Uniform handling of many exceptions - c#

In my current project, i am interacting with some 3rd party middleware that throws many different types of exceptions (around 10 exceptions or more).
My library that is using the 3rd party has a few methods, each one interacts with the 3rd party, however needs to be protected from the same set of 10 or more exceptions.
What i currently have is something like this in every method of my library:
try
{
// some code
}
catch (Exception1 e)
{
}
catch (Exception2 e2)
{
}
...
catch (ExceptionN eN)
{
}
The number of exceptions may increase as well.
How can i reduce the code duplication and uniformly handle all exceptions in a single place?
suppose that the handling in each method in my code is the same.

I would start by catching the base Exception type and then filtering with a white-list:
try
{
// Code that might throw.
}
catch (Exception e)
{
if(e is Exception1 || e is Exception2 || e is ExceptionN)
{
// Common handling code here.
}
else throw; // Can't handle, rethrow.
}
Now if you want to generalize the filter, you can write an extension:
public static bool IsMyCustomException(this Exception e)
{
return e is Exception1 || e is Exception2 || e is ExceptionN;
}
and then you can just use:
if(e.IsMyCustomException())
{
// Common handling code here.
}
else throw;
You can generalize the handler with a simple method:
private void HandleCustomException(Exception e)
{
// Common handling code here.
}
If you want to generalize the entire try-catch block, you're probably best off injecting a delegate into a method that wraps the operation, as mentioned by #vc 74.

You can either use a global exception handler, the implementation depends on your project type (ASP.net -> global.asax, WPF -> App.xaml...)
Or use something like the following :
private static void HandleExceptions(Action action)
{
try
{
action();
}
catch (Exception1 e)
{
}
catch (Exception2 e2)
{
}
...
catch (ExceptionN eN)
{
}
}
which can be invoked the following way:
HandleExceptions(() => Console.WriteLine("Hi there!"));
If an exception was thrown during the Console.WriteLine execution, it would then be handled by your exception handling logic
Note that the code to execute might also modify external values:
int x = 2;
HandleExceptions(() => x = 2 * x);
If you prefer anonymous methods:
var x = 2;
HandleExceptions(delegate()
{
x = x * 2;
});

I recommend using the Enterprise Library 5.0 Exception handling block. Basically, you define multiple exception types, categories and exception handlers that handle specific exception types. Ideally, you would define the exception type, hook it up to a formatter and then report the exception using the Logging block.
You can read all about it here...

how about use one function to handle these Exceptions:
try
{
//Some code here
}
catch(Exception e)
{
if(!ErrorHandler(e))
return null; //unhandled situation
}
private bool ErrorHandler(Exception e)
{
switch(e)
{
case Exception1:
//Handle the exception type here
return true;
case Exception2:
//Handle another exception type here
return true;
}
return false;
}

There are some semantic differences between catching and rethrowing an exception, versus not catching it. Exception filters are therefore very useful, since they allow one to e.g. "Catch Ex As Exception When IsNiceException(Ex)". Unfortunately, the only way to use them within a C# program is to use a DLL to wrap the necessary functionality (the DLL itself could be written in vb or some other language). A typical pattern might be something like:
TryWhenCatchFinally(
() => {trycode;},
(Exception ex) => {codeWhichReturnsTrueForExceptionsWorthCatching;},
(Exception ex) => {codeToHandleException;},
(ExceptionStatus status, Exception ex) => {finallyCode;});
The ExceptionStatus parameter to the "finally" code would be an enumeration saying whether (1) no exception occurred, (2) an exception occurred, but was handled, (3) an exception occurred and was handled, but another exception was thrown, or (4) an exception occurred but CodeWhichReturnsTrueForExceptionsWorthCatching returned false; (5) an exception occurred which was not handled within trycode, nor handled by this block, but trycode completed anyhow (a rare situation, but there are ways it can happen). The Ex parameter will null in the first case, and contain the appropriate exception in others--potentially useful information to have if an exception occurs while processing the finally block (stifling an exception that occurs in a finally block may be bad, but if the earlier exception isn't logged or lost before the new exception escapes, all data from the earlier exception will generally be lost; if the same condition which caused the earlier exception caused the later one, the earlier exception might have more useful information about what went wrong).
BTW, a few notes with this pattern:
The code that decides whether to catch an exception will run before nested finally blocks execute; it may capture useful data for logging (the fact that finally blocks haven't run may make available for logging information which would get destroyed by nested finally blocks), but actual cleanup should typically be done after finally blocks have run.
At present, it seems like exceptions that would escape from filters get stifled, but I'm not sure that behavior is guaranteed. Operations which might leak exceptions should probably not be done within filters.
If the "trycode" contains a try-finally block that's nested within a try-catch block, an exception which occurs in the "try" part of that try-finally block is not handled by the TryCatchWhenFamily nor any nested scope, but is handled by an outer block, and the processing of the inner try-finally block throws an exception which the inner try-catch block handles, the exception which the outer block had decided it was going to catch might disappear without ever being caught. If the TryWhenCatchFinally method is coded to detect this condition, it could let its finally block code know about that (the finally block may or may not want to do anything about the condition, but it should probably at minimum be logged).

Related

is there any way to catch original exception if another exception raise during handeling that in C#?

assume we have following peace of code in C#:
try{
....
try{
throw new Exception1("exception1");
}catch(Exception exception){
...
throw new Exception2("exception2");
}
}catch(Exception exception){
...
log(exception.message);
}
is it possible in log point(outer catch) to access exception1 object and log that one as well?
Here are two reasonable examples of what I think you are talking about. They illustrate what I was trying to describe in the comments as well as what #Jonesopolis describes.
First, my case. Say you are writing a utility that calls some lower-level service that may throw. You may want to describe the behavior of the utility in a way that the exceptions that may bubble up have more meaning to the caller. In this case, I've documented that my utility will throw an ApplicationException if there is a problem.
I do this from two places, the first one when I check some pre-conditions (that the path name is neither null or empty and that it is a valid file name (I'm assuming that there is an IsValidFileName function I can call)).
But the other place is that if I try to do the operation and it throws (I haven't checked that File.ReadAllLines actually ever throws an IOException, but I'm guessing it can). In this case, I don't want to burden my users with catching a possible IOException, instead, I translated it into an ApplicationException that I document. I wrap the IOException with a catch and throw of my ApplicationException, but I include the IOException as the inner exception so that debugging and tracking down other issues works. The code looks like:
public IEnumerable<string> AccessFile(string pathName)
{
if (string.IsNullOrEmpty(pathName) || !IsValidFileName(pathName))
{
throw new ApplicationException("Invalid Path Name");
}
try
{
var result = File.ReadAllLines(pathName);
return result;
}
catch (IOException ex)
{
throw new ApplicationException("Error Accessing File", ex);
}
}
It's that second parameter to the ApplicationException that sets up the inner exception. This pattern is very common.
The other example is what #Jonesopolis describes.
Here I have a work function doing something. My application architecture demands that I do logging at the level of whatever the DoSomethingImportant function is at. So, it catches any exceptions that get thrown at a lower level. However, that code wants to bubble up any exceptions to the DoSomethingImportant function's caller. Here, it just uses the throw keyword with no argument. That rethrows the current exception and lets it bubble through.
It's important to use throw; with no arguments, and not throw ex;. The former allows the existing exception to bubble up. The latter unwinds the stack at the catch site, and then throws a new exception, losing all the stack information that might point to the faulting location.
This is the typical code that I'm talking about. It's also a very common pattern:
public void DoSomethingImportant()
{
try
{
DoSomethingLowLevel();
}
catch (Exception ex)
{
GetLogger().Log(ex);
throw;
}
}

position of the try catch statement

I have some code that currently looks somewhat like this:
public void MainFunction()
{
try
{
SomeProblemFunction();
}
catch
{
AllFineFunction();
}
}
private void SomeProblemFunction() { ... }
private void AllFineFunction() { ... }
As you can see, I'm currently wrapping the call to SomeProblemFunction around a try statement because that function could fail (it relies on an outside web service call).
My question is this: should the try statement be a) outside the problem function (like I have it now) or b) inside the problem function?
Thanks.
Typically you want to allow your exceptions propagate up to your application boundaries. You're only going to want to do one of a few things with your exception:
Wrap it
Replace it
Let it propagate
Update
From your question it seems that you are looking for a fault tolerant solution for your web service calls. This is a more complex problem than simply "where do I put my try-catch?" You would still place your exception handling at the application boundary, but there you would implement your fault tolerance strategy. This would need to have many considerations, including asynchronously calling your web service, number of retry attempts, etc. I would suggest doing a search for web service fault tolerance.
What you have is correct; see the MSDN example:
public class ThrowTestB
{
static void Main()
{
try
{
// TryCast produces an unhandled exception.
TryCast();
}
catch (Exception ex)
{
// Catch the exception that is unhandled in TryCast.
Console.WriteLine
("Catching the {0} exception triggers the finally block.",
ex.GetType());
// Restore the original unhandled exception. You might not
// know what exception to expect, or how to handle it, so pass
// it on.
throw;
}
}
public static void TryCast()
{
int i = 123;
string s = "Some string";
object obj = s;
try
{
// Invalid conversion; obj contains a string, not a numeric type.
i = (int)obj;
// The following statement is not run.
Console.WriteLine("WriteLine at the end of the try block.");
}
finally
{
// Report that the finally block is run, and show that the value of
// i has not been changed.
Console.WriteLine("\nIn the finally block in TryCast, i = {0}.\n", i);
}
}
// Output:
// In the finally block in TryCast, i = 123.
// Catching the System.InvalidCastException exception triggers the finally block.
// Unhandled Exception: System.InvalidCastException: Specified cast is not valid.
}
As a rule of thumb I try and build code that focuses try catches to the exact spot the problem may occur.
That said both of your solutions are correct.
If it were my code I would do this
public void MainFunction()
{
try
{
SomeProblemFunction();
}
catch(Exception e)
{
Messagebox.Show(e.Message);
}
}
private void SomeProblemFunction() {
try{
web call
}
catch{
throw a specific exception related to this spot
}
}
private void AllFineFunction() { ... }
With this method you can easily create applications that handle a slew of very accurate exceptions
A fine question, I think. I'll attempt an answer.
If you want to recover within SomeProblemFunction, then it would make perfect sense to move the try...catch inside of that method. If, however, you are comfortable saying that if anything fails in SomeProblemFunction, then the whole thing is a failure, then keep it as you have it now and recover in (or throw from) MainFunction.
Thanks to the comment below, I'm adding some clarity. Depending on the specific exception that is being thrown within SomeProblemFunction, you may not have the ability to recover within that method. If you have a mixture of recoverable and non-recoverable, then it would be prudent to have the try...catch in both places.
The most important thing is that you NEVER catch an exception from which you cannot recover without throwing it on after doing your thing. It's tempting to add big broad catches (catch (Exception)) to avoid your app crashing during development, but it is never worth it. If those things make it into your production code, you've introduced a problem-solving and debugging nightmare.
In my opinion, there is no straight answer for this. The try catch is used to handle the exceptions that may occur. If your exception handling code is going in the main function then you should have the try catch in the main function. If your exception handling code in the problem function then you should add it to the problem function.
My preference though is to put it in both functions. If you put the try catch in the problem function, you can throw the exception and catch it in the main function. This always appear to other developers that the exception was thought of in that function and not missed handling it by mistake.
This depends on how severe this web service call failure would be.
Is it a failure that would prevent further processing of your code to run? If so, have no try/catch here, allowing it to propagate up to the guy who needs to know that this web service call failed. Optionally, you could still catch and throw a new exception with some more meaningful Exception type/ details.
Do you simply just want to re-try the web service call again if it doesn't work? IF so, then you have the try in the correct place; you just need to add a loop.
Is it not a big deal if this web service call fails? e.g. - will the rest of your code work OK? (I've found this to be uncommon). If so, leave the try/catch where it is, and log the error somewhere so that you're alerted.

Difference between parameterless catch and other catch

I have there piece of code
//Code 1 Code 2 Code 3
try try try
{ { {
//Exp occur //Exp occur //Exp occur
} } }
catch (Exception e) catch (Exception) catch
{ { {
//Handle exp //Handle exp //Handle exp
} } }
What is the difference between all of three codes
P.S. I'm new to C# and as far as Java or Objective-C is concerned this syntax throws error
Code 1
Its catching Exception in an object e which can be later used for exception handling. For example you can log the Message property or view stack trace using e.Message or e.StackTrace
Code 2
You are catching all the exception of the base type Exception but since you don't have any object related to it, you can only throw that exception so that it can bubble up or you may ignore the exception. If in that code you had :
catch(InvalidCastException)
Then all the InvalidCastException will be handled in the block without the exception object
Code 3
You are catching all type of exceptions irrespective of their type, which is similar to your code 2 with base class Exception
try-catch - MSDN
Although the catch clause can be used without arguments to catch any
type of exception, this usage is not recommended. In general, you
should only catch those exceptions that you know how to recover from.
Its always better if you catch specific exceptions before catching the base one. Something like.
try
{
}
catch(InvalidCastException ex)
{
}
catch(Exception ex)
{
}
try - catch - MSDN
It is possible to use more than one specific catch clause in the same
try-catch statement. In this case, the order of the catch clauses is
important because the catch clauses are examined in order. Catch the
more specific exceptions before the less specific ones. The compiler
produces an error if you order your catch blocks so that a later block
can never be reached.
Code 1 - fairly normal catch, hopefully doesn't need explanation
Code 2 - You want to execute a particular piece of code when a particular exception occurs, but you have no intention of actually interacting with the exception object. Should almost always have a throw; statement at the end, so that someone else higher up the stack who does care can catch it.
Code 3 - You want the code to execute for any exception(*) (except for any caught by earlier catch clauses of the same try). Again, should almost always include a throw; so that higher code can catch and actually process the exception.
At some level (possibly just at the top level, in the unhandled exception handlers for whatever environment you're in), something ought to be inspecting the exception object and probably logging it (if possible).
Here if you want to use the variable 'e' for getting the Exception message, Line or type.
//Code 1
try
{
//Exp occur
}
catch (Exception e)
{
//Handle exp
}
Below code for getting particular type of Exception and not dealing with Exception variable.
//Code 2
try
{
//Exp occur
}
catch (Exception)
{
//Handle exp
}
Below code catching all types of exceptions.
//Code 3
try
{
//Exp occur
}
catch
{
//Handle exp
}
if you plan to actually use the exception object, to log its properties to a log file or to show a message box or to throw another kind of exception and pass the current exception to its constructor, then you must use the first of the three (most left one).
in general the most used approach is the first one anyway, if you want to handle different kind of exceptions separately you can have multiple catch blocks starting with the most specialized on top and have the one you wrote at the bottom so that all exceptions not already handled will end in the generic catch block.
Nothing. They all catch EVERY exception that could possibly occur (by catching base type Exception or just any). This is typically frowned upon, for good reason. You should catch specific exceptions in the order you expect, and then if you do want to catch all exceptions catch Exception at the end.
try
{
}
catch (MyCustomException)
{
// do something for your custom exception
}
catch (Exception)
{
// do something for everything else
}
When you specify a variable for your exception such as catch (Exception e) you will have access to the stack trace (and other exception information) via e.Property or simply e.ToString() for the full message. It's also best practice to throw the exception when caught (well, unless you want to suppress it at this level and not allow your calling code to see the exception) so it bubbles up and you preserve the stack trace:
catch (Exception e)
{
// do something with e
throw;
}
Code 1 catches every exception (in your case!) and declares it, so you can use it later e.g. for Error-Messages.
MessageBox.Show(e.Message);
Code 2 also catches every exception (in your case!), but you can't use it, because it is not declared.
These two methods are not designed for that, they're designed to catch specific or custom exceptions.
try
{
//mycode
}catch(MyException myExc)
{
//TODO HERE
Console.Write(myExc.Message);
}
The third one catches all exceptions. Because there is no definition.
Take a look at: http://msdn.microsoft.com/de-de/library/0yd65esw%28v=vs.80%29.aspx
to learn more about exceptions in C#.
Differences:
Declaring Exception Parameter ex allows you to access the Exception object, in order to see and work with its properties, fields, methods and the like. This "ex" variable works like any parameter in any method.
Declaring Exception Type without parameter ex allows you to separate several "catch" areas for different types of exception. It is useless, and functionally equivalent to code sample 3 as you define it here, but if you need to do different actions depending on the type of the exception, and you do not need to access the exception object (you only need to know the type of the exception), then this is your way to go.
Untyped Catch Exception Handler allows you to add a fallback for any Exception that might be thrown, whatever its type. Since it is not parameterized, however, you won't have access to the Exception object's properties or methods. Both code sample 2 and code sample 3 therefore are equivalent.
Example:
try{ // code that throws exception }
catch(TypeException ex)
{
// code to handle exceptions of type TypeException
// I can access ex parameter, for example to show its Message property
MessageBox.Show(ex.Message);
}
catch(OtherTypeException)
{
// code to handle exceptions of type OtherTypeException
// I cannot access the ex parameter since it is not declared, but I know
// the exact type of the exception
MessageBox.Show("There was an exception of Other Type");
}
catch
{
// code to handle any other exception
// this is functionally equivalent to catch(Exception) since all typed exceptions
// inherit from the base type Exception
MessageBox.Show("An unknown exception has been thrown.");
}
...

throw exception in the try block rather than catch block?

I've inherited code in our project which looks like this. It's a method in a class.
protected override bool Load()
{
DataAccess.SomeEntity record;
try
{
record = _repository.Get(t => t.ID.Equals(ID));
if (record == null)
{
throw new InvalidOperationException("failed to initialize the object.");
}
else
{
this.ID = record.ID;
// this.OtherProperty = record.SomeProperty;
// etc
}
}
catch (Exception)
{
throw;
}
return true;
}
If I then call this Load method from my UI layer, I'd probably want to have a try catch block to catch any exception caused by the failure to Load the instance, e.g. InvalidOperationException, but the above code feels wrong to me.
Won't the InvalidOperationException be swallowed by the catch statement? that catch statement will also catch potential problems with _repository.Get, as well as potential problems with the setting of properties if the record is valid.
I thought I should perhaps restructure it by adding more try catch statements to handle the Get operation and property setting operations separately, or add more catch blocks handling different exceptions, but I asked a colleague, and he suggested that the try catch is irrelevant in this case, and should be removed completely, leaving it like:
protected override bool Load()
{
DataAccess.SomeEntity record;
record = _repository.Get(t => t.ID.Equals(ID));
if (record == null)
{
throw new InvalidOperationException("failed to initialize the object.");
}
else
{
this.ID = record.ID;
// this.OtherProperty = record.SomeProperty;
// etc
}
return true;
}
I'd like some second opinions, I've only just started taking an interest in exception handling, so I'd like to make sure I am doing it the right way according to best practices.
When you do this:
catch (Exception)
{
throw;
}
You are essentially not handling the exception. That does not however mean you are ignoring it. The throw statement will propagate the exception up the stack. For the sake of clean readable code your final example is much better.
If you're catching exceptions in the calling method ( Ithink) you should only catch exceptions which you expect. If the exception is a problem for Load(), then throw a new exception to the calling method, with better information about the exception.
Excellent! You are definitely on the right track. The previous implementation doing nothing other than re-throwing exceptions which is unnecessary. You should only handle specific exceptions that you are anticipating in the business layer, otherwise let them naturally go up the call stack up to the UI layer.
As best practice, only re-throw exceptions when you want to add some additional debug information, in which case you will need to define a custom exception
The exception will be caught by the catch statement but since it has a throw statement, it'll throw the exception back out. This has the same effect as if you didn't have a try/catch at all, so your colleague is right in suggesting leaving it out.
There isn't much of a point to adding exception-handling code if you don't actually handle the exception in any way.
I agree with your colleague, you should only catch exceptions that you know need to be caught. I typically leave out any try catch blocks unless I know exactly why I need it in a particular situation. This is because you tend to hide the real bugs in your code if you just put try catch block around everything. Leave the error handling off until you absolutely need it - start off with a single global error handler at the highest point in the application - if this is asp.net you can hook the application error event and log errors there, but my point is don't add try catch blocks unless you know why your adding them and write code that handles error cases not traps them.
Enjoy!

c# "finally" block that only runs on exceptions

Edit: I have looked at the answers code: NONE of them do what I want (I've checked). It would seem that there is no way to do what I want in native c#. I guess that's not a disaster just a shame given that .NET does support it (see accepted answer).
Thanks all.
I have c# code (part of a test framework that will never be run except under a debugger) like this who's point it to avoid actually catching the exception as that makes debugging the code in the unwound part of the stack a royal pain.
Bool bad = true;
try
{
MightThrow();
bad = false;
}
finally
{
if(bad) DoSomeLoggingOnFailure();
//// Does not catch!!!!
//// exception continues to unwind stack.
//// Note that re throwing the exception is NOT
//// the same as not catching it in the first place
}
is their a better way to do this?
A solution would have to behave exactly like that under the debugger with regards to un-caught exceptions. It would have to result in the only one first chance exception and the debugger breaking at the point that the exception was originally thrown, not in a catch block.
Specifically I need the debugger on un-caught exceptions to stop a in side MightThrow.
The following doesn't work because it fails to have the debugger break in the correct place
try { ... } catch { throw; }
And this doesn't work because it loses stack info (and also breaks in the wrong place).
try { ... } catch(Exception e) { throw e; }
I known that in D I could use a scope(failure) block
So, in .NET what you're asking for is theoretically possible, but it's not going to be easy.
CIL actually defines five types of exception handling block! The try, catch and finally ones you're used to in C#, and two others:
filter - similar to a catch block but can run arbitrary code to determine whether it wants to handle the error, rather than just matching on type. This block has access to the exception object, and has the same effect on the exception stack trace as a catch block.
fault - similar to a finally block, however it is only run when an exception occurs. This block does not have access to the exception object, and has no effect on the exception stack trace (just like a finally block).
filter is available in some .NET languages (e.g. VB.NET, C++/CLI) but is not available in C#, unfortunately. However I don't know of any language, other than CIL, that allows the fault block to be expressed.
Because it can be done in IL means not all is lost, though. In theory you could use Reflection.Emit to dynamically emit a function that has a fault block and then pass the code you want to run in as lambda expressions (i.e. one for the try part, one for the fault part, and so on), however (a) this isn't easy, and (b) I'm unconvinced that this will actually give you a more useful stack trace than you're currently getting.
Sorry the answer isn't a "here's how to do it" type thing, but at least now you know! What you're doing now is probably the best approach IMHO.
Note to those saying that the approach used in the question is 'bad practice', it really isn't. When you implement a catch block you're saying "I need to do something with the exception object when an exception occurs" and when you implement a finally you're saying "I don't need the exception object, but I need to do something before the end of the function".
If what you're actually trying to say is "I don't need the exception object, but I need to do something when an exception occurs" then you're half way between the two, i.e. you want a fault block. As this isn't available in C#, you don't have an ideal option, so you may as well choose the option that is less likely to cause bugs by forgetting to re-throw, and which doesn't corrupt the stack trace.
How about this:
try
{
MightThrow();
}
catch
{
DoSomethingOnFailure();
throw; // added based on new information in the original question
}
Really, that's all you did. Finally is for things that must run regardless of whether an exception occurred.
[Edit: Clarification]
Based on the comments you've been mentioning, you want the exception to continue being thrown without modifying its original stack trace. In that case, you want to use the unadorned throw that I've added. This will allow the exception to continue up the stack and still allow you to handle part of the exception. Typical cases might be to close network connections or files.
[Second edit: Regarding your clarification]
Specifically I need the debugger on
un-caught exceptions to stop at the
original point of the throw (in
MightThrow) not in the catch block.
I would argue against ever breaking a best-practice (and yes, this is a best-practice for partially handling exceptions) to add some minor value to your debugging. You can easily inspect the exception to determine the location of the exception throw.
[Final edit: You have your answer]
kronoz has thoughtfully provided you with the answer you sought. Don't break best practices -- use Visual Studio properly! You can set Visual Studio to break exactly when an exception is thrown. Here's official info on the subject.
I was actually unaware of the feature, so go give him the accepted answer. But please, don't go trying to handle exceptions in some funky way just to give yourself a hand debugging. All you do is open yourself up to more bugs.
If you're interested in the debugger simply stopping precisely where the exception occurred then have you considered first-chance exceptions?
If you open Tools|Exceptions then tick the Common Language Runtime Exceptions box, the debugger will stop at the point of exception regardless of any try/catch/finally blocks.
Update: You can specify the precise exception you wish to catch by expanding the [+] tree in the Exceptions dialog. Though of course it will fire every time any exception of the specified type[s] occur[s], you can switch it on and off at will even in the middle of a debugging session, so with judicious use of breakpoints you can get it to do your bidding. I used it successfully to get around the 'target of an invocation has thrown an exception' ball ache originating from using reflection to instantiate objects. Very useful tool in such circumstances. Also note the locals and stack trace should be firmly available as far as I recall (just did a quick test and they are available), so no problems there.
Of course if you want to log things then that is outside the scope of an IDE debugger; and in which case first-chance exceptions won't help you!
Give it a go at least; I found them very useful and they might be more appropriate for your issue than you think.
What's wrong with:
try
{
MightThrow();
}
catch
{
DoSomthingOnFailure();
throw;
}
For code that should only run on exceptions, use the catch block:
try
{
MightThrow();
}
catch (Exception ex)
{
// this runs only when there was an exception
DoSomthingOnFailure();
// pass exception on to caller
throw;
}
finally
{
// this runs everytime
Cleanup();
}
This is what you want. It will only call this method when an error occurs, and the "throw" statement will re-throw the exception with the callstack intact.
try
{
MightThrow();
}
catch
{
DoSomthingOnFailure();
throw;
}
A "finally" block that runs only on failure is called "catch" (with no parameters). :-)
Now, there is a small caveat. If you want to have a specialised "catch" case for a particular exception type and have a generic "catch" that works for all exceptions, you'll have to do a bit of a custom logic.
Thus, I would do something like:
try
{
MightThrow();
}
catch(MyException ex)
{
// Runs on MyException
MySpecificFailureHandler()
// Since we have handled the exception and can't execute the generic
// "catch" block below, we need to explicitly run the generic failure handler
MyGenericFailureHandler()
}
catch
{
// Runs on any exception hot handled specifically before
MyGenericFailureHandler()
// If you want to mimic "finally" behavior and propagate the exception
// up the call stack
throw;
}
finally
{
// Runs on any failure or success
MyGenericCleanupHandler();
}
Every example so far is losing the original StackTrace according to my tests. Here's a solution that should work for you.
private static void PreserveStackTrace(Exception exception)
{
MethodInfo preserveStackTrace = typeof(Exception).GetMethod("InternalPreserveStackTrace",
BindingFlags.Instance | BindingFlags.NonPublic);
preserveStackTrace.Invoke(exception, null);
}
try
{
MightThrow();
}
catch (Exception ex)
{
DoSomethingOnFailure();
PreserveStackTrace(ex);
throw;
}
How about only catching an exception that "MightThrow" does not throw?
Bool bad = true;
try
{
MightThrow();
bad = false;
}
catch (SomePrivateMadeUpException foo)
{
//empty
}
finally
{
if(bad) DoSomeLoggingOnFailure();
}
Let me recap your requirements the way I understand them:
You want some code that is run only when an exception is generated, in order to do some logging.
You want to run your test framework under debugger and break at the point at which the exception is thrown.
To meet your first requirement, you should write the code the way everybody suggested - using parameterless catch and throw.
To meet your second requirement while using the parameterless catch, you could configure your debugger to break when an exception is throw, not only when there's an unhandled exception. I suspect you know how to do it, but I'll put it here for answer completeness: in VS you can do that in Debug -> Exception -> Common Language Runtime Exceptions -> check the Thrown checkbox.
If you know that your app throws a lot of handled exceptions, that might not be an option for you. At that point, your only choice left to meet your first requirement is to either write the code to use finally for exception logging purposes or look into the direct IL emitting route as Greg Beech suggests.
However, whether the finally code is being executed depends on the debugger you are using. In particular, VS will break on an unhadled exception before the finally is executed and will not let you continue. Thus, unless you detach from the process at that point, your logging code will never be executed. In other words, the second requirement will interfere with meeting the first requirement.
You could encapsulate your logic in a custom class, something like:
public class Executor
{
private readonly Action mainActionDelegate;
private readonly Action onFaultDelegate;
public Executor(Action mainAction, Action onFault)
{
mainActionDelegate = mainAction;
onFaultDelegate = onFault;
}
public void Run()
{
bool bad = true;
try
{
mainActionDelegate();
bad = false;
}
finally
{
if(bad)
{
onFaultDelegate();
}
}
}
}
And use it as:
new Executor(MightThrow, DoSomeLoggingOnFailure).Run();
Hope this helps.
Isn't this the same as:
try
{
MightThrow();
}
catch (Exception e)
{
DoSomethingOnFailure();
throw e;
}
?
You could write, or have someone write for you, a small assembly in VB.net which implements a TryFaultCatchFinally(of T) method that accepts four delegates:
TryMethod -- An Action(of T) to perform the "Try" block.
FaultMethod -- A Predicate(Of T, Exception) which, if an exception occurs, will be called before any "finally" blocks run; if it returns true the Catch block will run--otherwise it won't.
CatchMethod -- An Action(Of T, Exception) to be performed if an exception had occurred and FaultMethod returned true; happens after "finally" blocks run.
FinallyMethod -- An Action(OF T, Exception, Boolean) to be performed as a "Finally" block. The passed-in exception will be null if TryMethod ran to completion, or will hold the exception that caused it to exit. The Boolean will be true if the exception was caught, or false otherwise.
Note that when the FaultMethod is executed, one may be able to examine the state of objects that caused the exception, before such state is destroyed by Finally blocks. One must use some care when doing this (any locks that were held when the exception was thrown will continue to be held) but the ability may still sometimes be handy, especially when debugging.
I'd suggest the routine look something like:
Shared Sub TryFaultCatchFinally(Of T)(ByVal TryProc As Action(Of T), _
ByVal FaultProc As Func(Of T, Exception, Boolean), _
ByVal CatchProc As Action(Of T, Exception), _
ByVal FinallyProc As Action(Of T, Exception, Boolean), _
ByVal Value As T)
Dim theException As Exception = Nothing
Dim exceptionCaught As Boolean = False
Try
TryProc(Value)
theException = Nothing
exceptionCaught = False
Catch Ex As Exception When CopyExceptionAndReturnFalse(Ex, theException) OrElse FaultProc(Value, Ex)
exceptionCaught = True
CatchProc(Value, Ex)
Finally
FinallyProc(Value, theException, exceptionCaught)
End Try
End Sub
No, I think this is a common idiom the way you have it.
EDIT
To be clear, the "catch" then "rethrow" strategies offer the same run-time semantics, however they change the experience when the VS debugger is attached. Tooling and maintenance is important; debugging often requires you to 'catch all first-chance exceptions' and if you end up with lots of 'spurious' first-chance exceptions due to catch-then-rethrow in your code, it really hurts the ability to debug the code. This idiom is about interacting well with the tooling, as well as clearly expressing the intent (you don't want to 'catch', decide can't handle, and rethrow, instead you just want to log that an exception did happen but let it pass on by).
Have you considered using the DebuggerStepThrough attribute?
http://msdn.microsoft.com/en-us/library/system.diagnostics.debuggerstepthroughattribute.aspx
[DebuggerStepThrough]
internal void MyHelper(Action someCallback)
{
try
{
someCallback();
}
catch(Exception ex)
{
// Debugger will not break here
// because of the DebuggerStepThrough attribute
DoSomething(ex);
throw;
}
}
With exception filters added in C# 6, one option is to make use of a false returning exception filter, like so:
void PerformMightThrowWithExceptionLogging()
{
try
{
MightThrow();
}
catch (Exception e) when (Log(e))
{
// Cannot enter here, since Log returns false.
}
}
bool Log(Exception e)
{
DoSomeLoggingOnFailure(e);
// Return false so the exception filter is not matched, and therefore the stack is kept.
// This means the debugger breaks where the exception actually happened, etc.
return false;
}
See https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch for more details on exception filters.
try
{
MightThrow();
}
catch
{
DoSomethingOnFailure();
}

Categories

Resources