list
}
Private async Task Main()
{
foreach(All() as whatever)
{
await method();
await method2();
}
}
private async Task method()
{
//do some stuff
// more stuff
await another();
}
private async Task method2()
{
//do some stuff
// more stuff
await another2();
}
private async Task another()
{
//await client to do whatever
}
private async Task another2()
{
//await client to do whatever
}
I am trying to do the following:
List item 1 = thread1
List item 2 = thread2
List item 3 = thread3
...etc depending on how many threads I have
I've been looking around with no hope, I found Parrellel.foreach, but that doesn't wait for awaits, because once it hits the await, it complete the whole action then starts the foreach again, so how could I go about achieving what I want? Any help would be greatly apreciated.
The first thing to say, is that async/await code isn't really multi threaded . I think it sort of creates another thread sometimes, but its mainly meant to alleviate blocking in code.
I tend to think mixing multithreading and async is actually a bit of a pain because exception handling is a bit harder and less predictable. You'd be better off using Parallel foreach, and taking async off the method call definitions. Or just calling .Result inside the parallel foreach to make that code execute synchronously.
"Threads" are too low-level a concept to think about these days - after all, when a method is awaiting, it doesn't even use a thread. Instead, you want to think about "tasks" and "operations".
In this case, what you want is asynchronous concurrency (not parallel/threaded concurrency). First, define the (single) operation that you want done for each item:
private async Task ProcessAsync(MyClass item)
{
await method();
await method2();
}
Next, to start operations for all tasks concurrently, you can use Select:
private async Task Main()
{
var tasks = All().Select(ProcessAsync).ToArray();
}
and then, to (asynchronously) wait for them all to complete, use await Task.WhenAll:
private async Task Main()
{
var tasks = All().Select(ProcessAsync).ToArray();
await Task.WhenAll(tasks);
}

Executing multiple tasks asynchronously in C#

Environment
Windows 7
Visual Studio
C#
What I'm trying to do
I'm trying to build an app to evaluate company products. For security, the description below is made abstract to some extent.
What this app does is changing a certain parameter in the product and see how a certain value of the product changes. So I need to do two things.
Change the parameter at a certain interval
Display the value in a textbox at a certain interval
The diagram is like this.
These tasks should be repeated until a cancel button is pressed.
The UI has these controls:
button1 : start button
button2 : cancel button
textbox1 : to show values obtained from the device
So here is the code I wrote.
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
CancellationTokenSource cts = new CancellationTokenSource();
private async void button1_Click(object sender, EventArgs e)
{
await Task1();
await Task2();
}
private async Task Task1()
{
while (!cts.IsCancellationRequested)
{
Thread.Sleep(500);
ChangeParameter(0);
Thread.Sleep(1000);
ChangeParameter(10);
Thread.Sleep(500);
ChangeParameter(0);
}
}
private void ChangeParameter(double param)
{
// change device paremeter
Console.WriteLine("devicep parameter changed : " + param);
}
private async Task Task2()
{
while (!cts.IsCancellationRequested)
{
Thread.Sleep(100);
int data = GetDataFromDevice();
UpdateTextBoxWithData(data);
}
cts.Token.ThrowIfCancellationRequested();
}
private int GetDataFromDevice()
{
//pseudo code
var rnd = new Random();
return rnd.Next(100);
}
private void UpdateTextBoxWithData(int data)
{
textBox1.AppendText(data.ToString() + "\n");
// debug
Console.WriteLine("data : " + data);
}
private void button2_Click(object sender, EventArgs e)
{
cts.Cancel();
}
}
Issues
However, there are two issues in this code.
UI freezes.
Task2 is never executed.
The second issue is derived from await since it executes tasks one by one. I could have used Task.Run() but this doesn't allow adding values to textBox since it's different from the UI thread.
How can I solve these issues? Any help would be appreciated.
First of all, async methods can be illusive as they won't turn your methods magically asynchronous. Instead, you can consider an async method as a setup for a state machine (see a detailed explanation here), where you schedule the chain of operations by the await calls.
For that reason, your async methods must execute as fast as possible. Do not do any blocking operation in such a setup method. If you have a blocking operation, which you want to execute in the async method, schedule it by an await Task.Run(() => MyLongOperation()); call.
So for example this will return immediately:
private async Task Task1()
{
await Task.Run(() =>
{
while (!cts.IsCancellationRequested)
{
Thread.Sleep(500);
ChangeParameter(0);
Thread.Sleep(1000);
ChangeParameter(10);
Thread.Sleep(500);
ChangeParameter(0);
}
}
}
A small remark: others may suggest to use Task.Delay instead of Thread.Sleep. I would say that use Task.Delay only if it is the part of the configuration of your state machine. But if the delay is intended to be used as a part of the long-lasting operation, which you don't want to split up, you can simply stay at the Thread.Sleep.
Finally, a remark for this part:
private async void button1_Click(object sender, EventArgs e)
{
await Task1();
await Task2();
}
This configures your tasks to be executed after each other. If you want to execute them parallel, do it like this:
private async void button1_Click(object sender, EventArgs e)
{
Task t1 = Task1();
Task t2 = Task2();
await Task.WhenAll(new[] { t1, t2 });
}
Edit: An extra note for long-lasting tasks: By default, Task.Run executes the tasks on pool threads. Scheduling too many parallel and long lasting tasks might cause starvation and the whole application may freeze for long seconds. So for long-lasting operation you might want to use Task.Factory.StartNew with TaskCreationOptions.LongRunning option instead of Task.Run.
// await Task.Run(() => LooongOperation(), token);
await Task.Factory.StartNew(() => LooongOperation(), token, TaskCreationOptions.LongRunning, TaskScheduler.Default);
The problem is you not using await in your tasks so they executing synchronously.
You should use something like this to maintain your UI responsive (NOTE this is not production code, I'm just showing an idea):
private void button1_Click(object sender, EventArgs e)
{
try
{
await Task.WhenAll(Task1(cts.Token), Task2(cts.Token));
}
catch (TaskCancelledException ex)
{
}
}
private async Task Task1(CancellationToken token)
{
while (true)
{
token.ThrowIfCancellationRequested();
await Task.Delay(500, token); // pass token to ensure delay canceled exactly when cancel is pressed
ChangeParameter(0);
await Task.Delay(1000, token);
ChangeParameter(10);
await Task.Delay(500, token);
ChangeParameter(0);
}
}
private async Task Task2(CancellationToken token)
{
while (true)
{
token.ThrowIfCancellationRequested();
await Task.Delay(100, token);
int data = await Task.Run(() => GetDataFromDevice()); //assuming this could be long running operation it shouldn't be on ui thread
UpdateTextBoxWithData(data);
}
}
Basically, when you need to run something on background you should wrap that in Task.Run() and then await for result. Simply adding async to your method won't make this method asynchronous.
To make your code clearer, I suggest you to move methods like GetDataFromDevice or ChangeParameter to services layer. Also, take a look at IProgress as comments suggests to update your UI according to progress of some process.
There are many issues with this code:
async/await doesn't make the code asynchronous automagically. It allows you to await the results of already asynchronous operations. If you want to run something in the background that isn't already asynchronous, you need to use Task.Run or a similar method to start a Task.
await returns execution to the original synchronization context. In this case, the UI thread. By using Thread.Sleep, you are freezing the UI thread
You can't update the UI from another thread and that goes for Tasks too. You can use the IProgress interface though to report progress. A lot of BCL classes use this interface, just like CancellationToken
Maxim Kosov already cleaned up the code and shows how to properly use async/await and Task.Run, so I'll just post how to use IProgress< T> and its impelementation, Progress< T>
IProgress is used to publich a progress update with the IProgress< T>.Report method. Its default implementation, Progress, raises the ProgressChanged event and/or calls the Action<T> passed to its constructor, on the UI thread. Specifically, on the synchronization context captured when the class was created.
You can create a progress object in your constructor or your button click event, eg
private async void button1_Click(object sender, EventArgs e)
{
var progress=new Progress<int>(data=>UpdateTextBoxWithData(data));
//...
//Allow for cancellation of the task itself
var token=cts.Token;
await Task.Run(()=>MeasureInBackground(token,progress),token);
}
private async Task MeasureInBackground(CancellationToken token,IProgress<int> progress)
{
while (!token.IsCancellationRequested)
{
await Task.Delay(100,token);
int data = GetDataFromDevice();
progress.Report(data);
}
}
Note that using Thread.Sleep inside a task is not a good idea because it wastes a threadpool thread doing nothing. It's better to use await Task.Delay() which requires that the signature of the method change to async Task. There is a Task.Run(Func) overload just for this purpose.
The method is a bit different from Maxim Kosov's code to show that IProgress really communicates across threads. IProgress can handle complex classes, so you could return both a progress percentage and a message, eg:
private async Task MeasureInBackground(CancellationToken token,IProgress<Tuple<int,string>> progress)
{
while(!token.IsCancellationRequested)
{
await Task.Delay(100,token);
int data = GetDataFromDevice();
progress.Report(Tuple.Create(data,"Working"));
}
progress.Report(Tuple.Create(-1,"Cancelled!"));
}
Here I'm just being lazy and return a Tuple<int,string>. A specialized progress class would be more appropriate in production code.
The advantage of using an Action is that you don't need to manage event handlers and the objects are local to the async method. Cleanup is performed by .NET itself.
If your device API provides truly asynchronous calls, you don't need Task.Run. This means that you don't have to waste a Task in a tigh loop, eg:
private async Task MeasureInBackground(CancellationToken token,IProgress<Tuple<int,string>> progress)
{
while(!token.IsCancellationRequested)
{
await Task.Delay(100, token);
int data = await GetDataFromDeviceAsync();
progress.Report(Tuple.Create(data,"Working"));
}
progress.Report(Tuple.Create(-1,"Cancelled!"));
}
Most drivers perform IO tasks using an OS feature called completion ports, essentially callbacks that are called when the driver completes an operation. This way they don't need to block while waiting for a network, database or file system response.
EDIT
In the last example, Task.Run is no longer needed. Just using await would be enough:
await MeasureInBackground(token,progress);

Calling TaskCompletionSource.SetResult in a non blocking manner

I've discovered that TaskCompletionSource.SetResult(); invokes the code awaiting the task before returning. In my case that result in a deadlock.
This is a simplified version that is started in an ordinary Thread
void ReceiverRun()
while (true)
{
var msg = ReadNextMessage();
TaskCompletionSource<Response> task = requests[msg.RequestID];
if(msg.Error == null)
task.SetResult(msg);
else
task.SetException(new Exception(msg.Error));
}
}
The "async" part of the code looks something like this.
await SendAwaitResponse("first message");
SendAwaitResponse("second message").Wait();
The Wait is actually nested inside non-async calls.
The SendAwaitResponse(simplified)
public static Task<Response> SendAwaitResponse(string msg)
{
var t = new TaskCompletionSource<Response>();
requests.Add(GetID(msg), t);
stream.Write(msg);
return t.Task;
}
My assumption was that the second SendAwaitResponse would execute in a ThreadPool thread but it continues in the thread created for ReceiverRun.
Is there anyway to set the result of a task without continuing its awaited code?
The application is a console application.
I've discovered that TaskCompletionSource.SetResult(); invokes the code awaiting the task before returning. In my case that result in a deadlock.
Yes, I have a blog post documenting this (AFAIK it's not documented on MSDN). The deadlock happens because of two things:
There's a mixture of async and blocking code (i.e., an async method is calling Wait).
Task continuations are scheduled using TaskContinuationOptions.ExecuteSynchronously.
I recommend starting with the simplest possible solution: removing the first thing (1). I.e., don't mix async and Wait calls:
await SendAwaitResponse("first message");
SendAwaitResponse("second message").Wait();
Instead, use await consistently:
await SendAwaitResponse("first message");
await SendAwaitResponse("second message");
If you need to, you can Wait at an alternative point further up the call stack (not in an async method).
That's my most-recommended solution. However, if you want to try removing the second thing (2), you can do a couple of tricks: either wrap the SetResult in a Task.Run to force it onto a separate thread (my AsyncEx library has *WithBackgroundContinuations extension methods that do exactly this), or give your thread an actual context (such as my AsyncContext type) and specify ConfigureAwait(false), which will cause the continuation to ignore the ExecuteSynchronously flag.
But those solutions are much more complex than just separating the async and blocking code.
As a side note, take a look at TPL Dataflow; it sounds like you may find it useful.
As your app is a console app, it runs on the default synchronization context, where the await continuation callback will be called on the same thread the awaiting task has become completed on. If you want to switch threads after await SendAwaitResponse, you can do so with await Task.Yield():
await SendAwaitResponse("first message");
await Task.Yield();
// will be continued on a pool thread
// ...
SendAwaitResponse("second message").Wait(); // so no deadlock
You could further improve this by storing Thread.CurrentThread.ManagedThreadId inside Task.Result and comparing it to the current thread's id after the await. If you're still on the same thread, do await Task.Yield().
While I understand that SendAwaitResponse is a simplified version of your actual code, it's still completely synchronous inside (the way you showed it in your question). Why would you expect any thread switch in there?
Anyway, you probably should redesign your logic the way it doesn't make assumptions about what thread you are currently on. Avoid mixing await and Task.Wait() and make all of your code asynchronous. Usually, it's possible to stick with just one Wait() somewhere on the top level (e.g. inside Main).
[EDITED] Calling task.SetResult(msg) from ReceiverRun actually transfers the control flow to the point where you await on the task - without a thread switch, because of the default synchronization context's behavior. So, your code which does the actual message processing is taking over the ReceiverRun thread. Eventually, SendAwaitResponse("second message").Wait() is called on the same thread, causing the deadlock.
Below is a console app code, modeled after your sample. It uses await Task.Yield() inside ProcessAsync to schedule the continuation on a separate thread, so the control flow returns to ReceiverRun and there's no deadlock.
using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;
namespace ConsoleApplication
{
class Program
{
class Worker
{
public struct Response
{
public string message;
public int threadId;
}
CancellationToken _token;
readonly ConcurrentQueue<string> _messages = new ConcurrentQueue<string>();
readonly ConcurrentDictionary<string, TaskCompletionSource<Response>> _requests = new ConcurrentDictionary<string, TaskCompletionSource<Response>>();
public Worker(CancellationToken token)
{
_token = token;
}
string ReadNextMessage()
{
// using Thread.Sleep(100) for test purposes here,
// should be using ManualResetEvent (or similar synchronization primitive),
// depending on how messages arrive
string message;
while (!_messages.TryDequeue(out message))
{
Thread.Sleep(100);
_token.ThrowIfCancellationRequested();
}
return message;
}
public void ReceiverRun()
{
LogThread("Enter ReceiverRun");
while (true)
{
var msg = ReadNextMessage();
LogThread("ReadNextMessage: " + msg);
var tcs = _requests[msg];
tcs.SetResult(new Response { message = msg, threadId = Thread.CurrentThread.ManagedThreadId });
_token.ThrowIfCancellationRequested(); // this is how we terminate the loop
}
}
Task<Response> SendAwaitResponse(string msg)
{
LogThread("SendAwaitResponse: " + msg);
var tcs = new TaskCompletionSource<Response>();
_requests.TryAdd(msg, tcs);
_messages.Enqueue(msg);
return tcs.Task;
}
public async Task ProcessAsync()
{
LogThread("Enter Worker.ProcessAsync");
var task1 = SendAwaitResponse("first message");
await task1;
LogThread("result1: " + task1.Result.message);
// avoid deadlock for task2.Wait() with Task.Yield()
// comment this out and task2.Wait() will dead-lock
if (task1.Result.threadId == Thread.CurrentThread.ManagedThreadId)
await Task.Yield();
var task2 = SendAwaitResponse("second message");
task2.Wait();
LogThread("result2: " + task2.Result.message);
var task3 = SendAwaitResponse("third message");
// still on the same thread as with result 2, no deadlock for task3.Wait()
task3.Wait();
LogThread("result3: " + task3.Result.message);
var task4 = SendAwaitResponse("fourth message");
await task4;
LogThread("result4: " + task4.Result.message);
// avoid deadlock for task5.Wait() with Task.Yield()
// comment this out and task5.Wait() will dead-lock
if (task4.Result.threadId == Thread.CurrentThread.ManagedThreadId)
await Task.Yield();
var task5 = SendAwaitResponse("fifth message");
task5.Wait();
LogThread("result5: " + task5.Result.message);
LogThread("Leave Worker.ProcessAsync");
}
public static void LogThread(string message)
{
Console.WriteLine("{0}, thread: {1}", message, Thread.CurrentThread.ManagedThreadId);
}
}
static void Main(string[] args)
{
Worker.LogThread("Enter Main");
var cts = new CancellationTokenSource(5000); // cancel after 5s
var worker = new Worker(cts.Token);
Task receiver = Task.Run(() => worker.ReceiverRun());
Task main = worker.ProcessAsync();
try
{
Task.WaitAll(main, receiver);
}
catch (Exception e)
{
Console.WriteLine("Exception: " + e.Message);
}
Worker.LogThread("Leave Main");
Console.ReadLine();
}
}
}
This is not much different from doing Task.Run(() => task.SetResult(msg)) inside ReceiverRun. The only advantage I can think of is that you have an explicit control over when to switch threads. This way, you can stay on the same thread for as long as possible (e.g., for task2, task3, task4, but you still need another thread switch after task4 to avoid a deadlock on task5.Wait()).
Both solutions would eventually make the thread pool grow, which is bad in terms of performance and scalability.
Now, if we replace task.Wait() with await task everywhere inside ProcessAsync in the above code, we will not have to use await Task.Yield and there still will be no deadlocks. However, the whole chain of await calls after the 1st await task1 inside ProcessAsync will actually be executed on the ReceiverRun thread. As long as we don't block this thread with other Wait()-style calls and don't do a lot of CPU-bound work as we're processing messages, this approach might work OK (asynchronous IO-bound await-style calls still should be OK, and they may actually trigger an implicit thread switch).
That said, I think you'd need a separate thread with a serializing synchronization context installed on it for processing messages (similar to WindowsFormsSynchronizationContext). That's where your asynchronous code containing awaits should run. You'd still need to avoid using Task.Wait on that thread. And if an individual message processing takes a lot of CPU-bound work, you should use Task.Run for such work. For async IO-bound calls, you could stay on the same thread.
You may want to look at ActionDispatcher/ActionDispatcherSynchronizationContext from #StephenCleary's
Nito Asynchronous Library for your asynchronous message processing logic. Hopefully, Stephen jumps in and provides a better answer.
"My assumption was that the second SendAwaitResponse would execute in a ThreadPool thread but it continues in the thread created for ReceiverRun."
It depends entirely on what you do within SendAwaitResponse. Asynchrony and concurrency are not the same thing.
Check out: C# 5 Async/Await - is it *concurrent*?
A little late to the party, but here's my solution which i think is added value.
I've been struggling with this also, i've solved it by capturing the SynchronizationContext on the method that is awaited.
It would look something like:
// just a default sync context
private readonly SynchronizationContext _defaultContext = new SynchronizationContext();
void ReceiverRun()
{
while (true) // <-- i would replace this with a cancellation token
{
var msg = ReadNextMessage();
TaskWithContext<TResult> task = requests[msg.RequestID];
// if it wasn't a winforms/wpf thread, it would be null
// we choose our default context (threadpool)
var context = task.Context ?? _defaultContext;
// execute it on the context which was captured where it was added. So it won't get completed on this thread.
context.Post(state =>
{
if (msg.Error == null)
task.TaskCompletionSource.SetResult(msg);
else
task.TaskCompletionSource.SetException(new Exception(msg.Error));
});
}
}
public static Task<Response> SendAwaitResponse(string msg)
{
// The key is here! Save the current synchronization context.
var t = new TaskWithContext<Response>(SynchronizationContext.Current);
requests.Add(GetID(msg), t);
stream.Write(msg);
return t.TaskCompletionSource.Task;
}
// class to hold a task and context
public class TaskWithContext<TResult>
{
public SynchronizationContext Context { get; }
public TaskCompletionSource<TResult> TaskCompletionSource { get; } = new TaskCompletionSource<Response>();
public TaskWithContext(SynchronizationContext context)
{
Context = context;
}
}

Categories

Resources