Implementation of an anagram function in C# - c#

Possible Duplicate:
What is an easy way to tell if a list of words are anagrams of each other?
What is the best way (performance wide) to write a function in C# that takes two strings and returns true when the strings are anagrams of each other and otherwise returns false. Example of anagrams are:
abet beat beta bate
abides biased
anagrams link
In implementing this, is it possible that there is space in each string?
Any idea would be very much appreciated!

A simple (naïve?) way, using LINQ:
"abides".OrderBy(c=>c).SequenceEqual("biased".OrderBy(c=>c))

An easy solution would be to sort the characters alphabetically and compare them to one another.
public static class AnagramExtensions
{
public static bool IsAnagramOf(this string word1, string word2)
{
return word1.OrderBy(x => x).SequenceEqual(word2.OrderBy(x => x));
}
}
Then, to use it:
static void Main()
{
string word1 = "cat";
string word2 = "tac";
Console.WriteLine(word1.IsAnagramOf(word2));
string word3 = "cat";
string word4 = "dog";
Console.WriteLine(word3.IsAnagramOf(word4));
}
The output in this case would be
True
False

How not to do this: Remove all whitespace from each of the strings. Use one of the algorithms at Algorithm to generate anagrams to generate all possible permutations of the first string. Finally, search the list of permuations for a match; if there is one, then the two are anagrams, otherwise, not.

I have a solution for a List of Strings (Not just two Strings).
If you are interested in it or any other one, you can use it.
Given an array of strings, remove each string that is an anagram of an earlier string, then return the remaining array in stored order.
private static List<string> GencoAnagrams(List<string> textList)
{
var listCount = textList.Count;
if (listCount == 1) return textList;
for (var j = 1; j < listCount; j++)
{
for (var i = 0; i < j; i++)
{
if (string.Concat(textList[j].OrderBy(x => x)).Equals(string.Concat(textList[i].OrderBy(y => y))))
{
textList.RemoveAt(j);
--listCount;
--j;
if (listCount == 1) break;
}
}
if (listCount == 1) break;
}
return textList;
}

and count all sceniro (n*n+1)/2
public static int sherlockAndAnagrams(string s)
{
int count = 0;
string[] stringList = new string[(s.Length * (s.Length + 1)) / 2];
int index = 0;
Dictionary<string, int> hash = new Dictionary<string, int>();
for (int i = 0; i < s.Length; i++)
{
for (int j = i; j < s.Length; j++)
{
stringList[index] = s.Substring(i, j - i + 1);
index++;
}
}
foreach (var str in stringList)
{
var keyString = string.Concat(str.OrderBy(x => x));
if (hash.ContainsKey(keyString))
{
hash[keyString]++;
}
else
{
hash[keyString] = 1;
}
}
foreach (var key in hash.Keys)
{
if (hash[key] <= 1)
{
continue;
}
else
{
count = count + ((hash[key] * (hash[key] - 1) )/ 2);
}
}
return count;
}

Related

The splitting of a string without using String.Split method does not return correct result

I want to split a string without using the String.Split method.
I found a possible solution here. The code that I use is from the second answer.
This is my code:
public string[] SplitString(string input, char delimiter)
{
List<String> parts = new List<String>();
StringBuilder buff = new StringBuilder();
for (int i = 0; i < input.Length; i++)
{
if (input[i] == delimiter)
{
parts.Add(buff.ToString());
buff.Clear();
}
else
{
buff.Append(input[i]);
}
}
return parts.ToArray();
}
My problem here is that when I try to split a string like this
dog cat car person by " ", the result contains the words without the last one (in this example - person).
If after the last word there is a white space, the result is correct.
I tried to add something like i == input.Length when the for loop is from 0 to i <= input.Length. But the result was still without the last word.
Am I missing something?
Add another parts.Add(buff.ToString()); after exiting the loop - to flush the last word into the collection. You can check the length before doing so or not as commented and explained why by #hvd.
if(buff.Length != 0)
{
parts.Add(buff.ToString());
}
return parts.ToArray();
Another approach, instead of using a StringBuilder would be:
public static string[] SplitString(string input, char delimiter)
{
List<String> parts = new List<String>();
int start = 0;
for(int i = 0; i < input.Length; i++)
{
if(input[i] == delimiter)
{
parts.Add(input.Substring(start, i - start));
start = i + 1;
}
}
parts.Add(input.Substring(start, input.Length - start));
return parts.ToArray();
}
Or use yield return and return IEnumerable<string>:
public static IEnumerable<string> SplitString(string input, char delimiter)
{
int start = 0;
for(int i = 0; i < input.Length; i++)
{
if(input[i] == delimiter)
{
yield return input.Substring(start, i - start);
start = i + 1;
}
}
yield return input.Substring(start, input.Length - start);
}
Here is what you are missing in your code after for loop:
for (int i = 0; i < input.Length; i++)
{
if (input[i] == delimiter)
{
parts.Add(buff.ToString());
buff.Clear();
}
else
{
buff.Append(input[i]);
}
}
// This you need to add
if (!string.IsNullOrEmpty(buff.ToString()))
{
parts.Add(buff.ToString());
}
return parts.ToArray();

How to random order a 3 digit number on a list box? [duplicate]

What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)
Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.
Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')
A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.
Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.
Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}

Intersect two lists and return the similarity with the preserved order of the original first string value

I'm facing a problem I don't even know what to search in Google/Stack Overflow.
So comment if you feel the need for further explanation, questions.
Basically I want to intersect two lists and return the similarity with the preserved order of the original first string value.
Example:
I have two strings, that I convert to a CharArray.
I want to Intersect these two arrays and return the values that are similar, including/with the order of the first string (s1).
As you can see the first string contains E15 (in that specific order), and so does the seconds one.
So these two strings will return : { 'E', '1', '5' }
string s1 = "E15QD(A)";
string s2 = "NHE15H";
The problem I am facing is that if i replace "s2" with:
string s2 = "NQE18H" // Will return {'Q', 'E', '1' }
My operation will return : {'Q', 'E', '1' }
The result should be : {'E', '1' } because Q don't follow the letter 1
Currently my operation is not the greatest effort, because i don't know which methods to use in .NET to be able to do this.
Current code:
List<char> cA1 = s1.ToList();
List<char> cA2 = s2.ToList();
var result = cA1.Where(x => cA2.Contains(x)).ToList();
Feel free to help me out, pointers in the right direction is acceptable as well as a full solution.
This is a "longest common substring" problem.
You can use this extension to get all substrings lazily:
public static class StringExtensions
{
public static IEnumerable<string> GetSubstrings(this string str)
{
if (string.IsNullOrEmpty(str))
throw new ArgumentException("str must not be null or empty", "str");
for (int c = 0; c < str.Length - 1; c++)
{
for (int cc = 1; c + cc <= str.Length; cc++)
{
yield return str.Substring(c, cc);
}
}
}
}
Then it's easy and readable with this LINQ query:
string longestIntersection = "E15QD(A)".GetSubstrings()
.Intersect("NQE18H".GetSubstrings())
.OrderByDescending(s => s.Length)
.FirstOrDefault(); // E1
Enumerable.Intersect is also quite efficient since it's using a set. One note: if one both strings is larger than the other then it's more efficient(in terms of memory) to use it first:
longString.GetSubstrings().Intersect(shortString.GetSubstrings())
I think this should do it:
string similar = null;
for (int i = 0; i < s1.Length; i++)
{
string s = s1.Substring(0, i + 1);
if (s2.Contains(s))
{
similar = s;
}
}
char[] result = similar.ToCharArray();
#TimSchmelter provided the link to this answer in the comments of the original post.
public int LongestCommonSubstring(string str1, string str2, out string sequence)
{
sequence = string.Empty;
if (String.IsNullOrEmpty(str1) || String.IsNullOrEmpty(str2))
return 0;
int[,] num = new int[str1.Length, str2.Length];
int maxlen = 0;
int lastSubsBegin = 0;
StringBuilder sequenceBuilder = new StringBuilder();
for (int i = 0; i < str1.Length; i++)
{
for (int j = 0; j < str2.Length; j++)
{
if (str1[i] != str2[j])
num[i, j] = 0;
else
{
if ((i == 0) || (j == 0))
num[i, j] = 1;
else
num[i, j] = 1 + num[i - 1, j - 1];
if (num[i, j] > maxlen)
{
maxlen = num[i, j];
int thisSubsBegin = i - num[i, j] + 1;
if (lastSubsBegin == thisSubsBegin)
{//if the current LCS is the same as the last time this block ran
sequenceBuilder.Append(str1[i]);
}
else //this block resets the string builder if a different LCS is found
{
lastSubsBegin = thisSubsBegin;
sequenceBuilder.Length = 0; //clear it
sequenceBuilder.Append(str1.Substring(lastSubsBegin, (i + 1) - lastSubsBegin));
}
}
}
}
}
sequence = sequenceBuilder.ToString();
return maxlen;
}

Find out how long the longest sequence is in a string

I recently had this question in an interview and this is what I came up with. Any feedback?
Find out how long the longest sequence is in a string. For example, in the string "abccdeeeeef" the answer would be 5.
static int LongestSeq(string strPass)
{
int longestSeq = 0;
char[] strChars = strPass.ToCharArray();
int numCurrSeq = 1;
for (int i = 0; i < strChars.Length - 1; i++)
{
if (strChars[i] == strChars[i + 1])
{
numCurrSeq++;
}
else
{
numCurrSeq = 1;
}
if (longestSeq < numCurrSeq)
{
longestSeq = numCurrSeq;
}
}
return longestSeq;
}
This will return 0 for strings of length 1 (when it should return 1).
First comment: you don't need to convert it to a char array. You can index straight into the string.
Second comment: you could easily generalize this to IEnumerable<T> if you wanted to, using foreach and remembering the "current" item.
Third comment: I think the comparison between longestSeq and numCurrSeq would be clearer as:
if (numCurrSeq > longestSeq)
To me that's more natural as I usually have the varying part of the expression first.
Just to add my 2 pence in, here's an alternative using Regex:
string source = "eeabccdeeeeef";
Regex reg = new Regex(#"(\w)\1+");
MatchCollection matches = reg.Matches(source);
int longest = 0;
foreach (System.Text.RegularExpressions.Match match in matches)
{
if (longest < match.Length) longest = match.Length;
}
Due to not reading the question properly in the first place when posting my previous answer, I should probably add in some actual feedback considering that's the question posted by the OP. However, every point I've come up with has been mentioned by Henrik or Job Skeet, so I'll just stress the point Jon Skeet made; you do not have to convert a string to a char array, you can just index a particular point in the string as follows:
char letter = someString[4];
So it should all still work if you replace strChars with strPass.
You can always rember the last character, so you don't need to access the array twice in an iteration.
Inside your loop you can use another loop which iterates as long as the current character is the same as the last character. After this subloop you can place the check if the current numCurrSeq > longestSeq you you don't need this check every iteration but for every subsequence.
I don't really know whatever langauge this is (C#?) so excuse any minor syntactic glitches (I don't know if it's "else if" or "elseif" or "elif" or something else)
static int LongestSeq(string strPass)
{
int longestSeq = 1;
int curSeqStart = 0;
for (int i = 1; i < strPass.Length; i++)
{
if (strPass[i] != strPass[curSeq])
{
curSeqStart = i;
}
else if (i - curSeqStart + 1 > longestSeq)
{
longestSeq = i - curSeqStart + 1;
}
}
return longestSeq;
}
It might be more efficient to do
...
else
{
len = i - curSeqStart + 1
if ( len > longestSeq )
{
longestSeq = len;
}
}
or even just
...
else
{
longestSeq = max(longestSeq, i - curSeqStart + 1)
}
depending on how good your 'max' implementation and compiler are.
I think this works? I don't ussually write recursive methods, I would have totally come up with the posters answer..
public static int recurse(Char last, int seqLength, int currentIndex, int largestSeqLength, string source)
{
if (currentIndex > source.Length)
{
return largestSeqLength;
}
if (source[currentIndex] == last)
{
seqLength++;
if (seqLength > largestSeqLength)
{
largestSeqLength = seqLength;
}
}
else
{
seqLength = 1;
}
return recurse(source[currentIndex], seqLength, currentIndex++, largestSeqLength, source);
}
And another implementation
public static int LongestSeq<T>(this IEnumerable<T> source)
{
if (source == null)
throw new ArgumentNullException("source");
int result = 0;
int currentCount = 0;
using (var e = source.GetEnumerator())
{
var lhs = default(T);
if (e.MoveNext())
{
lhs = e.Current;
currentCount = 1;
result = currentCount;
}
while (e.MoveNext())
{
if (lhs.Equals(e.Current))
{
currentCount++;
}
else
{
currentCount = 1;
}
result = Math.Max(currentCount, result);
lhs = e.Current;
}
}
return result;
}
A simple (untested) solution would be:
int GetLongestSequence(string input)
{
char c = 0;
int maxSequenceLength = 0;
int maxSequenceStart = 0;
int curSequenceLength = 0;
int length = input.Length;
for (int i = 0; i < length; ++i)
{
if (input[i] == c)
{
++curSequenceLength;
if (curSequenceLength > maxSequenceLength)
{
maxSequenceLength = curSequenceLength;
maxSequenceStart = i - (curSequenceLength - 1);
}
}
else
{
curSequenceLength = 1;
c = input[i];
}
}
return maxSequenceStart;
}
Or a better structured code (also untested):
private int GetSequenceLength(string input, int start)
{
int i = start;
char c = input[i];
while (input[i] == c) ++i; // Could be written as `while (input[i++] == c);` but i don't recommend that
return (i - start);
}
public int GetLongestSequence(string input)
{
int length = input.Length;
int maxSequenceLength = 0;
int maxSequenceStart = 0;
for (int i = 0; i < length; /* no ++i */)
{
int curSequenceLength = this.GetSequenceLength(input, i);
if (curSequenceLength > maxSequenceLength)
{
maxSequenceLength = curSequenceLength;
maxSequenceStart = i;
}
i += curSequenceLength;
}
return maxSequenceStart;
}
This extension method find the longest sequence of same characters in a string.
public static int GetLongestSequenceOfSameCharacters(this string sequence)
{
var data = new List<char>();
for (int i = 0; i < sequence.Length; i++)
{
if (i > 0 && (sequence[i] == sequence[i - 1]))
{
data.Add(sequence[i]);
}
}
return data.GroupBy(x => x).Max(x => x.Count()) + 1;
}
[TestMethod]
public void TestMethod1()
{
// Arrange
string sequence = "aabbbbccccce";
// Act
int containsSameNumbers = sequence.GetLongestSequenceOfSameCharacters();
// Assert
Assert.IsTrue(containsSameNumbers == 5);
}

Function that generates strings according to input

I need a C# function that takes 2 strings as an input and return an array of all possible combinations of strings.
private string[] FunctionName(string string1, string string2)
{
//code
}
The strings input will be in the following format:
string1: basement
string2: a*fa
Now what I need is all combinations of possible strings using the characters in String2 (ignoring the * symbols), and keeping them in the same character position like this:
baaement, baaefent, baaefena, basefent, basemena, etc.
EDIT:
This is not homework. I need this function for a piece of a program I am doing.
The following is the code I have so far but it has some bugs.
static List<string> combinations = new List<string>();
static void Main(string[] args)
{
//include trimming of input string
string FoundRes = "incoming";
string AltRes = "*2*45*78";
List<int> loc = new List<int>();
string word = "";
for (int i = 0; i < AltRes.Length; i++)
{
if (AltRes[i] != '*')
{
loc.Add(i);
word += AltRes[i];
}
}
generate(word);
string[] aaa = InsertSymbol(FoundRes, loc.ToArray(), AltRes, combinations);
Console.WriteLine("input string: " + FoundRes);
Console.WriteLine("Substitute string: " + AltRes);
Console.WriteLine("============Output============");
for (int j = 0; j < aaa.Length; j++)
{
Console.WriteLine(aaa[j]);
}
Console.ReadKey();
}//
private static void generate(string word)
{
// Add this word to combination results set
if (!combinations.Contains(word))
combinations.Add(word);
// If the word has only one character, break the recursion
if (word.Length == 1)
{
if (!combinations.Contains(word))
combinations.Add(word);
return;
}
// Go through every position of the word
for (int i = 0; i < word.Length; i++)
{
// Remove the character at the current position
// call this method with the String
generate(word.Substring(0, i) + word.Substring(i + 1));
}
}//
private static string[] InsertSymbol(string orig, int[] loc, string alternative, List<string> Chars)
{
List<string> CombinationsList = new List<string>();
string temp = "";
for (int i = 0; i < Chars.Count; i++)
{
temp = orig;
for (int j = 0; j < Chars[i].Length; j++)
{
string token = Chars[i];
if (alternative.IndexOf(token[j]) == loc[j])
{
temp = temp.Remove(loc[j], 1);
temp = temp.Insert(loc[j], token[j].ToString());
// int pos = sourceSubst.IndexOf(token[j]);
// sourceSubst = sourceSubst.Remove(pos, 1);
// sourceSubst = sourceSubst.Insert(pos, ".");
}
else
{
temp = temp.Remove(alternative.IndexOf(token[j]), 1);
temp = temp.Insert(alternative.IndexOf(token[j]), token[j].ToString());
}
}
CombinationsList.Add(temp);
}
return CombinationsList.ToArray();
}//
It does sound like homework. As a suggestion, I would ignore the first parameter and focus on getting all possible permutations of the second string. What's turned off, what's turned on, etc. From that list, you can easily come up with a method of swapping out characters of the first string.
On that note, I'm in the uncomfortable position of having a function ready to go but not wanting to post it because of the homework implication. I'd sure love for somebody to review it, though! And technically, there's two functions involved because I just happened to already have a generic function to generate subsets lying around.
Edit: OP says it isn't homework, so here is what I came up with. It has been refactored a bit since the claim of two functions, and I'm more than open to criticism.
using System;
using System.Collections.Generic;
using System.Text;
class Program
{
static void Main()
{
string original = "phenomenal";
string pattern = "*xo**q*t**";
string[] replacements = StringUtility.GetReplacementStrings(original, pattern, true);
foreach (string replacement in replacements)
Console.WriteLine(replacement);
Console.Read();
}
public static class StringUtility
{
public static string[] GetReplacementStrings(string original, string pattern, bool includeOriginal)
{
// pattern and original might not be same length
int maxIndex = Math.Max(original.Length, pattern.Length);
List<int> positions = GetPatternPositions(pattern, maxIndex, '*');
List<int[]> subsets = ArrayUtility.CreateSubsets(positions.ToArray());
List<string> replacements = GenerateReplacements(original, pattern, subsets);
if (includeOriginal)
replacements.Insert(0, original);
return replacements.ToArray();
}
private static List<string> GenerateReplacements(string original, string pattern, List<int[]> subsets)
{
List<string> replacements = new List<string>();
char[] temp = new char[original.Length];
foreach (int[] subset in subsets)
{
original.CopyTo(0, temp, 0, original.Length);
foreach (int index in subset)
{
temp[index] = pattern[index];
}
replacements.Add(new string(temp));
}
return replacements;
}
private static List<int> GetPatternPositions(string pattern, int maxIndex, char excludeCharacter)
{
List<int> positions = new List<int>();
for (int i = 0; i < maxIndex; i++)
{
if (pattern[i] != excludeCharacter)
positions.Add(i);
}
return positions;
}
}
public static class ArrayUtility
{
public static List<T[]> CreateSubsets<T>(T[] originalArray)
{
List<T[]> subsets = new List<T[]>();
for (int i = 0; i < originalArray.Length; i++)
{
int subsetCount = subsets.Count;
subsets.Add(new T[] { originalArray[i] });
for (int j = 0; j < subsetCount; j++)
{
T[] newSubset = new T[subsets[j].Length + 1];
subsets[j].CopyTo(newSubset, 0);
newSubset[newSubset.Length - 1] = originalArray[i];
subsets.Add(newSubset);
}
}
return subsets;
}
}
}
since it's hopw work I'd only suggest some way to solve the problem rather than writing the code.
if you loop the second parameter every time you hit a letter you'll have to options either use the letter from the first argument or the letter from the second. collect all these optins together with the index. keep a list of the parts from the first argument that will never change. iterate thorugh those two lists to created all the possible permutations
Decimal to Binary converted code is stolon copied from here.
static void Main()
{
string string1 = "basement";
string string2 = "**a*f**a";
string[] result = GetCombinations(string1, string2);
foreach (var item in result)
{
Console.WriteLine(item);
}
}
private static string[] GetCombinations(string string1, string string2)
{
var list = new List<List<char>> { new List<char>(), new List<char>() };
var cl = new List<char>();
List<string> result = new List<string>();
for (int i = 0; i < string1.Length; i++)
{
if (string2[i] == '*')
{
cl.Add(string1[i]);
}
else
{
list[0].Add(string1[i]);
list[1].Add(string2[i]);
}
}
int l = list[0].Count;
for (int i = 0; i < (Int64)Math.Pow(2.0,l); i++)
{
string s = ToBinary(i, l);
string ss = "";
int x = 0;
int y = 0;
for (int I = 0; I < string1.Length; I++)
{
if (string2[I] == '*')
{
ss += cl[x].ToString();
x++;
}
else
{
ss += (list[int.Parse(s[y].ToString())][y]);
y++;
}
}
result.Add(ss);
}
return result.ToArray<string>();
}
public static string ToBinary(Int64 Decimal, int width)
{
Int64 BinaryHolder;
char[] BinaryArray;
string BinaryResult = "";
while (Decimal > 0)
{
BinaryHolder = Decimal % 2;
BinaryResult += BinaryHolder;
Decimal = Decimal / 2;
}
BinaryArray = BinaryResult.ToCharArray();
Array.Reverse(BinaryArray);
BinaryResult = new string(BinaryArray);
var d = width - BinaryResult.Length;
if (d != 0) for (int i = 0; i < d; i++) BinaryResult = "0" + BinaryResult;
return BinaryResult;
}
which password cracker do you want to program? :)
how about
if string2 contains '*'
foreach(char ch in string1)
replace first * with ch,
execute FunctionName
else
print string2

Categories

Resources