How to avoid property recursion - c#

This hit me recently on a project I was working on. Most people are familiar with property recursion:
public int Test
{
get { return this.test; }
set { this.Test = value; }
}
private int test;
You accidentally put an upper-case T in this setter, and you've opened yourself up to a StackoverflowException. What's worse is if you've not defined it, often visual studio will auto-correct the casing for you to the invalid state.
I did something similar however in a constructor recently:
public TestClass(int test)
{
this.Test = Test;
}
Unfortunately here you don't get a StackOverflowException, now you've got a programming error. In my case this value was passed to a WebService that instead used a default value (which wasn't 0) which caused me to miss the fact I had incorrectly assigned it. Integration tests all passed because this service didn't say
"Hey you forgot this really important field!"
What steps can I take to avoid this sort of behaviour? I've always been advised against defining variables like the following, and I don't like them personally, but I can't think of any other options:
private int _test;
private int mTest;
EDIT
Reasons that the underscore or m prefix are undesirable normally that I can think of are:
Readability
Slightly more difficult to scroll through members if you're inheriting from 3rd party classes as you get a mix of styles.

Best way is to use "Auto implemented properties" here.
public int Test { get; set; }
If not possible to use "Auto implemented properties" for some reason use _ prefix(I don't prefer though).
If you also don't prefer to use some prefixes, then you have other option. You don't have to write the property code by hand. Let the IDE do it for you; that way you can avoid careless mistakes. (I don't know how I missed this in original answer)
Just type
private int test;
Select the field, Right click Refactor->Encapsulate Field. IDE will generate property snippet for you as below.
public int Test
{
get { return test; }
set { test = value; }
}
You don't need to bother clicking the context menu. If you prefer keyboard, shortcut is Ctrl + R + E.
Or get a Resharper, It will point your silly mistake immediately.

Integration tests all passed
Then they weren't exhaustive enough tests. If there's an error that wasn't discovered by the tests, then you've got another test to write.
That's really the only automated solution here. The compiler isn't going to complain, because the code is structurally and syntactically correct. It's just not logically correct at runtime.
You can define naming standards, even use tools like StyleCop to attempt to enforce those standards. That would probably allow you to cover a lot, though it's not an ironclad solution and errors can still get through. Personally I agree with you that decorating variable names is unsightly in the code. Perhaps in some cases it's a valid tradeoff?
Ultimately, automated tests are your defense against these kinds of errors. At its simplest, if an error gets through your tests and into production then the response should be:
Write a test to reproduce the error.
Fix the error.
Use the test to validate the fix.
Granted, that only covers that one case, not every property definition in your code. But if this is happening a lot then you may have a personnel problem and not a technical problem. Somebody on the team is, well, sloppy. The solution to that problem may not be a technical one.

Use code snippets.
For every property backed by a private field, use a custom code snippet you have created, instead of writing it up from scratch or letting IntelliSense do the job (poorly).
After all, this problem is about conventions and discipline, rather than language design. The case sensitive nature of C# and the subperfect code completion in Visual Studio are the reason we make these mistakes, not our lack of knowledge and design.
You best bet here is to eliminate the chance of accidents and having a predefined way of writing these repetitive things correctly is the best way to go. It also is much more automated compared to remembering conventions and enforcing them by hand.
There is a default code snippet in Visual Studio for this. Type propfull and hit Tab, then specify the instance variable name and the property name and you're good to go.

In some cases you cannot get around setters and getters. But maybe you don't need the setters and getters if you follow the Tell, Don't Ask principle? It basically says to prefer having the object that has the data do the work, not some other object query a lot from the data object, make decisions, and then write data back to the data object. See http://martinfowler.com/bliki/TellDontAsk.html

Could you not just write a test to cover this?
int constructorValue = 4;
TestClass test = new TestClass(constructorValue);
Assert.Equals(test.Test, constructorValue);
You may not want to write tests immediately to cover yourself from future wobbles, but you've found a bug, why not protect yourself from it again?
For the record, if I need a private field to store the value for a pulic getter/setter, I always underscore it. There's just something an underscore that screams privacy!
public string Test
{
get { return _test; }
set { _test = value; }
}
private string _test;

Related

Should I throw on null parameters in private/internal methods?

I'm writing a library that has several public classes and methods, as well as several private or internal classes and methods that the library itself uses.
In the public methods I have a null check and a throw like this:
public int DoSomething(int number)
{
if (number == null)
{
throw new ArgumentNullException(nameof(number));
}
}
But then this got me thinking, to what level should I be adding parameter null checks to methods? Do I also start adding them to private methods? Should I only do it for public methods?
Ultimately, there isn't a uniform consensus on this. So instead of giving a yes or no answer, I'll try to list the considerations for making this decision:
Null checks bloat your code. If your procedures are concise, the null guards at the beginning of them may form a significant part of the overall size of the procedure, without expressing the purpose or behaviour of that procedure.
Null checks expressively state a precondition. If a method is going to fail when one of the values is null, having a null check at the top is a good way to demonstrate this to a casual reader without them having to hunt for where it's dereferenced. To improve this, people often use helper methods with names like Guard.AgainstNull, instead of having to write the check each time.
Checks in private methods are untestable. By introducing a branch in your code which you have no way of fully traversing, you make it impossible to fully test that method. This conflicts with the point of view that tests document the behaviour of a class, and that that class's code exists to provide that behaviour.
The severity of letting a null through depends on the situation. Often, if a null does get into the method, it'll be dereferenced a few lines later and you'll get a NullReferenceException. This really isn't much less clear than throwing an ArgumentNullException. On the other hand, if that reference is passed around quite a bit before being dereferenced, or if throwing an NRE will leave things in a messy state, then throwing early is much more important.
Some libraries, like .NET's Code Contracts, allow a degree of static analysis, which can add an extra benefit to your checks.
If you're working on a project with others, there may be existing team or project standards covering this.
If you're not a library developer, don't be defensive in your code
Write unit tests instead
In fact, even if you're developing a library, throwing is most of the time: BAD
1. Testing null on int must never be done in c# :
It raises a warning CS4072, because it's always false.
2. Throwing an Exception means it's exceptional: abnormal and rare.
It should never raise in production code. Especially because exception stack trace traversal can be a cpu intensive task. And you'll never be sure where the exception will be caught, if it's caught and logged or just simply silently ignored (after killing one of your background thread) because you don't control the user code. There is no "checked exception" in c# (like in java) which means you never know - if it's not well documented - what exceptions a given method could raise. By the way, that kind of documentation must be kept in sync with the code which is not always easy to do (increase maintenance costs).
3. Exceptions increases maintenance costs.
As exceptions are thrown at runtime and under certain conditions, they could be detected really late in the development process. As you may already know, the later an error is detected in the development process, the more expensive the fix will be. I've even seen exception raising code made its way to production code and not raise for a week, only for raising every day hereafter (killing the production. oops!).
4. Throwing on invalid input means you don't control input.
It's the case for public methods of libraries. However if you can check it at compile time with another type (for example a non nullable type like int) then it's the way to go. And of course, as they are public, it's their responsibility to check for input.
Imagine the user who uses what he thinks as valid data and then by a side effect, a method deep in the stack trace trows a ArgumentNullException.
What will be his reaction?
How can he cope with that?
Will it be easy for you to provide an explanation message ?
5. Private and internal methods should never ever throw exceptions related to their input.
You may throw exceptions in your code because an external component (maybe Database, a file or else) is misbehaving and you can't guarantee that your library will continue to run correctly in its current state.
Making a method public doesn't mean that it should (only that it can) be called from outside of your library (Look at Public versus Published from Martin Fowler). Use IOC, interfaces, factories and publish only what's needed by the user, while making the whole library classes available for unit testing. (Or you can use the InternalsVisibleTo mechanism).
6. Throwing exceptions without any explanation message is making fun of the user
No need to remind what feelings one can have when a tool is broken, without having any clue on how to fix it. Yes, I know. You comes to SO and ask a question...
7. Invalid input means it breaks your code
If your code can produce a valid output with the value then it's not invalid and your code should manage it. Add a unit test to test this value.
8. Think in user terms:
Do you like when a library you use throws exceptions for smashing your face ? Like: "Hey, it's invalid, you should have known that!"
Even if from your point of view - with your knowledge of the library internals, the input is invalid, how you can explain it to the user (be kind and polite):
Clear documentation (in Xml doc and an architecture summary may help).
Publish the xml doc with the library.
Clear error explanation in the exception if any.
Give the choice :
Look at Dictionary class, what do you prefer? what call do you think is the fastest ? What call can raises exception ?
Dictionary<string, string> dictionary = new Dictionary<string, string>();
string res;
dictionary.TryGetValue("key", out res);
or
var other = dictionary["key"];
9. Why not using Code Contracts ?
It's an elegant way to avoid the ugly if then throw and isolate the contract from the implementation, permitting to reuse the contract for different implementations at the same time. You can even publish the contract to your library user to further explain him how to use the library.
As a conclusion, even if you can easily use throw, even if you can experience exceptions raising when you use .Net Framework, that doesn't mean it could be used without caution.
Here are my opinions:
General Cases
Generally speaking, it is better to check for any invalid inputs before you process them in a method for robustness reason - be it private, protected, internal, protected internal, or public methods. Although there are some performance costs paid for this approach, in most cases, this is worth doing rather than paying more time to debug and to patch the codes later.
Strictly Speaking, however...
Strictly speaking, however, it is not always needed to do so. Some methods, usually private ones, can be left without any input checking provided that you have full guarantee that there isn't single call for the method with invalid inputs. This may give you some performance benefit, especially if the method is called frequently to do some basic computation/action. For such cases, doing checking for input validity may impair the performance significantly.
Public Methods
Now the public method is trickier. This is because, more strictly speaking, although the access modifier alone can tell who can use the methods, it cannot tell who will use the methods. More over, it also cannot tell how the methods are going to be used (that is, whether the methods are going to be called with invalid inputs in the given scopes or not).
The Ultimate Determining Factor
Although access modifiers for methods in the code can hint on how to use the methods, ultimately, it is humans who will use the methods, and it is up to the humans how they are going to use them and with what inputs. Thus, in some rare cases, it is possible to have a public method which is only called in some private scope and in that private scope, the inputs for the public methods are guaranteed to be valid before the public method is called.
In such cases then, even the access modifier is public, there isn't any real need to check for invalid inputs, except for robust design reason. And why is this so? Because there are humans who know completely when and how the methods shall be called!
Here we can see, there is no guarantee either that public method always require checking for invalid inputs. And if this is true for public methods, it must also be true for protected, internal, protected internal, and private methods as well.
Conclusions
So, in conclusion, we can say a couple of things to help us making decisions:
Generally, it is better to have checks for any invalid inputs for robust design reason, provided that performance is not at stake. This is true for any type of access modifiers.
The invalid inputs check could be skipped if performance gain could be significantly improved by doing so, provided that it can also be guaranteed that the scope where the methods are called are always giving the methods valid inputs.
private method is usually where we skip such checking, but there is no guarantee that we cannot do that for public method as well
Humans are the ones who ultimately use the methods. Regardless of how the access modifiers can hint the use of the methods, how the methods are actually used and called depend on the coders. Thus, we can only say about general/good practice, without restricting it to be the only way of doing it.
The public interface of your library deserves tight checking of preconditions, because you should expect the users of your library to make mistakes and violate the preconditions by accident. Help them understand what is going on in your library.
The private methods in your library do not require such runtime checking because you call them yourself. You are in full control of what you are passing. If you want to add checks because you are afraid to mess up, then use asserts. They will catch your own mistakes, but do not impede performance during runtime.
Though you tagged language-agnostic, it seems to me that it probably doesn't exist a general response.
Notably, in your example you hinted the argument: so with a language accepting hinting it'll fire an error as soon as entering the function, before you can take any action.
In such a case, the only solution is to have checked the argument before calling your function... but since you're writing a library, that cannot have sense!
In the other hand, with no hinting, it remains realistic to check inside the function.
So at this step of the reflexion, I'd already suggest to give up hinting.
Now let's go back to your precise question: to what level should it be checked?
For a given data piece it'd happen only at the highest level where it can "enter" (may be several occurrences for the same data), so logically it'd concern only public methods.
That's for the theory. But maybe you plan a huge, complex, library so it might be not easy to ensure having certainty about registering all "entry points".
In this case, I'd suggest the opposite: consider to merely apply your controls everywhere, then only omit it where you clearly see it's duplicate.
Hope this helps.
In my opinion you should ALWAYS check for "invalid" data - independent whether it is a private or public method.
Looked from the other way... why should you be able to work with something invalid just because the method is private? Doesn't make sense, right? Always try to use defensive programming and you will be happier in life ;-)
This is a question of preference. But consider instead why are you checking for null or rather checking for valid input. It's probably because you want to let the consumer of your library to know when he/she is using it incorrectly.
Let's imagine that we have implemented a class PersonList in a library. This list can only contain objects of the type Person. We have also on our PersonList implemented some operations and therefore we do not want it to contain any null values.
Consider the two following implementations of the Add method for this list:
Implementation 1
public void Add(Person item)
{
if(_size == _items.Length)
{
EnsureCapacity(_size + 1);
}
_items[_size++] = item;
}
Implementation 2
public void Add(Person item)
{
if(item == null)
{
throw new ArgumentNullException("Cannot add null to PersonList");
}
if(_size == _items.Length)
{
EnsureCapacity(_size + 1);
}
_items[_size++] = item;
}
Let's say we go with implementation 1
Null values can now be added in the list
All opoerations implemented on the list will have to handle theese null values
If we should check for and throw a exception in our operation, consumer will be notified about the exception when he/she is calling one of the operations and it will at this state be very unclear what he/she has done wrong (it just wouldn't make any sense to go for this approach).
If we instead choose to go with implementation 2, we make sure input to our library has the quality that we require for our class to operate on it. This means we only need to handle this here and then we can forget about it while we are implementing our other operations.
It will also become more clear for the consumer that he/she is using the library in the wrong way when he/she gets a ArgumentNullException on .Add instead of in .Sort or similair.
To sum it up my preference is to check for valid argument when it is being supplied by the consumer and it's not being handled by the private/internal methods of the library. This basically means we have to check arguments in constructors/methods that are public and takes parameters. Our private/internal methods can only be called from our public ones and they have allready checked the input which means we are good to go!
Using Code Contracts should also be considered when verifying input.

Is there a way to protect Unit test names that follows MethodName_Condition_ExpectedBehaviour pattern against refactoring?

I follow the naming convention of
MethodName_Condition_ExpectedBehaviour
when it comes to naming my unit-tests that test specific methods.
for example:
[TestMethod]
public void GetCity_TakesParidId_ReturnsParis(){...}
But when I need to rename the method under test, tools like ReSharper does not offer me to rename those tests.
Is there a way to prevent such cases to appear after renaming? Like changing ReSharper settings or following a better unit-test naming convention etc. ?
A recent pattern is to groups tests into inner classes by the method they test.
For example (omitting test attributes):
public CityGetterTests
{
public class GetCity
{
public void TakesParidId_ReturnsParis()
{
//...
}
// More GetCity tests
}
}
See Structuring Unit Tests from Phil Haack's blog for details.
The neat thing about this layout is that, when the method name changes,
you'll only have to change the name of the inner class instead of all
the individual tests.
I also started with this convertion, however ended up with feeling that is not very good. Now I use BDD styled names like should_return_Paris_for_ParisID.
That makes my tests more readable and alsow allows me to refactor method names without worrying about my tests :)
I think the key here is what you should be testing.
You've mentioned TDD in the tags, so I hope that we're trying to adhere to that here. By that paradigm, the tests you're writing have two purposes:
To support your code once it is written, so you can refactor without fearing that you've broken something
To guide us to a better way of designing components - writing the test first really forces you to think about what is necessary for solving the problem at hand.
I know at first it looks like this question is about the first point, but really I think it's about the second. The problem you're having is that you've got concrete components you're testing instead of a contract.
In code terms, that means that I think we should be testing interfaces instead of class methods, because otherwise we expose our test to a variety of problems associated with testing components instead of contracts - inheritance strategies, object construction, and here, renaming.
It's true that interfaces names will change as well, but they'll be a lot more rigid than method names. What TDD gives us here isn't just a way to support change through a test harness - it provides the insight to realise we might be going about it the wrong way!
Take for example the code block you gave:
[TestMethod]
public void GetCity_TakesParidId_ReturnsParis(){...}
{
// some test logic here
}
And let's say we're testing the method GetCity() on our object, CityObtainer - when did I set this object up? Why have I done so? If I realise GetMatchingCity() is a better name, then you have the problem outlined above!
The solution I'm proposing is that we think about what this method really means earlier in the process, by use of interfaces:
public interface ICityObtainer
{
public City GetMatchingCity();
}
By writing in this "outside-in" style way, we're forced to think about what we want from the object a lot earlier in the process, and it becoming the focus should reduce its volatility. This doesn't eliminate your problem, but it may mitigate it somewhat (and, I think, it's a better approach anyway).
Ideally, we go a step further, and we don't even write any code before starting the test:
[TestMethod]
public void GetCity_TakesParId_ReturnsParis
{
ICityObtainer cityObtainer = new CityObtainer();
var result = cityObtainer.GetCity("paris");
Assert.That(result.Name, Is.EqualTo("paris");
}
This way, I can see what I really want from the component before I even start writing it - if GetCity() isn't really what I want, but rather GetCityByID(), it would become apparent a lot earlier in the process. As I said above, it isn't foolproof, but it might reduce the pain for this particular case a bit.
Once you've gone through that, I feel that if you're changing the name of the method, it's because you're changing the terms of the contract, and that means you should have to go back and reconsider the test (since it's possible you didn't want to change it).
(As a quick addendum, if we're writing a test with TDD in mind, then something is happening inside GetCity() that has a significant amount of logic going on. Thinking about the test as being to a contract helps us to separate the intention from the implementation - the test will stay valid no matter what we change behind the interface!)
I'm late, but maybe that Can be still useful. That's my solution (Assuming you are using XUnit at least).
First create an attribute FactFor that extends the XUnit Fact.
public class FactForAttribute : FactAttribute
{
public FactForAttribute(string methodName = "Constructor", [CallerMemberName] string testMethodName = "")
=> DisplayName = $"{methodName}_{testMethodName}";
}
The trick now is to use the nameof operator to make refactoring possible. For example:
public class A
{
public int Just2() => 2;
}
public class ATests
{
[FactFor(nameof(A.Just2))]
public void Should_Return2()
{
var a = new A();
a.Just2().Should().Be(2);
}
}
That's the result:

Unit testing a value object

Is it necessary to unit test a value object, and how would you go about it?
Take for instance this object:
public class TeamProfile
{
public string Name { get; set; }
public int Wins { get; set; }
public int Losses { get; set; }
public int Draws { get; set; }
}
The answer is an opinion. I would say NO. But such questions really arise in day to day work and I understand the question so let me give some more opinion:
I would judge based on specific situation. If you think "my unit test routines do test it all" (and rely on it) and you see any likelihood above routines could ever change towards something more sophisticated then the answer is YES. Questions like these I sometimes answer with YES only to find out after a while it was really overkill. Then on other occasions I judge "oh no man this is really overkill" only to find out later that there was an aspect I never thought of.
How to test it? As all test cases: Define input and expected result. Set it. Get it. Check whether get is what you've set.
There is an excellent article on Value Objects and their introduction and testing by Dan Bergh Johnsson
http://www.infoq.com/presentations/Value-Objects-Dan-Bergh-Johnsson
For clarity I must reiterate that the example given is not a value object.
http://martinfowler.com/bliki/ValueObject.html
It is specifically either a command, message or more likely a (DTO) Data Transfer Object
As others have mentioned, the provided class has no behaviour to test.
I don't think it's "necessary" per se, but it does guard you in case you add logic to your setters at some point (for example: throwing exception when negative Wins/Losses/Draws are attempted, since you're not using unsigned ints).
How to test it? Simple: Call the setter, call the getter, verify that the value is what you stored, or the exception you expected is thrown.
I would test the functionality that is more than simple get/set. For example, value objects should override Equals and GetHashCode.
If you think of the unit test as a coded functional spec, that can help you think up the tests that are needed. (If you really have a functional spec, then that is a good source for determining unit tests.)
I do not test the short style properties. The code behind is automatically generated by the compiler so I don't see why I should test them.
Just keep in mind to add the missing test as soon as you change the sort signature.
It can be done, but totally useless IMO.
Value objects contain absolutely no logic, and so testing them is wasted effort (and just about all other tests will break if your value objects are broken, given that you never mock them).

Why doesn't the C# compiler stop properties from referring to themselves?

If I do this I get a System.StackOverflowException:
private string abc = "";
public string Abc
{
get
{
return Abc; // Note the mistaken capitalization
}
}
I understand why -- the property is referencing itself, leading to an infinite loop. (See previous questions here and here).
What I'm wondering (and what I didn't see answered in those previous questions) is why doesn't the C# compiler catch this mistake? It checks for some other kinds of circular reference (classes inheriting from themselves, etc.), right? Is it just that this mistake wasn't common enough to be worth checking for? Or is there some situation I'm not thinking of, when you'd want a property to actually reference itself in this way?
You can see the "official" reason in the last comment here.
Posted by Microsoft on 14/11/2008 at
19:52
Thanks for the suggestion for
Visual Studio!
You are right that we could easily
detect property recursion, but we
can't guarantee that there is nothing
useful being accomplished by the
recursion. The body of the property
could set other fields on your object
which change the behavior of the next
recursion, could change its behavior
based on user input from the console,
or could even behave differently based
on random values. In these cases, a
self-recursive property could indeed
terminate the recursion, but we have
no way to determine if that's the case
at compile-time (without solving the
halting problem!).
For the reasons above (and the
breaking change it would take to
disallow this), we wouldn't be able to
prohibit self-recursive properties.
Alex Turner
Program Manager
Visual C# Compiler
Another point in addition to Alex's explanation is that we try to give warnings for code which does something that you probably didn't intend, such that you could accidentally ship with the bug.
In this particular case, how much time would the warning actually save you? A single test run. You'll find this bug the moment you test the code, because it always immediately crashes and dies horribly. The warning wouldn't actually buy you much of a benefit here. The likelihood that there is some subtle bug in a recursive property evaluation is low.
By contrast, we do give a warning if you do something like this:
int customerId;
...
this.customerId= this.customerId;
There's no horrible crash-and-die, and the code is valid code; it assigns a value to a field. But since this is nonsensical code, you probably didn't mean to do it. Since it's not going to die horribly, we give a warning that there's something here that you probably didn't intend and might not otherwise discover via a crash.
Property referring to itself does not always lead to infinite recursion and stack overflow. For example, this works fine:
int count = 0;
public string Abc
{
count++;
if (count < 1) return Abc;
return "Foo";
}
Above is a dummy example, but I'm sure one could come up with useful recursive code that is similar. Compiler cannot determine if infinite recursion will happen (halting problem).
Generating a warning in the simple case would be helpful.
They probably considered it would unnecessary complicate the compiler without any real gain.
You will discover this typo easily the first time you call this property.
First of all, you'll get a warning for unused variable abc.
Second, there is nothing bad in teh recursion, provided that it's not endless recursion. For example, the code might adjust some inner variables and than call the same getter recursively. There is however for the compiler no easy way at all to prove that some recursion is endless or not (the task is at least NP). The compiler could catch some easy cases, but then the consumers would be surprised that the more complicated cases get through the compiler's checks.
The other cases cases that it checks for (except recursive constructor) are invalid IL.
In addition, all of those cases, even recursive constructors) are guarenteed to fail.
However, it is possible, albeit unlikely, to intentionally create a useful recursive property (using if statements).

What complex refactoring features do you wish there were?

Tools like CodeRush and Resharper offer lots of simple refactorings, such as 'Rename Variable'. But if you could have any refactoring feature at all (no matter how complex), what would it be?
(I know, everyone wants a 'make program perfect' refactoring, but let's be realistic here.)
I wouldn't particularly like a specific feature. I'd prefer improvements on the existing built in functions. I.e. I'd like to declare how my code is refactored, i.e. naming conventions and variable positioning. As an example, I'd like my get/set properties to be as follows:
public string Foo
{
get
{
return foo;
}
set
{
_foo = value;
}
}
private string _foo;
But visual studios does it in some crazy way I cant stand and that doesn't meet our coding standards.
It'd be good if every existing refactoring method didn't feel as though it'd been written by a different person with their own ideas.
Move this method to library XYZ
Add the reference and using needed to make (this class reference/method call) work

Categories

Resources