I have list of files(widgets) that I need to do some work on. I want to do it in async manner so my interface stays responsive. I want to update UI with progress. Here is my prototype code. How do I accomplish this? I assume I need to utilize threading, but I also don't want to span all the threads at the same time, one by one is fine.
void Process()
{
var documents = GetDocuments();
foreach(document in documents)
{
ProcessDocument(
document,
status => this.TextBox.Text += status);
}
}
void ProcessDocument(Document document, Action<string> onCompleted)
{
}
You can use the BackgroundWorker class to process operation asynchronous in Windows Forms projects.
BackgroundWorker worker = new BackgroundWorker();
worker.WorkerReportsProgress = true;
worker.DoWork += (sender, args) => {
var documents = GetDocuments();
foreach(var document in documents)
{
ProcessDocument(document);
worker.ReportProgress(0, status);
}
};
worker.ProgressChanged += (sender, args) => {
this.TextBox.Text += args.UserState.ToString();
};
worker.RunWorkerAsync();
You can use the System.Threading.Thread Class
Remember that you will need to used delegates to safe update the controls on your UI
you cant modify controls when running in other than the main UI thread.
If you want to do it easy without delegates because you think you can control it
you can set the property
Control.CheckForIllegalCrossThreadCalls=false
So you will be allowed to update controls without the Illegal Cross Thread check
If you prefer to use the BackgroundWorker class, this allow you to bind and Event called
ProgressChanged that allows you to update UI too
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
//thread work
}
// This event handler updates the UI
private void backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
// Update the UI here
}
Also consider Reactive Extensions, particularly IObservable<T>.
Framework 4.5 introduced the async/await keywords that simplify asynchronous .NET programming.
Have a look at TPL if you are using Framework 4.
If on the other you are using earlier versions of .NET (3.5 and older) then you should have a look at APM.
Related
I have a thread which calls one of the methods, now this method executes a query which can take a very long time possibly 40 minutes or so to complete,
I want to give user a a choice to be able to cancel this operation (meaning stop the thread and stop the query to release database).
I should mention that I am developing WPF Application using .net 4.5, SQL SERVER DB and C#.
You should use backgroundworker, it is exactly what you want.
Eather drag and drop it from the toolbox or create it in code - behind. It supports Cancellation, reports progress, notifies when complete and know if it is running or not.
Here is an example.
void method(){
BackgroundWorker worker = new BackgroundWorker();
worker.RunWorkerCompleted += worker_RunWorkerCompleted;
worker.ProgressChanged += worker_ProgressChanged;
worker.DoWork += worker_DoWork;
worker.WorkerSupportsCancellation = true;
if(!worker.IsBusy)
{
worker.RunWorkerAsync();
}
}
void worker_DoWork(object sender, DoWorkEventArgs e)
{
//do whatever needs to be done on the other thread here.
object argument = e.Argument; //if passed argument in RunWorkerAsync().
object result = new object();
e.Result = result;
//after making worker global, you can report progress like so:
worker.ReportProgress(50); //you can also pass a userState, which can be any object, to show some data already.
}
void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
//you can update a progress bar in here
int progress = e.ProgressPercentage;
}
void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
//when done
}
void CancelTheTask()
{
if (worker.IsBusy)
{
//make worker global first, but then
worker.CancelAsync();
}
}
A important things to look at: Never use resources in the DoWork method that are not created inside it. Thus pass things you need in the background worker as Arguments. And things that are created by the backgroundworker should not be set to a global variable ether, pass by result.
When cancelling, RunWorkCompleted will also be fired. Now the query to the database is already being executed, so that is still running, even when your application lost all resources to it.
To cancel that, we would need to know how you execute the query, like #S.Akbari mentioned is one way. Entity Framework 6 also supports cancellation.
For that: check this when using Queryable
here is another example
Or this solution without Entity Framework.
Using Task Parallel Library (TPL) you can use the Task Cancellation pattern.
When you have your Thread blocked on waiting for the query, it's useless for stopping anything.
Make sure the SqlConnection of the query is accessible from your UI and Close it. Abandon the Thread, it will terminate (with an error you've got to suppress).
If the UI thread is doing a Long-time operation it won't be able to process
UI requests. This is also known as Not Responding.
Use ThreadPool like this:
CancellationTokenSource ct;//instantiate it before ThreadPool.QueueUserWorkItem line
private void operation_Click(object sender, RoutedEventArgs e)
{
ct = new CancellationTokenSource();
ThreadPool.QueueUserWorkItem(_ =>
{
var result = LongTimeOperation();//set the operation in another thread so that the UI thread is kept responding
//use the Dispatcher to "return" to the UI thread
Dispatcher.BeginInvoke(new Action(() =>
{
//Use result for example : Label1.Text = result.ToString();
}));
});
}
To give user a choice to be able to cancel the operation use CancellationTokenSource like this:
private void cancel_Click(object sender, RoutedEventArgs e)
{
if (ct != null)
{
ct.Cancel();
ct= null;
}
}
Note: in LongTimeOperation() you must have one more parameter of type CancellationToken
private float LongTimeOperation(CancellationToken ct)
{
if (ct.IsCancellationRequested)
return -1;
....
....
}
This link is useful about Cancellation in Managed Threads.
this is a common problem.But in WPF and WinForm, i'd like to use BackGroundWorker. See Here
I've written a piece of code that creates a lot of controls and layouts them on a canvas to visualize a tree. Now this code can take a lot of time, especially since it sometimes has to query an external service to see if there are more child node.
So I would like to show a progress bar while this code is executing. For other parts of my program I use a background worker that reports progress. However since I have to create controls that are later interact-able I don't see how to use a background worker or other threading solution here.
Since this is WPF, I also can't call Application.DoEvents(). So my question is, how can I create a lot of controls while still being able to periodically update the visual part of the GUI?
For my other code I use an Adorner that I layout over the busy piece of my app, I would prefer a solution where I can keep using that, I would also still prefer a solution using BackgroundWorker, but I'm pretty sure that is not possible.
I've looked at other SO topics, but I can't find a good answer so far
Creating controls in a non-UI thread
Creating a WinForm on the main thread using a backgroundworker
Edit:
According to this MSDN article http://msdn.microsoft.com/en-us/magazine/cc163328.aspx the BackgroundWorker should automatically invoke asynchronously on the UI thread if required, but this is not the behaviour I'm seeing, since I still see a cross thread exception.
Edit2: nvm, that's not totally true: BackgroundWorker still needs to call Invoke?
Edit3: After some more reading and some tips, this is the solution I've come to. Anybody got any tips/hints?
// Events for reporting progress
public event WorkStarted OnWorkStarted;
public event WorkStatusChanged OnWorkStatusChanged;
public event WorkCompleted OnWorkCompleted;
private BackgroundWorker worker;
private delegate void GuiThreadWork(object state);
private PopulatableControlFactory factory = new PopulatableControlFactory();
public Canvas canvas;
public void PerformLayout(TreeNode node)
{
OnWorkStarted(this, "Testing");
worker = new BackgroundWorker();
worker.WorkerReportsProgress = true;
worker.DoWork += new DoWorkEventHandler(worker_DoWork);
worker.ProgressChanged += new ProgressChangedEventHandler(worker_ProgressChanged);
worker.RunWorkerCompleted += new RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);
worker.RunWorkerAsync(node);
}
private void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
OnWorkCompleted(this);
}
private void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
var workTuple = (Tuple<GuiThreadWork, TreeNode>)e.UserState;
workTuple.First.Invoke(workTuple.Second); //Or begin invoke?
if (OnWorkStatusChanged != null)
OnWorkStatusChanged(this, e.ProgressPercentage);
}
private void worker_DoWork(object sender, DoWorkEventArgs e)
{
TreeNode node = (TreeNode)e.Argument;
Thread.Sleep(1000);
worker.ReportProgress(33, Tuple.New(Place(node), node));
Thread.Sleep(1000);
worker.ReportProgress(66, Tuple.New(Place(node.children[0]), node.children[0]));
Thread.Sleep(1000);
worker.ReportProgress(100, Tuple.New(Place(node.children[1]), node.children[1]));
}
private GuiThreadWork Place(TreeNode node)
{
GuiThreadWork threadWork = delegate(object state)
{
PopulatableControl control = factory.GetControl((TreeNode)state);
Canvas.SetLeft(control, 100);
Canvas.SetTop(control, 100);
canvas.Children.Add(control);
};
return threadWork;
}
In short: I use the progressChanged event of the background worker because this is always marshalled to the GUI thread. I pass it a tuple of a delegate and some state. This way I always create the control on the GUI thread and do all actions there, while still being flexible.
Generally I don't use BackgroundWorker often but I can suggest the following:
Logic for DoWork - its executed on non UI thread
get count of nodes so you can report real progress
begin building tree ( and call Invoke on UI Dispatcher so UI thread
is adding nodes) and report progress to ReportProgress as (already
added nodes)/(total count nodes) while enumerating through all nodes
in ProgressChanged simply update some ProgressBar with new value
To play a bit with threading, delegates and backgroundworkers, I'm putting together a few small applications, I'm having a bit of trouble with one of them.
I've a Windows form, with a textbox, a button and a richttext.
When I press the button, the text in the textbox is used as a paramter to instantiate a class, like this:
public partial class Form1 : Form
{
private BackgroundWorker backgroundWorker;
public Form1()
{
InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{
backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += new DoWorkEventHandler(worker_DoWork);
backgroundWorker.RunWorkerAsync();
}
void worker_DoWork(object sender, DoWorkEventArgs e)
{
new Thread((ThreadStart)delegate()
{
this.BeginInvoke((ThreadStart)delegate()
{
foreach (string line in textBox1.Lines)
{
Dig digger = new Dig(line, textBox1.Text);
digger.DomainChecked += new Dig.DomainCheckedHandler(OnUpdateTicker);
string response = digger.GetAllInfo();
richTextBox1.AppendText(response);
Application.DoEvents();
}
});
}).Start();
}
void OnUpdateTicker(string msg)
{
new Thread((ThreadStart)delegate()
{
this.BeginInvoke((ThreadStart)delegate()
{
label4.Text = msg;
Application.DoEvents();
});
}).Start();
}
}
When debugging I run into a 'textBox1.Lines' threw an exception of type 'Microsoft.VisualStudio.Debugger.Runtime.CrossThreadMessagingException'
Any tips on how to solve this problem?
First, there is no need to create new threads inside DoWork; the whole idea with the BackgroundWorker is that DoWork is executed on a separate thread. Second, since DoWork is executed on a separate thread and UI controls can be modified only on the UI thread, you need to invoke those updates correctly. So, a rewritten version of worker_DoWork could look like this:
void worker_DoWork(object sender, DoWorkEventArgs e)
{
foreach (string line in textBox1.Lines)
{
Dig digger = new Dig(line, textBox1.Text);
digger.DomainChecked += new Dig.DomainCheckedHandler(OnUpdateTicker);
string response = digger.GetAllInfo();
richTextBox1.Invoke((Action) delegate { richTextBox1.AppendText(response); });
}
}
Note how the code does not explicitly spawn any new threads, and also how the AppendText method call is done through a Control.Invoke call, forcing it to execute on the UI thread.
The main reason is that the textbox is not owned by the background thread.
Your UI thread owns all the UI objects, and you're spinning up a background thread when a button is pressed. That background thread should not have access to any UI objects.
If you want the value of the textbox to be used, you'll need to pass it to your background thread another way.
Have a look here for an explanation (and solution).
You can only update controls on the main thread from the main thread itself, unless you explicitly tell your program that it's ok to do, by using the .Invoke method of the control.
From: http://www.albahari.com/threading/part3.aspx
Control.Invoke
In a multi-threaded Windows Forms application, it's illegal to call a method or property on a control from any thread other than the one that created it. All cross-thread calls must be explicitly marshalled to the thread that created the control (usually the main thread), using the Control.Invoke or Control.BeginInvoke method. One cannot rely on automatic marshalling because it takes place too late – only when execution gets well into unmanaged code, by which time plenty of internal .NET code may already have run on the "wrong" thread – code which is not thread-safe.
good evening!
currently i'm developing a wpf-client for some rest-service. the communcation with the rest-service is no problem and is done in an extra assembly (communcation-interface).
basically:
i have a somehow "search"-button which executes a method. this method communicates with the service, updates some textboxes and a progress-bar (to give the user some graphic info, how far we are ...).
unfortunaly the server, which hosts the service is a bit lame, causing some severe response-time (about 4 secs). this, on the other hand, causes my wpf-application to wait, which ends up in: going black, and titeling "not responding" ...
i've already tried to put this execution in another thread, but ... it's logical that i won't get any access to the controls of my wpf-window ...
atm i'm really helpless ... can anyone give me some handeling-routine or a solution?
Your UI thread is busy waiting on a response from the web service, and isn't available to paint the screen. One good option, is push the service request off to another, non-UI thread. Look into BackgroundWorker, which was designed specifically to make this easy. It handles marshalling of cross-thread calls from non-UI to UI threads.
Roughly:
BackgroundWorker bw = new BackgroundWorker();
bw.DoWork += new DoWorkEventHandler(bw_DoWork);
bw.ProgressChanged += new ProgressChangedEventHandler(bw_ProgressChanged);
bw.RunWorkerCompleted += new RunWorkerCompletedEventHandler(bw_RunWorkerCompleted);
bw.RunWorkerAsync(arg);
...
static void bw_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker worker = (BackgroundWorker)sender;
int arg = (int)e.Argument;
e.Result = CallWebService(arg, e);
}
static void bw_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
progressBar.Increment();
}
static void bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
label.Text = "Done: " + e.Result.ToString();
}
To access your controls from a second thread use Dispatcher.BeginInvoke:
Dispatcher.BeginInvoke(new Action(() =>
{
// Update your controls here.
}), null);
Or you can look into using BackgroundWorker.
I have a bit of code that I need to run in a different thread than the GUI as it currently causes the form to freeze whilst the code runs (10 seconds or so).
Assume I have never created a new thread before; what's a simple/basic example of how to do this in C# and using .NET Framework 2.0 or later?
Good place to start reading is Joe Albahari.
If you want to create your own thread, this is as simple as it gets:
using System.Threading;
new Thread(() =>
{
Thread.CurrentThread.IsBackground = true;
/* run your code here */
Console.WriteLine("Hello, world");
}).Start();
BackgroundWorker seems to be best choice for you.
Here is my minimal example. After you click on the button the background worker will begin working in background thread and also report its progress simultaneously. It will also report after the work completes.
using System.ComponentModel;
...
private void button1_Click(object sender, EventArgs e)
{
BackgroundWorker bw = new BackgroundWorker();
// this allows our worker to report progress during work
bw.WorkerReportsProgress = true;
// what to do in the background thread
bw.DoWork += new DoWorkEventHandler(
delegate(object o, DoWorkEventArgs args)
{
BackgroundWorker b = o as BackgroundWorker;
// do some simple processing for 10 seconds
for (int i = 1; i <= 10; i++)
{
// report the progress in percent
b.ReportProgress(i * 10);
Thread.Sleep(1000);
}
});
// what to do when progress changed (update the progress bar for example)
bw.ProgressChanged += new ProgressChangedEventHandler(
delegate(object o, ProgressChangedEventArgs args)
{
label1.Text = string.Format("{0}% Completed", args.ProgressPercentage);
});
// what to do when worker completes its task (notify the user)
bw.RunWorkerCompleted += new RunWorkerCompletedEventHandler(
delegate(object o, RunWorkerCompletedEventArgs args)
{
label1.Text = "Finished!";
});
bw.RunWorkerAsync();
}
Note:
I put everything in single method
using C#'s anonymous method for
simplicity but you can always pull
them out to different methods.
It is safe to update GUI within
ProgressChanged or
RunWorkerCompleted handlers.
However, updating GUI from DoWork
will cause
InvalidOperationException.
The ThreadPool.QueueUserWorkItem is pretty ideal for something simple. The only caveat is accessing a control from the other thread.
System.Threading.ThreadPool.QueueUserWorkItem(delegate {
DoSomethingThatDoesntInvolveAControl();
}, null);
Here is another option:
Task.Run(()=>{
//Here is a new thread
});
Quick and dirty, but it will work:
Using at top:
using System.Threading;
simple code:
static void Main( string[] args )
{
Thread t = new Thread( NewThread );
t.Start();
}
static void NewThread()
{
//code goes here
}
I just threw this into a new console application for an exmaple
Try using the BackgroundWorker class. You give it delegates for what to run, and to be notified when work has finished. There is an example on the MSDN page that I linked to.
If you want to get a value:
var someValue;
Thread thread = new Thread(delegate()
{
//Do somthing and set your value
someValue = "Hello World";
});
thread.Start();
while (thread.IsAlive)
Application.DoEvents();
Put that code in a function (the code that can't be executed on the same thread as the GUI), and to trigger that code's execution put the following.
Thread myThread= new Thread(nameOfFunction);
workerThread.Start();
Calling the start function on the thread object will cause the execution of your function call in a new thread.
Here how can use threads with a progressBar , its just for understing how the threads works, in the form there are three progressBar and 4 button:
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
Thread t, t2, t3;
private void Form1_Load(object sender, EventArgs e)
{
CheckForIllegalCrossThreadCalls = false;
t = new Thread(birinicBar); //evry thread workes with a new progressBar
t2 = new Thread(ikinciBar);
t3 = new Thread(ucuncuBar);
}
public void birinicBar() //to make progressBar work
{
for (int i = 0; i < 100; i++) {
progressBar1.Value++;
Thread.Sleep(100); // this progressBar gonna work faster
}
}
public void ikinciBar()
{
for (int i = 0; i < 100; i++)
{
progressBar2.Value++;
Thread.Sleep(200);
}
}
public void ucuncuBar()
{
for (int i = 0; i < 100; i++)
{
progressBar3.Value++;
Thread.Sleep(300);
}
}
private void button1_Click(object sender, EventArgs e) //that button to start the threads
{
t.Start();
t2.Start(); t3.Start();
}
private void button4_Click(object sender, EventArgs e)//that button to stup the threads with the progressBar
{
t.Suspend();
t2.Suspend();
t3.Suspend();
}
private void button2_Click(object sender, EventArgs e)// that is for contuniue after stuping
{
t.Resume();
t2.Resume();
t3.Resume();
}
private void button3_Click(object sender, EventArgs e) // finally with that button you can remove all of the threads
{
t.Abort();
t2.Abort();
t3.Abort();
}
}
If you are going to use the raw Thread object then you need to set IsBackground to true at a minimum and you should also set the Threading Apartment model (probably STA).
public static void DoWork()
{
// do some work
}
public static void StartWorker()
{
Thread worker = new Thread(DoWork);
worker.IsBackground = true;
worker.SetApartmentState(System.Threading.ApartmentState.STA);
worker.Start()
}
I would recommend the BackgroundWorker class if you need UI interaction.
// following declaration of delegate ,,,
public delegate long GetEnergyUsageDelegate(DateTime lastRunTime,
DateTime procDateTime);
// following inside of some client method
GetEnergyUsageDelegate nrgDel = GetEnergyUsage;
IAsyncResult aR = nrgDel.BeginInvoke(lastRunTime, procDT, null, null);
while (!aR.IsCompleted) Thread.Sleep(500);
int usageCnt = nrgDel.EndInvoke(aR);
Charles your code(above) is not correct. You do not need to spin wait for completion. EndInvoke will block until the WaitHandle is signaled.
If you want to block until completion you simply need to
nrgDel.EndInvoke(nrgDel.BeginInvoke(lastRuntime,procDT,null,null));
or alternatively
ar.AsyncWaitHandle.WaitOne();
But what is the point of issuing anyc calls if you block? You might as well just use a synchronous call. A better bet would be to not block and pass in a lambda for cleanup:
nrgDel.BeginInvoke(lastRuntime,procDT,(ar)=> {ar.EndInvoke(ar);},null);
One thing to keep in mind is that you must call EndInvoke. A lot of people forget this and end up leaking the WaitHandle as most async implementations release the waithandle in EndInvoke.
another option, that uses delegates and the Thread Pool...
assuming 'GetEnergyUsage' is a method that takes a DateTime and another DateTime as input arguments, and returns an Int...
// following declaration of delegate ,,,
public delegate long GetEnergyUsageDelegate(DateTime lastRunTime,
DateTime procDateTime);
// following inside of some client method
GetEnergyUsageDelegate nrgDel = GetEnergyUsage;
IAsyncResult aR = nrgDel.BeginInvoke(lastRunTime, procDT, null, null);
while (!aR.IsCompleted) Thread.Sleep(500);
int usageCnt = nrgDel.EndInvoke(aR);
There are many ways of running separate threads in .Net, each has different behaviors. Do you need to continue running the thread after the GUI quits? Do you need to pass information between the thread and GUI? Does the thread need to update the GUI? Should the thread do one task then quit, or should it continue running? The answers to these questions will tell you which method to use.
There is a good async method article at the Code Project web site that describes the various methods and provides sample code.
Note this article was written before the async/await pattern and Task Parallel Library were introduced into .NET.
How to: Use a Background Thread to Search for Files
You have to be very carefull with access from other threads to GUI specific stuff (it is common for many GUI toolkits). If you want to update something in GUI from processing thread check this answer that I think is useful for WinForms. For WPF see this (it shows how to touch component in UpdateProgress() method so it will work from other threads, but actually I don't like it is not doing CheckAccess() before doing BeginInvoke through Dispathcer, see and search for CheckAccess in it)
Was looking .NET specific book on threading and found this one (free downloadable). See http://www.albahari.com/threading/ for more details about it.
I believe you will find what you need to launch execution as new thread in first 20 pages and it has many more (not sure about GUI specific snippets I mean strictly specific to threading). Would be glad to hear what community thinks about this work 'cause I'm reading this one. For now looked pretty neat for me (for showing .NET specific methods and types for threading). Also it covers .NET 2.0 (and not ancient 1.1) what I really appreciate.
I'd recommend looking at Jeff Richter's Power Threading Library and specifically the IAsyncEnumerator. Take a look at the video on Charlie Calvert's blog where Richter goes over it for a good overview.
Don't be put off by the name because it makes asynchronous programming tasks easier to code.