I have a object, let's call it "Friend".
This object has method "GetFriendsOfFriend", that returns a List<Friend>.
Given a user input of say 5, all of the Friends friends and the friends friends friends (you get the point) down in a level of 5 (this can be up to 20).
This may be a lot of calculations, so I don't know if recursion is the best solution.
Does anyone have a smart idea of
1. How to do this recursive function best?
2. How to do it without recursion.
Thanks!
Whilst is is certainly possible to do this without recursion, I don't see a particular problem with what you're trying to do. To prevent things going crazy, it might make sense to set a maximum to prevent your program from dying.
public class Friend
{
public static readonly int MaxDepth = 8; // prevent more than 8 recursions
private List<Friend> myFriends_ = new List<Friend>();
// private implementation
private void InternalFriends(int depth, int currDepth, List<Friend> list)
{
// Add "us"
if(currDepth > 1 && !list.Contains(this))
list.Add(this);
if(currDepth <= depth)
{
foreach(Friend f in myFriends_)
{
if(!list.Contains(f))
f.InternalFriends(depth, depth + 1, list); // we can all private functions here.
}
}
} // eo InternalFriends
public List<Friend> GetFriendsOfFriend(int depth)
{
List<Friend> ret = new List<Friend>();
InternalFriends(depth < MaxDepth ? depth : MaxDepth, 1, ret);
return ret;
} // eo getFriendsOfFriend
} // eo class Friend
EDIT: Fixed an error in the code in that an actual friend would not get added, just "their" friends. This is only necessary when adding friends after a depth of "1" (the first call). I also made use of Contains to check for duplicates.
Here is a non recursive version of this code:
public static void ProcessFriendsOf(string person) {
var toVisit = new Queue<string>();
var seen = new HashSet<string>();
toVisit.Enqueue(person);
seen.Add(person);
while(toVisit.Count > 0) {
var current = toVisit.Dequeue();
//process this friend in some way
foreach(var friend in GetFriendsOfFriend(current)) {
if (!seen.Contains(friend)) {
toVisit.Enqueue(friend);
seen.Add(friend);
}
}
}
}
It avoids infinite loop by keeping a HashSet of all members already seen and not adding a member to be processed more than once.
It visits friends using a Queue, in a way that is known as Breadth-first search. If we use a Stack instead of a Queue, it becomes a Depth-first search, and would behave pretty much the same as a recursive approach (which uses an implicit stack - the call stack).
Related
Is there a built in way to limit the depth of a System.Collection.Generics.Stack? So that if you are at max capacity, pushing a new element would remove the bottom of the stack?
I know I can do it by converting to an array and rebuilding the stack, but I figured there's probably a method on it already.
EDIT: I wrote an extension method:
public static void Trim<T> (this Stack<T> stack, int trimCount)
{
if (stack.Count <= trimCount)
return;
stack = new
Stack<T>
(
stack
.ToArray()
.Take(trimCount)
);
}
So, it returns a new stack upon trimming, but isn't immutability the functional way =)
The reason for this is that I'm storing undo steps for an app in a stack, and I only want to store a finite amount of steps.
What you are looking for is called a dropout stack. AFAIK, the BCL does not contain one, although they are trivial to implement. Typically Undo and Redo functionality relies on such data structures.
They are basically an array, and when you push onto the stack the 'top' of the stack moves around the array. Eventually the top will wrap back to the beginning when the stack is full and replace the 'bottom' of the stack.
Google didn't provide much info on it. This is the best i could find:
(Warning PDF)
http://courses.cs.vt.edu/~cs2704/spring04/projects/DropOutStack.pdf
Here's some boiler plate code, to get you started. I'll let you fill in the rest (sanity checking, count, indexer, etc.)
class DropOutStack<T>
{
private T[] items;
private int top = 0;
public DropOutStack(int capacity)
{
items = new T[capacity];
}
public void Push(T item)
{
items[top] = item;
top = (top + 1) % items.Length;
}
public T Pop()
{
top = (items.Length + top - 1) % items.Length;
return items[top];
}
}
You're actually looking at something similar to circular list implementation. There's a LimitedQueue implementation done by PIEBALDconsult at CodeProject. It's similar to your requirement. You just need to wrap Stack instead of Queue as done by the author. Plus the author also implemented indexer, which is handy if you need to access anything else other than the top stack (to show undo list maybe).
EDIT: The author's implementation also raise an event when the last(first, depends on whether it's a queue or stack) is being removed, so that you can know when something is being thrown away.
I can't see a way. You can inherit from Stack<T>, but there doesn't appear to be anything useful to override.
The easy (if a bit tedious) way would be to wrap the Stack<T> in your own, say, LimitedStack<T>. Then implement the methods you want and pass through to an internal Stack<T>, while including your limiting logic in the Push method and wherever else you need it.
It's a pain to write all those pass-through members, especially if you're implementing all the same interfaces as Stack<T>...but on the other hand, you only have to do it once and then it's done.
I believe you're looking for a (possibly-modified) dequeue - the data structure that allows access from either end.
the solution provided By Greg Dean => dropout stack is very good, but I think the main question, is about removing the bottom of the stack when the stack overflowed
But the provided solution just replace the last item of the stack once the stack was filled, so you do not get a real history,
But to get a real history, you need to shift the list once the list reaches your specific capacity, but this is an expansive operation,
So I think the best solution for this is a linked list
This is my solution to the problem
public class HistoryStack<T>
{
private LinkedList<T> items = new LinkedList<T>();
public List<T> Items => items.ToList();
public int Capacity { get;}
public HistoryStack(int capacity)
{
Capacity = capacity;
}
public void Push(T item)
{
// full
if (items.Count == Capacity)
{
// we should remove first, because some times, if we exceeded the size of the internal array
// the system will allocate new array.
items.RemoveFirst();
items.AddLast(item);
}
else
{
items.AddLast(new LinkedListNode<T>(item));
}
}
public T Pop()
{
if (items.Count == 0)
{
return default;
}
var ls = items.Last;
items.RemoveLast();
return ls == null ? default : ls.Value;
}
}
Test it
var hs = new HistoryStack<int>(5);
hs.Push(1);
hs.Push(2);
hs.Push(3);
hs.Push(4);
hs.Push(5);
hs.Push(6);
hs.Push(7);
hs.Push(8);
var ls = hs.Items;
Console.WriteLine(String.Join(",", ls));
Console.WriteLine(hs.Pop());
Console.WriteLine(hs.Pop());
hs.Push(9);
Console.WriteLine(hs.Pop());
Console.WriteLine(hs.Pop());
Console.WriteLine(hs.Pop());
Console.WriteLine(hs.Pop());
Console.WriteLine(hs.Pop()); // empty
Console.WriteLine(hs.Pop()); // empty
The Result
4,5,6,7,8
8
7
9
6
5
4
0
0
I am writing a dice-based game in C#. I want all of my game-logic to be pure, so I have devised a dice-roll generator like this:
public static IEnumerable<int> CreateDiceStream(int seed)
{
var random = new Random(seed);
while (true)
{
yield return 1 + random.Next(5);
}
}
Now I can use this in my game logic:
var playerRolls = players.Zip(diceRolls, (player, roll) => Tuple.Create(player, roll));
The problem is that the next time I take from diceRolls I want to skip the rolls that I have already taken:
var secondPlayerRolls = players.Zip(
diceRolls.Skip(playerRolls.Count()),
(player, roll) => Tuple.Create(player, roll));
This is already quite ugly and error prone. It doesn't scale well as the code becomes more complex.
It also means that I have to be careful when using a dice roll sequence between functions:
var x = DoSomeGameLogic(diceRolls);
var nextRoll = diceRolls.Skip(x.NumberOfDiceRollsUsed).First();
Is there a good design pattern that I should be using here?
Note that it is important that my functions remain pure due to syncronisation and play-back requirements.
This question is not about correctly initializing System.Random. Please read what I have written, and leave a comment if it is unclear.
That's a very nice puzzle.
Since manipulating diceRolls's state is out of the question (otherwise, we'd have those sync and replaying issues you mentioned), we need an operation which returns both (a) the values to be consumed and (b) a new diceRolls enumerable which starts after the consumed items.
My suggestion would be to use the return value for (a) and an out parameter for (b):
static IEnumerable<int> Consume(this IEnumerable<int> rolls, int count, out IEnumerable<int> remainder)
{
remainder = rolls.Skip(count);
return rolls.Take(count);
}
Usage:
var firstRolls = diceRolls.Consume(players.Count(), out diceRolls);
var secondRolls = diceRolls.Consume(players.Count(), out diceRolls);
DoSomeGameLogic would use Consume internally and return the remaining rolls. Thus, it would need to be called as follows:
var x = DoSomeGameLogic(diceRolls, out diceRolls);
// or
var x = DoSomeGameLogic(ref diceRolls);
// or
x = DoSomeGameLogic(diceRolls);
diceRolls = x.RemainingDiceRolls;
The "classic" way to implement pure random generators is to use a specialized form of a state monad (more explanation here), which wraps the carrying around of the current state of the generator. So, instead of implementing (note that my C# is quite rusty, so please consider this as pseudocode):
Int Next() {
nextState, nextValue = NextRandom(globalState);
globalState = nextState;
return nextValue;
}
you define something like this:
class Random<T> {
private Func<Int, Tuple<Int, T>> transition;
private Tuple<Int, Int> NextRandom(Int state) { ... whatever, see below ... }
public static Random<A> Unit<A>(A a) {
return new Random<A>(s => Tuple(s, a));
}
public static Random<Int> GetRandom() {
return new Random<Int>(s => nextRandom(s));
}
public Random<U> SelectMany(Func<T, Random<U>> f) {
return new Random(s => {
nextS, a = this.transition(s);
return f(a).transition(nextS);
}
}
public T Run(Int seed) {
return this.transition(seed);
}
}
Which should be usable with LINQ, if I did everything right:
// player1 = bla, player2 = blub, ...
Random<Tuple<Player, Int>> playerOneRoll = from roll in GetRandom()
select Tuple(player1, roll);
Random<Tuple<Player, Int>> playerTwoRoll = from roll in GetRandom()
select Tuple(player2, roll);
Random<List<Tuple<Player, Int>>> randomRolls = from t1 in playerOneRoll
from t2 in playerTwoRoll
select List(t1, t2);
var actualRolls = randomRolls.Run(234324);
etc., possibly using some combinators. The trick here is to represent the whole "random action" parametrized by the current input state; but this is also the problem, since you'd need a good implementation of NextRandom.
It would be nice if you could just reuse the internals of the .NET Random implementation, but as it seems, you cannot access its internal state. However, I'm sure there are enough sufficiently good PRNG state functions around on the internet (this one looks good; you might have to change the state type).
Another disadvantage of monads is that once you start working in them (ie, construct things in Random), you need to "carry that though" the whole control flow, up to the top level, at which you should call Run once and for all. This is something one needs to get use to, and is more tedious in C# than functional languages optimized for such things.
I'm implementing a memory system for an AI agent. It needs to have an internal list of state transitions which is capped at some number, say 10000.
If at capacity, adding a new memory should automatically remove the oldest memory.
Importantly, I should also need to be able to quickly access any item in this list.
A wrapper for Queue at first seemed obvious, but Queue does not allow fast access of any element. (O(n))
Similarly, remove an item from the beginning of a List structure takes O(n).
LinkedLists allow fast additions and removals, but again do not allow quick access to every index.
An array would allow random access but obviously it's not dynamically resizeable and deletion is problematic.
I've seen a HashMap being suggested but I'm ensure how that might be implemented.
Suggestions?
If you want the queue to be a fixed length, you could use a circular buffer which enables O(1) enqueue, dequeue and indexing operations and automatically overwrites old entries when the queue is full.
Try using a Dictionary with a LinkedList. The keys of the Dictionary are the indexes of the LinkedList nodes and the values of the Dictionary are of type LinkedListNode; that is, the LinkedList nodes.
The Dictionary would give you almost an O(1) on its operations and removing/adding LinkedListNode(s) to the beginning or end of a LinkedList is of O(1) as well.
Another alternative is to use a HashTable. However, in this case you have to know the capacity of the table beforehand (See Hashtable.Add Method) in order to get the O(1) performance:
If Count is less than the capacity of the Hashtable, this method is an O(1) operation. If the capacity needs to be increased to accommodate the new element, this method becomes an O(n) operation, where n is Count.
In the first solution, no matter what's the capcity of the LinkedList or the Dictionary you would still get almost an O(1) from both the Dictionary and the LinkedList. Of course that's going to be an O(3) or O(4) depending on the total number of operations that you perform on both the Dictionary and the LinkedList to do an add or remove operation inside your memory class. The search access is going to be always an O(1) because you will be using the Dictionary only.
HashMap is for Java, so the closest equivalent is Dictionary. C# Java HashMap equivalent. But I wouldn't say that this is the ultimate answer.
If you implement it as Dictionary, which key == the content, then you can search the content with O(1). However, you cannot have same key. Also, because it is not ordered, you may not know which the 1st content is.
If you implement it as Dictionary, which key == index, and value == the content, searching for the content still takes O(n) because you don't know the location of content.
A List or an Array will cost O(1) if you search the content by index reference. So, please double check your statement that it takes O(n)
If you search by index is sufficient, then circular array/ buffer which #Lee mentioned is good enough.
Otherwise, similar to DB, you might want to maintain in 2 separate data: 1 for storing the data (Circular Array) and the other one for search (Hash).
EDIT: #Lee has it right. A circular buffer seems to give you what you want. Answer left in place though.
I think the data structure you want might be a priority queue -- it depends on what you mean by 'quickly access any item'. If you mean 'able to enumerate all items in O(N)', then a priority queue fits the bill. If you mean 'enumerate the list in historical order', then it won't.
Assuming you need these operations;
add an item and associate with a time
remove the oldest item
enumerate all existing items in arbitrary order
Then you could easily extend this priority queue implementation I wrote a little while ago.
You'll want implement IEnumerable as a loop through the T[] data array from 0 to cursor. This will give you your enumeration.
Implement a GetItem(i) function which returns this.data[i] so long as i <= cursor.
Implement an automatic size limit by putting this into the Push() method;
if (queue.Size => 10000) {
queue.Pop();
}
I think this is O(ln n) for push and pop, and O(N) to enumerate ALL items, or O(i) to find ANY item, so long as you don't need them in order.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Mindfire.DataStructures
{
public class PiorityQueue<T>
{
private int[] priorities;
private T[] data;
private int cursor;
private int capacity;
public int Size
{
get
{
return cursor+1;
}
}
public PiorityQueue(int capacity)
{
this.cursor = -1;
this.capacity = capacity;
this.priorities = new int[this.capacity];
this.data = new T[this.capacity];
}
public T Pop()
{
if (this.Size == 0)
{
throw new InvalidOperationException($"The {this.GetType().Name} is Empty");
}
var result = this.data[0];
this.data[0] = this.data[cursor];
this.priorities[0] = this.priorities[cursor];
this.cursor--;
var loc = 0;
while (true)
{
var l = loc * 2;
var r = loc * 2 + 1;
var leftIsBigger = l <= cursor && this.priorities[loc] < this.priorities[l];
var rightIsBigger = r <= cursor && this.priorities[loc] < this.priorities[r];
if (leftIsBigger)
{
Swap(loc, l);
loc = l;
}
else if (rightIsBigger)
{
Swap(loc, r);
loc = r;
}
else
{
break;
}
}
return result;
}
public void Push(int priority, T v)
{
this.cursor++;
if (this.cursor == this.capacity)
{
Resize(this.capacity * 2);
};
this.data[this.cursor] = v;
this.priorities[this.cursor] = priority;
var loc = (this.cursor -1)/ 2;
while (this.priorities[loc] < this.priorities[cursor])
{
// swap
this.Swap(loc, cursor);
}
}
private void Swap(int a, int b)
{
if (a == b) { return; }
var data = this.data[b];
var priority = this.priorities[b];
this.data[b] = this.data[a];
this.priorities[b] = this.priorities[a];
this.priorities[a] = priority;
this.data[a] = data;
}
private void Resize(int newCapacity)
{
var newPriorities = new int[newCapacity];
var newData = new T[newCapacity];
this.priorities.CopyTo(newPriorities, 0);
this.data.CopyTo(newData, 0);
this.data = newData;
this.priorities = newPriorities;
this.capacity = newCapacity;
}
public PiorityQueue() : this(1)
{
}
public T Peek()
{
if (this.cursor > 0)
{
return this.data[0];
}
else
{
return default(T);
}
}
public void Push(T item, int priority)
{
}
}
}
Good afternoon all!
As a part of getting a better grip on some of the most aspects of object based programming, I've started to attempt something far larger than I have done in the past. Hereby I'm trying to learn about inheritance, code reuse, using classes far more extensively, and so on.
For this purpose I am trying to piece together all the parts required for a basic RPG/dungeon crawler.
I know this has been done a billion times before, but I find that actually trying to code something like it takes you through a lot more problems than you might think, which is a great way to learn (I think).
For now I have only loaded up a WPF application, since my interest is 95% on being able to piece together the working classes, routines, functions, etc. And not so much interested in how it will look. I am actually reading up on XNA, but since I am mostly trying to get a grip on the basic workings, I don't want to complicate those aspects with the graphical side of things just yet.
The problem I am now facing is that when I would a character to attack or defend, it should know from which other character it came, or to which one it should be pointed. I figured I could either use a GUID, or a manually appointed ID. But the problem is that I don't really know how I can implement such a thing.
The thing that I figured was that I could maybe add a reference to an array (Character[]), and have a SearchByID function loop through them to find the right one, and return it. Like so:
internal Character SearchByID(string _ID)
{
foreach(Character charToFind in Character[])
{
if(charToFind.ID == _ID)
return charToFind;
}
}
This of course has to be altered a bit due to the return at the moment, but just to give you an idea.
What I am stuck on is how to create the appropriate array outside of the "Character"-class? I can fill it up just fine, but how do I go about having it added above class level?
The way the "Character"-class is built up is that every new character instantiates from the Character class. The constructor then loads the appropriate values. But other than this, I see no possibility to initialize an array outside of this.
If it is preferable to post the entire code that I have, that will be no problem at all!
Thanks for any insights you may provide me with.
I think you can just use the Character-class and pass other Characters to it, for example:
public class Character
{
public string Name { get; private set; }
public int HitPoints { get; private set; }
public int Offense { get; private set; }
public int Defense { get; private set; }
public Character(string name, int hitPoints, int offense, int defense)
{
Name = name;
HitPoints = hitPoints;
Offense = offense;
Defense = defense;
}
public void Defend(Character source)
{
HitPoints = HitPoints - (source.Offense - Defense);
if (HitPoints <= 0)
{
Console.WriteLine("{0} died", Name);
}
}
public void Attack(Character target)
{
// Here you can call the other character's defend with this char as an attacker
target.Defend(this);
if (target.HitPoints <= 0)
{
Console.WriteLine("{0} killed {1}", Name, target.Name);
}
}
}
The thing with object oriented programming is that you have to start thinking in objects. Objects are like boxes when they're concrete. You can make new ones and give them some properties, like a name, height, width, hitpoints, whatever. You can also let these objects perform actions. Now a simple box won't do much itself, but a character can do various things, so it makes sense to put these actions in the Character-class.
Besides having Characters, you might have a Game-class which manages the game-state, characters, monsters, treasure chests etc...
Now this simple example may cause you to gain HitPoints when your defense is higher than the attacker's offense, but that's details, I'll leave the exact implementation up to you.
I guess you want a way to insert characters in an array when they are instantiated..
You can make a static array or list
So,your class in my opinion should be
class Character
{
static List<Character> characterList=new List<Character>();//all characters are here
public Character(string id,...)
{
//initialize your object
characterList.Add(this);//store them in the list as and when created
}
internal Character SearchByID(string _ID)
{
foreach(Character charToFind in characterList)
{
if(charToFind.ID == _ID)
return charToFind;
}
}
}
As you may be knowing static members are associated with the class not with the object.So,when you create a new character object it would be automatically added to the characterList
Unless you are dealing with seperate processes, e.g. client-server, you probably don't want to use "Id"s at all.
Whereever you are passing string _ID around, pass the actual Character instead. This saves you looking up in an array or whatever.
Post more code, and I can show you what I mean.
You could use a dictionary, instantiated in your controller class:
Dictionary<Guid, Character> _characterList = new Dictionary<Guid, Character>();
Initialise:
var someCharacter = new Character() { stats = something };
var otherCharacter = new Character() { stats = anotherThing };
var char1Id = Guid.NewGuid();
var char2Id = Guid.NewGuid();
_characterList.Add(char1Id, someCharacter);
_characterList.Add(char2Id, otherCharacter);
then, to access characters:
var charToFind = _characterList[char1Id];
or
var charToFind = _characterList.Single(c => c.Name = "Fred The Killer");
or whatever else...
Check out keyed collection
KeyedCollection
It is like a dictionary where the key is a property of class.
You will be able to reference a Character with
Characters[id]
Syntax
On your Character class overrite GetHashCode and Equals for performance.
If you use Int32 for the ID then you will get a perfect hash.
Very fast and O(1).
I have 2 time series that contain Bar objects, each Bar object contains a member variable of type long and each time series is stored within its own BlockingCollection. The time series is sorted in ascending order of the long values.
I like to devise a merge algorithm that allows me to take away the Bar that contains the long member variable of lowest value relative to the same comparison element in the other BlockingCollection.
Example, if the long value contained in the first Bar (bar1) in BlockingCollection1 is lower than the long value contained in the first Bar (bar2) in BlockingCollection2, then Take() from BlockingCollection1 and Add() to a MasterBlockingCollection, essentially ending up with a merged stream of Bar objects sorted by the value of each Bar's long member variable.
I like to later on extend to n BlockingCollections, not just 2. I played around with arrays that hold the long values to make the mapping easier but I think arrays are handier when working with pointers pertaining to this specific target algorithm.
I wonder whether anyone can point me to a Linq implementation and comment on how computationally expensive such approach is. I am asking because throughput is of importance as there are hundreds of millions of Bar objects flowing through the collections. If someone has a more clever idea than using Linq that would be very welcomed. I came across some ideas re merge algorithm at DrDobbs some time ago but cannot find the article anymore. In case it is not apparent by now, I target C# (.Net4.0)
Thanks a lot
Edit: I forgot to mention that the merging process is supposed to happen at the same time than workers who add new items to the blockingcollections (running on different tasks)
Here's an implementation of Merge. It should run in O(cN) time, where c is the number of collections. Is this what you're looking for?
public static BlockingCollection<Bar> Merge(IEnumerable<BlockingCollection<Bar>> collections)
{
BlockingCollection<Bar> masterCollection = new BlockingCollection<Bar>();
LinkedList<BarWrapper> orderedLows = new LinkedList<BarWrapper>();
foreach (var c in collections)
OrderedInsert(new BarWrapper { Value = c.Take(), Source = c }, orderedLows);
while (orderedLows.Any())
{
BarWrapper currentLow = orderedLows.First.Value;
orderedLows.RemoveFirst();
BlockingCollection<Bar> collection = currentLow.Source;
if (collection.Any())
OrderedInsert(new BarWrapper { Value = collection.Take(), Source = collection }, orderedLows);
masterCollection.Add(currentLow.Value);
}
return masterCollection;
}
private static void OrderedInsert(BarWrapper bar, LinkedList<BarWrapper> orderedLows)
{
if (!orderedLows.Any())
{
orderedLows.AddFirst(bar);
return;
}
var iterator = orderedLows.First;
while (iterator != null && iterator.Value.Value.LongValue < bar.Value.LongValue)
iterator = iterator.Next;
if (iterator == null)
orderedLows.AddLast(bar);
else
orderedLows.AddBefore(iterator, bar);
}
class BarWrapper
{
public Bar Value { get; set; }
public BlockingCollection<Bar> Source { get; set; }
}
class Bar
{
public Bar(long l)
{
this.LongValue = l;
}
public long LongValue { get; set; }
}