Generating a random number that isn't biased against positive proper fractions - c#

I apologize for the simplicity of this question, it's just past 3AM and I can't think :)
I need to get a random number n between 0.25 and 10.0, however I need P( 0.25 <= n < 1.0 ) == P( 1.0 < n <= 10.0 ) && n != 1.0.
Right now my current code is biased towards 1.0 <= n <= 10.0 like so:
Double n = new Random().NextDouble(); // 0 <= n <= 1.0
n = 0.25 + (10.0 * n);
Of course this also has a bug where n == 10.25 if n = 1.0 initially.
Ta!

If I understand correctly, you want this:
var random = new Random();
Double n1 = random.NextDouble(); // 0 <= n < 1.0
Double n = random.NextDouble(); // 0 <= n < 1.0
if (n1 < 0.5)
n = 0.25 + 0.75 * n; // 0.25 <= n < 1.0
else
n = 10.0 - 9.0 * n; // 1 < n <= 10

This function should work:
double GetRandomValue(Random rand)
{
return rand.Next(0, 2) == 0
? 0.25 + 0.75 * rand.NextDouble()
: 10.0 - 9.0 * rand.NextDouble();
}
First random value selects whether you should use values below or above 1. For values above 1, you wanted to include 10.0 in the range, hence the subtraction.

I think this is it.
Double n = new Random().NextDouble();
n = n < 0.5? (0.25 + (0.75 * n * 2)) : 1.0 + double.Epsilon + (9.0 * n * 2);
The double.Epsilon ensures you don't get n=1.0 since NextDouble() produces 0 <= n < 1.0.

Double n = new Random().NextDouble(); // 0 <= n <= 1.0
Double extremlySmallValue = 0.00000001;
n *= 9.75; // 0 <= n <= 9.75
n += 0.25; // 0.25 <= n <= 10.0
//few ifs now:
if(n == 10.0)
n -= extremlySmallValue;
else if (n==1.0)
n += extremlySmallValue;
Its not perfect linear distribution, but i think its acceptable, because Random does not provide perfect linear distribution too.. You can also make another NextDouble() when you get 1.0 or 10.0

You don't say what distribution you want within each range, however, assuming you want uniformity, just linearly map the bottom half of NextDouble's range to your lower range, and the top half to the top range.
However, there's a little thought required with getting the half-openness of your target intervals right. NextDouble returns a double in [0, 1) (that is, lower-inclusive and upper-exclusive). We can split this in half to [0, 0.5) and [0.5, 1) but then since your required upper range is (1, 10], we should flip the upper range during the transform.
var n = myRandom.NextDouble();
if (n < 0.5)
{
// Map from [0, 0.5) to [0.25, 1.0)
return 0.25 + (n * 1.5);
}
else
{
// Map from [0.5, 1.0) to (1.0, 10] by reversing the input range
var flipped = 1.0 - n;
// Now flipped is in [0.5, 0), which is to say (0, 0.5]
// So scale up by 18 times to get a value in (0, 9], and shift
return 1 + (flipped * 18);
}

Related

How to enumerate x^2 + y^2 = z^2 - 1 (with additional constraints)

Lets N be a number (10<=N<=10^5).
I have to break it into 3 numbers (x,y,z) such that it validates the following conditions.
1. x<=y<=z
2. x^2+y^2=z^2-1;
3. x+y+z<=N
I have to find how many combinations I can get from the given numbers in a method.
I have tried as follows but it's taking so much time for a higher number and resulting in a timeout..
int N= Int32.Parse(Console.ReadLine());
List<String> res = new List<string>();
//x<=y<=z
int mxSqrt = N - 2;
int a = 0, b = 0;
for (int z = 1; z <= mxSqrt; z++)
{
a = z * z;
for (int y = 1; y <= z; y++)
{
b = y * y;
for (int x = 1; x <= y; x++)
{
int x1 = b + x * x;
int y1 = a - 1;
if (x1 == y1 && ((x + y + z) <= N))
{
res.Add(x + "," + y + "," + z);
}
}
}
}
Console.WriteLine(res.Count());
My question:
My solution is taking time for a bigger number (I think it's the
for loops), how can I improve it?
Is there any better approach for the same?
Here's a method that enumerates the triples, rather than exhaustively testing for them, using number theory as described here: https://mathoverflow.net/questions/29644/enumerating-ways-to-decompose-an-integer-into-the-sum-of-two-squares
Since the math took me a while to comprehend and a while to implement (gathering some code that's credited above it), and since I don't feel much of an authority on the subject, I'll leave it for the reader to research. This is based on expressing numbers as Gaussian integer conjugates. (a + bi)*(a - bi) = a^2 + b^2. We first factor the number, z^2 - 1, into primes, decompose the primes into Gaussian conjugates and find different expressions that we expand and simplify to get a + bi, which can be then raised, a^2 + b^2.
A perk of reading about the Sum of Squares Function is discovering that we can rule out any candidate z^2 - 1 that contains a prime of form 4k + 3 with an odd power. Using that check alone, I was able to reduce Prune's loop on 10^5 from 214 seconds to 19 seconds (on repl.it) using the Rosetta prime factoring code below.
The implementation here is just a demonstration. It does not have handling or optimisation for limiting x and y. Rather, it just enumerates as it goes. Play with it here.
Python code:
# https://math.stackexchange.com/questions/5877/efficiently-finding-two-squares-which-sum-to-a-prime
def mods(a, n):
if n <= 0:
return "negative modulus"
a = a % n
if (2 * a > n):
a -= n
return a
def powmods(a, r, n):
out = 1
while r > 0:
if (r % 2) == 1:
r -= 1
out = mods(out * a, n)
r /= 2
a = mods(a * a, n)
return out
def quos(a, n):
if n <= 0:
return "negative modulus"
return (a - mods(a, n))/n
def grem(w, z):
# remainder in Gaussian integers when dividing w by z
(w0, w1) = w
(z0, z1) = z
n = z0 * z0 + z1 * z1
if n == 0:
return "division by zero"
u0 = quos(w0 * z0 + w1 * z1, n)
u1 = quos(w1 * z0 - w0 * z1, n)
return(w0 - z0 * u0 + z1 * u1,
w1 - z0 * u1 - z1 * u0)
def ggcd(w, z):
while z != (0,0):
w, z = z, grem(w, z)
return w
def root4(p):
# 4th root of 1 modulo p
if p <= 1:
return "too small"
if (p % 4) != 1:
return "not congruent to 1"
k = p/4
j = 2
while True:
a = powmods(j, k, p)
b = mods(a * a, p)
if b == -1:
return a
if b != 1:
return "not prime"
j += 1
def sq2(p):
if p % 4 != 1:
return "not congruent to 1 modulo 4"
a = root4(p)
return ggcd((p,0),(a,1))
# https://rosettacode.org/wiki/Prime_decomposition#Python:_Using_floating_point
from math import floor, sqrt
def fac(n):
step = lambda x: 1 + (x<<2) - ((x>>1)<<1)
maxq = long(floor(sqrt(n)))
d = 1
q = n % 2 == 0 and 2 or 3
while q <= maxq and n % q != 0:
q = step(d)
d += 1
return q <= maxq and [q] + fac(n//q) or [n]
# My code...
# An answer for https://stackoverflow.com/questions/54110614/
from collections import Counter
from itertools import product
from sympy import I, expand, Add
def valid(ps):
for (p, e) in ps.items():
if (p % 4 == 3) and (e & 1):
return False
return True
def get_sq2(p, e):
if p == 2:
if e & 1:
return [2**(e / 2), 2**(e / 2)]
else:
return [2**(e / 2), 0]
elif p % 4 == 3:
return [p, 0]
else:
a,b = sq2(p)
return [abs(a), abs(b)]
def get_terms(cs, e):
if e == 1:
return [Add(cs[0], cs[1] * I)]
res = [Add(cs[0], cs[1] * I)**e]
for t in xrange(1, e / 2 + 1):
res.append(
Add(cs[0] + cs[1]*I)**(e-t) * Add(cs[0] - cs[1]*I)**t)
return res
def get_lists(ps):
items = ps.items()
lists = []
for (p, e) in items:
if p == 2:
a,b = get_sq2(2, e)
lists.append([Add(a, b*I)])
elif p % 4 == 3:
a,b = get_sq2(p, e)
lists.append([Add(a, b*I)**(e / 2)])
else:
lists.append(get_terms(get_sq2(p, e), e))
return lists
def f(n):
for z in xrange(2, n / 2):
zz = (z + 1) * (z - 1)
ps = Counter(fac(zz))
is_valid = valid(ps)
if is_valid:
print "valid (does not contain a prime of form\n4k + 3 with an odd power)"
print "z: %s, primes: %s" % (z, dict(ps))
lists = get_lists(ps)
cartesian = product(*lists)
for element in cartesian:
print "prime square decomposition: %s" % list(element)
p = 1
for item in element:
p *= item
print "complex conjugates: %s" % p
vals = p.expand(complex=True, evaluate=True).as_coefficients_dict().values()
x, y = vals[0], vals[1] if len(vals) > 1 else 0
print "x, y, z: %s, %s, %s" % (x, y, z)
print "x^2 + y^2, z^2-1: %s, %s" % (x**2 + y**2, z**2 - 1)
print ''
if __name__ == "__main__":
print f(100)
Output:
valid (does not contain a prime of form
4k + 3 with an odd power)
z: 3, primes: {2: 3}
prime square decomposition: [2 + 2*I]
complex conjugates: 2 + 2*I
x, y, z: 2, 2, 3
x^2 + y^2, z^2-1: 8, 8
valid (does not contain a prime of form
4k + 3 with an odd power)
z: 9, primes: {2: 4, 5: 1}
prime square decomposition: [4, 2 + I]
complex conjugates: 8 + 4*I
x, y, z: 8, 4, 9
x^2 + y^2, z^2-1: 80, 80
valid (does not contain a prime of form
4k + 3 with an odd power)
z: 17, primes: {2: 5, 3: 2}
prime square decomposition: [4 + 4*I, 3]
complex conjugates: 12 + 12*I
x, y, z: 12, 12, 17
x^2 + y^2, z^2-1: 288, 288
valid (does not contain a prime of form
4k + 3 with an odd power)
z: 19, primes: {2: 3, 3: 2, 5: 1}
prime square decomposition: [2 + 2*I, 3, 2 + I]
complex conjugates: (2 + I)*(6 + 6*I)
x, y, z: 6, 18, 19
x^2 + y^2, z^2-1: 360, 360
valid (does not contain a prime of form
4k + 3 with an odd power)
z: 33, primes: {17: 1, 2: 6}
prime square decomposition: [4 + I, 8]
complex conjugates: 32 + 8*I
x, y, z: 32, 8, 33
x^2 + y^2, z^2-1: 1088, 1088
valid (does not contain a prime of form
4k + 3 with an odd power)
z: 35, primes: {17: 1, 2: 3, 3: 2}
prime square decomposition: [4 + I, 2 + 2*I, 3]
complex conjugates: 3*(2 + 2*I)*(4 + I)
x, y, z: 18, 30, 35
x^2 + y^2, z^2-1: 1224, 1224
Here is a simple improvement in Python (converting to the faster equivalent in C-based code is left as an exercise for the reader). To get accurate timing for the computation, I removed printing the solutions themselves (after validating them in a previous run).
Use an outer loop for one free variable (I chose z), constrained only by its relation to N.
Use an inner loop (I chose y) constrained by the outer loop index.
The third variable is directly computed per requirement 2.
Timing results:
-------------------- 10
1 solutions found in 2.3365020751953125e-05 sec.
-------------------- 100
6 solutions found in 0.00040078163146972656 sec.
-------------------- 1000
55 solutions found in 0.030081748962402344 sec.
-------------------- 10000
543 solutions found in 2.2078349590301514 sec.
-------------------- 100000
5512 solutions found in 214.93411707878113 sec.
That's 3:35 for the large case, plus your time to collate and/or print the results.
If you need faster code (this is still pretty brute-force), look into Diophantine equations and parameterizations to generate (y, x) pairs, given the target value of z^2 - 1.
import math
import time
def break3(N):
"""
10 <= N <= 10^5
return x, y, z triples such that:
x <= y <= z
x^2 + y^2 = z^2 - 1
x + y + z <= N
"""
"""
Observations:
z <= x + y
z < N/2
"""
count = 0
z_limit = N // 2
for z in range(3, z_limit):
# Since y >= x, there's a lower bound on y
target = z*z - 1
ymin = int(math.sqrt(target/2))
for y in range(ymin, z):
# Given y and z, compute x.
# That's a solution iff x is integer.
x_target = target - y*y
x = int(math.sqrt(x_target))
if x*x == x_target and x+y+z <= N:
# print("solution", x, y, z)
count += 1
return count
test = [10, 100, 1000, 10**4, 10**5]
border = "-"*20
for case in test:
print(border, case)
start = time.time()
print(break3(case), "solutions found in", time.time() - start, "sec.")
The bounds of x and y are an important part of the problem. I personally went with this Wolfram Alpha query and checked the exact forms of the variables.
Thanks to #Bleep-Bloop and comments, a very elegant bound optimization was found, which is x < n and x <= y < n - x. The results are the same and the times are nearly identical.
Also, since the only possible values for x and y are positive even integers, we can reduce the amount of loop iterations by half.
To optimize even further, since we compute the upper bound of x, we build a list of all possible values for x and make the computation parallel. That saves a massive amount of time on higher values of N but it's a bit slower for smaller values because of the overhead of the parallelization.
Here's the final code:
Non-parallel version, with int values:
List<string> res = new List<string>();
int n2 = n * n;
double maxX = 0.5 * (2.0 * n - Math.Sqrt(2) * Math.Sqrt(n2 + 1));
for (int x = 2; x < maxX; x += 2)
{
int maxY = (int)Math.Floor((n2 - 2.0 * n * x - 1.0) / (2.0 * n - 2.0 * x));
for (int y = x; y <= maxY; y += 2)
{
int z2 = x * x + y * y + 1;
int z = (int)Math.Sqrt(z2);
if (z * z == z2 && x + y + z <= n)
res.Add(x + "," + y + "," + z);
}
}
Parallel version, with long values:
using System.Linq;
...
// Use ConcurrentBag for thread safety
ConcurrentBag<string> res = new ConcurrentBag<string>();
long n2 = n * n;
double maxX = 0.5 * (2.0 * n - Math.Sqrt(2) * Math.Sqrt(n2 + 1L));
// Build list to parallelize
int nbX = Convert.ToInt32(maxX);
List<int> xList = new List<int>();
for (int x = 2; x < maxX; x += 2)
xList.Add(x);
Parallel.ForEach(xList, x =>
{
int maxY = (int)Math.Floor((n2 - 2.0 * n * x - 1.0) / (2.0 * n - 2.0 * x));
for (long y = x; y <= maxY; y += 2)
{
long z2 = x * x + y * y + 1L;
long z = (long)Math.Sqrt(z2);
if (z * z == z2 && x + y + z <= n)
res.Add(x + "," + y + "," + z);
}
});
When ran individually on a i5-8400 CPU, I get these results:
N: 10; Solutions: 1;
Time elapsed: 0.03 ms (Not parallel, int)
N: 100; Solutions: 6;
Time elapsed: 0.05 ms (Not parallel, int)
N: 1000; Solutions: 55;
Time elapsed: 0.3 ms (Not parallel, int)
N: 10000; Solutions: 543;
Time elapsed: 13.1 ms (Not parallel, int)
N: 100000; Solutions: 5512;
Time elapsed: 849.4 ms (Parallel, long)
You must use long when N is greater than 36340, because when it's squared, it overflows an int's max value. Finally, the parallel version starts to get better than the simple one when N is around 23000, with ints.
No time to properly test it, but seemed to yield the same results as your code (at 100 -> 6 results and at 1000 -> 55 results).
With N=1000 a time of 2ms vs your 144ms also without List
and N=10000 a time of 28ms
var N = 1000;
var c = 0;
for (int x = 2; x < N; x+=2)
{
for (int y = x; y < (N - x); y+=2)
{
long z2 = x * x + y * y + 1;
int z = (int) Math.Sqrt(z2);
if (x + y + z > N)
break;
if (z * z == z2)
c++;
}
}
Console.WriteLine(c);
#include<iostream>
#include<math.h>
int main()
{
int N = 10000;
int c = 0;
for (int x = 2; x < N; x+=2)
{
for (int y = x; y < (N - x); y+=2)
{
auto z = sqrt(x * x + y * y + 1);
if(x+y+z>N){
break;
}
if (z - (int) z == 0)
{
c++;
}
}
}
std::cout<<c;
}
This is my solution. On testing the previous solutions for this problem I found that x,y are always even and z is odd. I dont know the mathematical nature behind this, I am currently trying to figure that out.
I want to get it done in C# and it should be covering all the test
cases based on condition provided in the question.
The basic code, converted to long to process the N <= 100000 upper limit, with every optimizaion thrown in I could. I used alternate forms from #Mat's (+1) Wolfram Alpha query to precompute as much as possible. I also did a minimal perfect square test to avoid millions of sqrt() calls at the upper limit:
public static void Main()
{
int c = 0;
long N = long.Parse(Console.ReadLine());
long N_squared = N * N;
double half_N_squared = N_squared / 2.0 - 0.5;
double x_limit = N - Math.Sqrt(2) / 2.0 * Math.Sqrt(N_squared + 1);
for (long x = 2; x < x_limit; x += 2)
{
long x_squared = x * x + 1;
double y_limit = (half_N_squared - N * x) / (N - x);
for (long y = x; y < y_limit; y += 2)
{
long z_squared = x_squared + y * y;
int digit = (int) z_squared % 10;
if (digit == 3 || digit == 7)
{
continue; // minimalist non-perfect square elimination
}
long z = (long) Math.Sqrt(z_squared);
if (z * z == z_squared)
{
c++;
}
}
}
Console.WriteLine(c);
}
I followed the trend and left out "the degenerate solution" as implied by the OP's code but not explicitly stated.

BBP algorithm get nth digit of PI?

I am trying to turn the BBP Formula (Bailey-Borwein-Plouffe) in to C# code, it is digit extraction of pi in base 16 (spigot algorithm), the idea is give the input of what index/decimal place you want of pi then get that single digit. Let's say I want the digit that are at the decimal place/index 40000 (in base 16) without having to calculate pi with 40000 decimals because I don't care about the other digits.
Anyhow here is the math formula, (doesn't look like it should be to much code? )
Can't say I understand 100% what the formal mean, if I did I probably be able to make it in to code, but from my understanding looking at it.
Is this correct?
pseudo code
Pi = SUM = (for int n = 0; n < infinity;n++) { SUM += ((4/((8*n)+1))
- (2/((8*n)+4)) - (1/((8*n)+5)) - (1/((8*n)+6))*((1/16)^n)) }
Capital sigma basically is like a "for loop" to sum sequences together?
example
and in C# code:
static int CapSigma(int _start, int _end)
{
int sum = 0;
for(int n = _start; n <= _end; n++)
{
sum += n;
}
return (sum);
}
Code so far (not working):
static int BBPpi(int _precision)
{
int pi = 0;
for(int n = 0; n < _precision; n++)
{
pi += ((16 ^ -n) * (4 / (8 * n + 1) - 2 / (8 * n + 4) - 1 / (8 * n + 5) - 1 / (8 * n + 6)));
}
return (pi);
}
I'm not sure how to make it in to actual code also if my pseudo code math is correct?
How to sum 0 to infinity? Can't do it in a for loop and also where in the formula is the part ("input") that specify what nth (index) digit you want to get out? is it the start n (n = 0)? so too get digit 40000 would be n =40000?
You need to cast to double :
class Program
{
static void Main(string[] args)
{
double sum = 0;
for (int i = 1; i < 100; i++)
{
sum += BBPpi(i);
Console.WriteLine(sum.ToString());
}
Console.ReadLine();
}
static double BBPpi(int n)
{
double pi = ((16 ^ -n) * (4.0 / (8.0 * (double)n + 1.0) - 2 / (8.0 * (double)n + 4.0) - 1 / (8.0 * (double)n + 5.0) - 1.0 / (8.0 * (double)n + 6.0)));
return (pi);
}
}

Linear regression gradient descent using C#

I'm taking the Coursera machine learning course right now and I cant get my gradient descent linear regression function to minimize. I use: one dependent variable, an intercept, and four values of x and y, therefore the equations are fairly simple. The final value of the Gradient Decent equation varies wildly depending on the initial values of alpha and beta and I cant figure out why.
I've only been coding for about two weeks, so my knowledge is limited to say the least, please keep this in mind if you take the time to help.
using System;
namespace LinearRegression
{
class Program
{
static void Main(string[] args)
{
Random rnd = new Random();
const int N = 4;
//We randomize the inital values of alpha and beta
double theta1 = rnd.Next(0, 100);
double theta2 = rnd.Next(0, 100);
//Values of x, i.e the independent variable
double[] x = new double[N] { 1, 2, 3, 4 };
//VAlues of y, i.e the dependent variable
double[] y = new double[N] { 5, 7, 9, 12 };
double sumOfSquares1;
double sumOfSquares2;
double temp1;
double temp2;
double sum;
double learningRate = 0.001;
int count = 0;
do
{
//We reset the Generalized cost function, called sum of squares
//since I originally used SS to
//determine if the function was minimized
sumOfSquares1 = 0;
sumOfSquares2 = 0;
//Adding 1 to counter for each iteration to keep track of how
//many iterations are completed thus far
count += 1;
//First we calculate the Generalized cost function, which is
//to be minimized
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += Math.Pow((theta1 + theta2 * x[i] - y[i]), 2);
}
//Since we have 4 values of x and y we have 1/(2*N) = 1 /8 = 0.125
sumOfSquares1 = 0.125 * sum;
//Then we calcualte the new alpha value, using the derivative of
//the cost function.
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += theta1 + theta2 * x[i] - y[i];
}
//Since we have 4 values of x and y we have 1/(N) = 1 /4 = 0.25
temp1 = theta1 - learningRate * 0.25 * sum;
//Same for the beta value, it has a different derivative
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += (theta1 + theta2 * x[i]) * x[i] - y[i];
}
temp2 = theta2 - learningRate * 0.25 * sum;
//WE change the values of alpha an beta at the same time, otherwise the
//function wont work
theta1 = temp1;
theta2 = temp2;
//We then calculate the cost function again, with new alpha and beta values
sum = 0;
for (int i = 0; i < (N - 1); i++)
{
sum += Math.Pow((theta1 + theta2 * x[i] - y[i]), 2);
}
sumOfSquares2 = 0.125 * sum;
Console.WriteLine("Alpha: {0:N}", theta1);
Console.WriteLine("Beta: {0:N}", theta2);
Console.WriteLine("GCF Before: {0:N}", sumOfSquares1);
Console.WriteLine("GCF After: {0:N}", sumOfSquares2);
Console.WriteLine("Iterations: {0}", count);
Console.WriteLine(" ");
} while (sumOfSquares2 <= sumOfSquares1 && count < 5000);
//we end the iteration cycle once the generalized cost function
//cannot be reduced any further or after 5000 iterations
Console.ReadLine();
}
}
}
There are two bugs in the code.
First, I assume that you would like to iterate through all the element in the array. So rework the for loop like this: for (int i = 0; i < N; i++)
Second, when updating the theta2 value the summation is not calculated well. According to the update function it should be look like this: sum += (theta1 + theta2 * x[i] - y[i]) * x[i];
Why the final values depend on the initial values?
Because the gradient descent update step is calculated from these values. If the initial values (Starting Point) are too big or too small, then it will be too far away from the final values (Final Value). You could solve this problem by:
Increasing the iteration steps (e.g. 5000 to 50000): gradient descent algorithm has more time to converge.
Decreasing the learning rate (e.g. 0.001 to 0.01): gradient descent update steps are bigger, therefore it converges faster. Note: if the learning rate is too small, then it is possible to step through the global minimum.
The slope (theta2) is around 2.5 and the intercept (theta1) is around 2.3 for the given data. I have created a github project to fix your code and i have also added a shorter solution using LINQ. It is 5 line of codes. If you are curious check it out here.

IronPython "Random" module error

I am bussy porting IronPython to Windows Phone 8 sothat I can run Skeinforge and I am almost finished. I can already run scripts and import most modules. My problem is that I am now trying to get the "Random" module implemented. My largest problem was that the library used 'SHA512' to compute random numbers. This is a problem because Microsoft did not implement this hash as well as some others used by IronPython in the mobile .Net framework because they are "unsecure". I have worked around this by removing the unsupported hashes from hashlib.py (this seems to have worked). I then tried changing the reference to 'SHA512' in random.py to 'SHA256'. My problem is that I now get this very random error:
expected Random, got Random
If any of you know how to, please help me. I will document this after I am done sothat everyone can enjoy IPY on WP8.
Here is the random.py module:
from __future__ import division
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from binascii import hexlify as _hexlify
import hashlib as _hashlib
__all__ = ["Random","seed","random","uniform","randint","choice","sample",
"randrange","shuffle","normalvariate","lognormvariate",
"expovariate","vonmisesvariate","gammavariate","triangular",
"gauss","betavariate","paretovariate","weibullvariate",
"getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
"SystemRandom"]
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF
import _random
class Random(_random.Random):
VERSION = 3 # used by getstate/setstate
def __init__(self, x=None):
self.seed(x)
self.gauss_next = None
def seed(self, a=None):
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time
a = long(time.time() * 256) # use fractional seconds
super(Random, self).seed(a)
self.gauss_next = None
def getstate(self):
return self.VERSION, super(Random, self).getstate(), self.gauss_next
def setstate(self, state):
version = state[0]
if version == 3:
version, internalstate, self.gauss_next = state
super(Random, self).setstate(internalstate)
elif version == 2:
version, internalstate, self.gauss_next = state
try:
internalstate = tuple( long(x) % (2**32) for x in internalstate )
except ValueError, e:
raise TypeError, e
super(Random, self).setstate(internalstate)
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
def jumpahead(self, n):
s = repr(n) + repr(self.getstate())
n = int(_hashlib.new('sha256', s).hexdigest(), 16)
super(Random, self).jumpahead(n)
def __getstate__(self): # for pickle
return self.getstate()
def __setstate__(self, state): # for pickle
self.setstate(state)
def __reduce__(self):
return self.__class__, (), self.getstate()
def randrange(self, start, stop=None, step=1, int=int, default=None,
maxwidth=1L<<BPF):
istart = int(start)
if istart != start:
raise ValueError, "non-integer arg 1 for randrange()"
if stop is default:
if istart > 0:
if istart >= maxwidth:
return self._randbelow(istart)
return int(self.random() * istart)
raise ValueError, "empty range for randrange()"
istop = int(stop)
if istop != stop:
raise ValueError, "non-integer stop for randrange()"
width = istop - istart
if step == 1 and width > 0:
if width >= maxwidth:
return int(istart + self._randbelow(width))
return int(istart + int(self.random()*width))
if step == 1:
raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
istep = int(step)
if istep != step:
raise ValueError, "non-integer step for randrange()"
if istep > 0:
n = (width + istep - 1) // istep
elif istep < 0:
n = (width + istep + 1) // istep
else:
raise ValueError, "zero step for randrange()"
if n <= 0:
raise ValueError, "empty range for randrange()"
if n >= maxwidth:
return istart + istep*self._randbelow(n)
return istart + istep*int(self.random() * n)
def randint(self, a, b):
return self.randrange(a, b+1)
def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
_Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
try:
getrandbits = self.getrandbits
except AttributeError:
pass
else:
if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
r = getrandbits(k)
while r >= n:
r = getrandbits(k)
return r
if n >= _maxwidth:
_warn("Underlying random() generator does not supply \n"
"enough bits to choose from a population range this large")
return int(self.random() * n)
def choice(self, seq):
return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
def shuffle(self, x, random=None, int=int):
if random is None:
random = self.random
for i in reversed(xrange(1, len(x))):
j = int(random() * (i+1))
x[i], x[j] = x[j], x[i]
def sample(self, population, k):
n = len(population)
if not 0 <= k <= n:
raise ValueError("sample larger than population")
random = self.random
_int = int
result = [None] * k
setsize = 21 # size of a small set minus size of an empty list
if k > 5:
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
if n <= setsize or hasattr(population, "keys"):
pool = list(population)
for i in xrange(k): # invariant: non-selected at [0,n-i)
j = _int(random() * (n-i))
result[i] = pool[j]
pool[j] = pool[n-i-1] # move non-selected item into vacancy
else:
try:
selected = set()
selected_add = selected.add
for i in xrange(k):
j = _int(random() * n)
while j in selected:
j = _int(random() * n)
selected_add(j)
result[i] = population[j]
except (TypeError, KeyError): # handle (at least) sets
if isinstance(population, list):
raise
return self.sample(tuple(population), k)
return result
def uniform(self, a, b):
"Get a random number in the range [a, b) or [a, b] depending on rounding."
return a + (b-a) * self.random()
def triangular(self, low=0.0, high=1.0, mode=None):
u = self.random()
c = 0.5 if mode is None else (mode - low) / (high - low)
if u > c:
u = 1.0 - u
c = 1.0 - c
low, high = high, low
return low + (high - low) * (u * c) ** 0.5
def normalvariate(self, mu, sigma):
random = self.random
while 1:
u1 = random()
u2 = 1.0 - random()
z = NV_MAGICCONST*(u1-0.5)/u2
zz = z*z/4.0
if zz <= -_log(u2):
break
return mu + z*sigma
def lognormvariate(self, mu, sigma):
return _exp(self.normalvariate(mu, sigma))
def expovariate(self, lambd):
random = self.random
u = random()
while u <= 1e-7:
u = random()
return -_log(u)/lambd
def vonmisesvariate(self, mu, kappa):
random = self.random
if kappa <= 1e-6:
return TWOPI * random()
a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
r = (1.0 + b * b)/(2.0 * b)
while 1:
u1 = random()
z = _cos(_pi * u1)
f = (1.0 + r * z)/(r + z)
c = kappa * (r - f)
u2 = random()
if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
break
u3 = random()
if u3 > 0.5:
theta = (mu % TWOPI) + _acos(f)
else:
theta = (mu % TWOPI) - _acos(f)
return theta
def gammavariate(self, alpha, beta):
if alpha <= 0.0 or beta <= 0.0:
raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
random = self.random
if alpha > 1.0:
ainv = _sqrt(2.0 * alpha - 1.0)
bbb = alpha - LOG4
ccc = alpha + ainv
while 1:
u1 = random()
if not 1e-7 < u1 < .9999999:
continue
u2 = 1.0 - random()
v = _log(u1/(1.0-u1))/ainv
x = alpha*_exp(v)
z = u1*u1*u2
r = bbb+ccc*v-x
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
return x * beta
elif alpha == 1.0:
u = random()
while u <= 1e-7:
u = random()
return -_log(u) * beta
else: # alpha is between 0 and 1 (exclusive)
while 1:
u = random()
b = (_e + alpha)/_e
p = b*u
if p <= 1.0:
x = p ** (1.0/alpha)
else:
x = -_log((b-p)/alpha)
u1 = random()
if p > 1.0:
if u1 <= x ** (alpha - 1.0):
break
elif u1 <= _exp(-x):
break
return x * beta
def gauss(self, mu, sigma):
random = self.random
z = self.gauss_next
self.gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
z = _cos(x2pi) * g2rad
self.gauss_next = _sin(x2pi) * g2rad
return mu + z*sigma
def betavariate(self, alpha, beta):
y = self.gammavariate(alpha, 1.)
if y == 0:
return 0.0
else:
return y / (y + self.gammavariate(beta, 1.))
def paretovariate(self, alpha):
u = 1.0 - self.random()
return 1.0 / pow(u, 1.0/alpha)
def weibullvariate(self, alpha, beta):
u = 1.0 - self.random()
return alpha * pow(-_log(u), 1.0/beta)
class WichmannHill(Random):
VERSION = 1 # used by getstate/setstate
def seed(self, a=None):
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time
a = long(time.time() * 256) # use fractional seconds
if not isinstance(a, (int, long)):
a = hash(a)
a, x = divmod(a, 30268)
a, y = divmod(a, 30306)
a, z = divmod(a, 30322)
self._seed = int(x)+1, int(y)+1, int(z)+1
self.gauss_next = None
def random(self):
x, y, z = self._seed
x = (171 * x) % 30269
y = (172 * y) % 30307
z = (170 * z) % 30323
self._seed = x, y, z
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
def getstate(self):
return self.VERSION, self._seed, self.gauss_next
def setstate(self, state):
version = state[0]
if version == 1:
version, self._seed, self.gauss_next = state
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
def jumpahead(self, n):
if not n >= 0:
raise ValueError("n must be >= 0")
x, y, z = self._seed
x = int(x * pow(171, n, 30269)) % 30269
y = int(y * pow(172, n, 30307)) % 30307
z = int(z * pow(170, n, 30323)) % 30323
self._seed = x, y, z
def __whseed(self, x=0, y=0, z=0):
if not type(x) == type(y) == type(z) == int:
raise TypeError('seeds must be integers')
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
raise ValueError('seeds must be in range(0, 256)')
if 0 == x == y == z:
import time
t = long(time.time() * 256)
t = int((t&0xffffff) ^ (t>>24))
t, x = divmod(t, 256)
t, y = divmod(t, 256)
t, z = divmod(t, 256)
self._seed = (x or 1, y or 1, z or 1)
self.gauss_next = None
def whseed(self, a=None):
if a is None:
self.__whseed()
return
a = hash(a)
a, x = divmod(a, 256)
a, y = divmod(a, 256)
a, z = divmod(a, 256)
x = (x + a) % 256 or 1
y = (y + a) % 256 or 1
z = (z + a) % 256 or 1
self.__whseed(x, y, z)
class SystemRandom(Random):
def random(self):
return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
def getrandbits(self, k):
if k <= 0:
raise ValueError('number of bits must be greater than zero')
if k != int(k):
raise TypeError('number of bits should be an integer')
bytes = (k + 7) // 8 # bits / 8 and rounded up
x = long(_hexlify(_urandom(bytes)), 16)
return x >> (bytes * 8 - k) # trim excess bits
def _stub(self, *args, **kwds):
"Stub method. Not used for a system random number generator."
return None
seed = jumpahead = _stub
def _notimplemented(self, *args, **kwds):
"Method should not be called for a system random number generator."
raise NotImplementedError('System entropy source does not have state.')
getstate = setstate = _notimplemented
def _test_generator(n, func, args):
import time
print n, 'times', func.__name__
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print round(t1-t0, 3), 'sec,',
avg = total/n
stddev = _sqrt(sqsum/n - avg*avg)
print 'avg %g, stddev %g, min %g, max %g' % \
(avg, stddev, smallest, largest)
def _test(N=2000):
_test_generator(N, random, ())
_test_generator(N, normalvariate, (0.0, 1.0))
_test_generator(N, lognormvariate, (0.0, 1.0))
_test_generator(N, vonmisesvariate, (0.0, 1.0))
_test_generator(N, gammavariate, (0.01, 1.0))
_test_generator(N, gammavariate, (0.1, 1.0))
_test_generator(N, gammavariate, (0.1, 2.0))
_test_generator(N, gammavariate, (0.5, 1.0))
_test_generator(N, gammavariate, (0.9, 1.0))
_test_generator(N, gammavariate, (1.0, 1.0))
_test_generator(N, gammavariate, (2.0, 1.0))
_test_generator(N, gammavariate, (20.0, 1.0))
_test_generator(N, gammavariate, (200.0, 1.0))
_test_generator(N, gauss, (0.0, 1.0))
_test_generator(N, betavariate, (3.0, 3.0))
_test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test()
After some labor intensive debugging I have determined that the following line most likely causes the error:
_inst = new Random()

Rounding integers to nearest multiple of 10 [duplicate]

This question already has answers here:
Returning the nearest multiple value of a number
(6 answers)
Closed 3 years ago.
I am trying to figure out how to round prices - both ways. For example:
Round down
43 becomes 40
143 becomes 140
1433 becomes 1430
Round up
43 becomes 50
143 becomes 150
1433 becomes 1440
I have the situation where I have a price range of say:
£143 - £193
of which I want to show as:
£140 - £200
as it looks a lot cleaner
Any ideas on how I can achieve this?
I would just create a couple methods;
int RoundUp(int toRound)
{
if (toRound % 10 == 0) return toRound;
return (10 - toRound % 10) + toRound;
}
int RoundDown(int toRound)
{
return toRound - toRound % 10;
}
Modulus gives us the remainder, in the case of rounding up 10 - r takes you to the nearest tenth, to round down you just subtract r. Pretty straight forward.
You don't need to use modulus (%) or floating point...
This works:
public static int RoundUp(int value)
{
return 10*((value + 9)/10);
}
public static int RoundDown(int value)
{
return 10*(value/10);
}
This code rounds to the nearest multiple of 10:
int RoundNum(int num)
{
int rem = num % 10;
return rem >= 5 ? (num - rem + 10) : (num - rem);
}
Very simple usage :
Console.WriteLine(RoundNum(143)); // prints 140
Console.WriteLine(RoundNum(193)); // prints 190
A general method to round a number to a multiple of another number, rounding away from zero.
For integer
int RoundNum(int num, int step)
{
if (num >= 0)
return ((num + (step / 2)) / step) * step;
else
return ((num - (step / 2)) / step) * step;
}
For float
float RoundNum(float num, float step)
{
if (num >= 0)
return floor((num + step / 2) / step) * step;
else
return ceil((num - step / 2) / step) * step;
}
I know some parts might seem counter-intuitive or not very optimized. I tried casting (num + step / 2) to an int, but this gave wrong results for negative floats ((int) -12.0000 = -11 and such). Anyways these are a few cases I tested:
any number rounded to step 1 should be itself
-3 rounded to step 2 = -4
-2 rounded to step 2 = -2
3 rounded to step 2 = 4
2 rounded to step 2 = 2
-2.3 rounded to step 0.2 = -2.4
-2.4 rounded to step 0.2 = -2.4
2.3 rounded to step 0.2 = 2.4
2.4 rounded to step 0.2 = 2.4
Divide the number by 10.
number = number / 10;
Math.Ceiling(number);//round up
Math.Round(number);//round down
Then multiply by 10.
number = number * 10;
public static int Round(int n)
{
// Smaller multiple
int a = (n / 10) * 10;
// Larger multiple
int b = a + 10;
// Return of closest of two
return (n - a > b - n) ? b : a;
}

Categories

Resources