Find out how long the longest sequence is in a string - c#

I recently had this question in an interview and this is what I came up with. Any feedback?
Find out how long the longest sequence is in a string. For example, in the string "abccdeeeeef" the answer would be 5.
static int LongestSeq(string strPass)
{
int longestSeq = 0;
char[] strChars = strPass.ToCharArray();
int numCurrSeq = 1;
for (int i = 0; i < strChars.Length - 1; i++)
{
if (strChars[i] == strChars[i + 1])
{
numCurrSeq++;
}
else
{
numCurrSeq = 1;
}
if (longestSeq < numCurrSeq)
{
longestSeq = numCurrSeq;
}
}
return longestSeq;
}

This will return 0 for strings of length 1 (when it should return 1).

First comment: you don't need to convert it to a char array. You can index straight into the string.
Second comment: you could easily generalize this to IEnumerable<T> if you wanted to, using foreach and remembering the "current" item.
Third comment: I think the comparison between longestSeq and numCurrSeq would be clearer as:
if (numCurrSeq > longestSeq)
To me that's more natural as I usually have the varying part of the expression first.

Just to add my 2 pence in, here's an alternative using Regex:
string source = "eeabccdeeeeef";
Regex reg = new Regex(#"(\w)\1+");
MatchCollection matches = reg.Matches(source);
int longest = 0;
foreach (System.Text.RegularExpressions.Match match in matches)
{
if (longest < match.Length) longest = match.Length;
}
Due to not reading the question properly in the first place when posting my previous answer, I should probably add in some actual feedback considering that's the question posted by the OP. However, every point I've come up with has been mentioned by Henrik or Job Skeet, so I'll just stress the point Jon Skeet made; you do not have to convert a string to a char array, you can just index a particular point in the string as follows:
char letter = someString[4];
So it should all still work if you replace strChars with strPass.

You can always rember the last character, so you don't need to access the array twice in an iteration.
Inside your loop you can use another loop which iterates as long as the current character is the same as the last character. After this subloop you can place the check if the current numCurrSeq > longestSeq you you don't need this check every iteration but for every subsequence.

I don't really know whatever langauge this is (C#?) so excuse any minor syntactic glitches (I don't know if it's "else if" or "elseif" or "elif" or something else)
static int LongestSeq(string strPass)
{
int longestSeq = 1;
int curSeqStart = 0;
for (int i = 1; i < strPass.Length; i++)
{
if (strPass[i] != strPass[curSeq])
{
curSeqStart = i;
}
else if (i - curSeqStart + 1 > longestSeq)
{
longestSeq = i - curSeqStart + 1;
}
}
return longestSeq;
}
It might be more efficient to do
...
else
{
len = i - curSeqStart + 1
if ( len > longestSeq )
{
longestSeq = len;
}
}
or even just
...
else
{
longestSeq = max(longestSeq, i - curSeqStart + 1)
}
depending on how good your 'max' implementation and compiler are.

I think this works? I don't ussually write recursive methods, I would have totally come up with the posters answer..
public static int recurse(Char last, int seqLength, int currentIndex, int largestSeqLength, string source)
{
if (currentIndex > source.Length)
{
return largestSeqLength;
}
if (source[currentIndex] == last)
{
seqLength++;
if (seqLength > largestSeqLength)
{
largestSeqLength = seqLength;
}
}
else
{
seqLength = 1;
}
return recurse(source[currentIndex], seqLength, currentIndex++, largestSeqLength, source);
}

And another implementation
public static int LongestSeq<T>(this IEnumerable<T> source)
{
if (source == null)
throw new ArgumentNullException("source");
int result = 0;
int currentCount = 0;
using (var e = source.GetEnumerator())
{
var lhs = default(T);
if (e.MoveNext())
{
lhs = e.Current;
currentCount = 1;
result = currentCount;
}
while (e.MoveNext())
{
if (lhs.Equals(e.Current))
{
currentCount++;
}
else
{
currentCount = 1;
}
result = Math.Max(currentCount, result);
lhs = e.Current;
}
}
return result;
}

A simple (untested) solution would be:
int GetLongestSequence(string input)
{
char c = 0;
int maxSequenceLength = 0;
int maxSequenceStart = 0;
int curSequenceLength = 0;
int length = input.Length;
for (int i = 0; i < length; ++i)
{
if (input[i] == c)
{
++curSequenceLength;
if (curSequenceLength > maxSequenceLength)
{
maxSequenceLength = curSequenceLength;
maxSequenceStart = i - (curSequenceLength - 1);
}
}
else
{
curSequenceLength = 1;
c = input[i];
}
}
return maxSequenceStart;
}
Or a better structured code (also untested):
private int GetSequenceLength(string input, int start)
{
int i = start;
char c = input[i];
while (input[i] == c) ++i; // Could be written as `while (input[i++] == c);` but i don't recommend that
return (i - start);
}
public int GetLongestSequence(string input)
{
int length = input.Length;
int maxSequenceLength = 0;
int maxSequenceStart = 0;
for (int i = 0; i < length; /* no ++i */)
{
int curSequenceLength = this.GetSequenceLength(input, i);
if (curSequenceLength > maxSequenceLength)
{
maxSequenceLength = curSequenceLength;
maxSequenceStart = i;
}
i += curSequenceLength;
}
return maxSequenceStart;
}

This extension method find the longest sequence of same characters in a string.
public static int GetLongestSequenceOfSameCharacters(this string sequence)
{
var data = new List<char>();
for (int i = 0; i < sequence.Length; i++)
{
if (i > 0 && (sequence[i] == sequence[i - 1]))
{
data.Add(sequence[i]);
}
}
return data.GroupBy(x => x).Max(x => x.Count()) + 1;
}
[TestMethod]
public void TestMethod1()
{
// Arrange
string sequence = "aabbbbccccce";
// Act
int containsSameNumbers = sequence.GetLongestSequenceOfSameCharacters();
// Assert
Assert.IsTrue(containsSameNumbers == 5);
}

Related

Search a word in the given string in C#?

I have to find subtext in text without using builtin function of string.
public static void Main(string[] args)
{
string subtext = "polly";
string text = "polly put the katle on,polly put the katle on,polly put the katle on,we all have tea";
int i, j, found;
int strLen, wordLen;
strLen = text.Length;
wordLen = subtext.Length;
for (i = 0; i < strLen - wordLen; i++)
{
found = 1;
for (j = 0; j < wordLen; j++)
{
if (text[i + j] != subtext[j])
{
found = 0;
break;
}
}
if (found == 1)
{
Console.WriteLine(" found at index:", subtext, i);
Console.ReadLine();
}
}
}
I am not sure how long you would like to search, your current code seems to find all indexes (or at least that seems to be the intent)
Some things you could change however is instead of always starting the loop, you could validate the if the char at position i matches the first char of the subtext, and if not continue.
When you want to write the data to the console, don't forget to add the spaceholders for your arguments, like:
Console.WriteLine("found {0} at index: {1}", subtext, i);
For the rest, I guess your current implementation is okay, but you could add some validations, like ensuring that both texts are available, and if subtext is longer than the text, simply return -1 directly.
For a simple find of first index, I wrote this one up, it still looks pretty similar to yours
private static int FindIn( string text, string sub ) {
if (string.IsNullOrWhiteSpace( text ) || string.IsNullOrWhiteSpace( sub ) ) {
return string.IsNullOrWhiteSpace( sub ) ? 0 : -1;
}
if (text.Length < sub.Length) {
return -1;
}
for (int i = 0; i < text.Length - sub.Length; i++) {
if (text[i] != sub[0]) {
continue;
}
var matched = true;
for (int j = 1; j < sub.Length && i + j < text.Length; j++) {
if (text[i+j] != sub[j]) {
matched = false;
break;
}
}
if (matched) {
return i;
}
}
return -1;
}
Which you can play around with here
There are a lot of pattern-matching algorithms in this book, i will leave here c# implementation of Knuth-Morris-Pratt algorithm.
static int[] GetPrefix(string s)
{
int[] result = new int[s.Length];
result[0] = 0;
int index = 0;
for (int i = 1; i < s.Length; i++)
{
while (index >= 0 && s[index] != s[i]) { index--; }
index++;
result[i] = index;
}
return result;
}
static int FindSubstring(string pattern, string text)
{
int res = -1;
int[] pf = GetPrefix(pattern);
int index = 0;
for (int i = 0; i < text.Length; i++)
{
while (index > 0 && pattern[index] != text[i]) { index = pf[index - 1]; }
if (pattern[index] == text[i]) index++;
if (index == pattern.Length)
{
return res = i - index + 1;
}
}
return res;
}
If you are looking for all occurance of the subtect in the text you can use the following code:
public static void Main(string[] args)
{
string subtext = "polly";
string text = "polly put the katle on,polly put the katle on,polly put the katle on,we all have tea";
int index = 0;
int startPosition = 0;
bool found = false;
while (index < text.Length - 1)
{
if (subtext[0] == text[index])
{
startPosition = index;
index++;
for (int j = 1; j <= subtext.Length - 1; j++)
{
if (subtext[j] != text[index])
{
found = false;
break;
}
else
{
found = true;
}
index++;
}
}
if (found)
{
Console.WriteLine("{0} found at index: {1}", subtext, startPosition);
found = false;
}
index++;
}
Console.ReadLine();
}
If you are looking only for the first occurance add break in the "if (found)" condition

Largest substring composed of identical characters

I want to develop method that will return the length of largest substring composed of identical characters form string that is passed as argument, but without using any of .NET libraries.
For example if we pass aaacccccdefffgg as parameter the biggest substring is ccccc and method should return 5.
Here is my working solution :
public static int GetMaxSubstringLenght(char[] myArray)
{
int max = 0;
for (int i = 0; i < myArray.Length-1; i++)
{
if (myArray.Length == 0)
{
return 0;
}
else
{
int j = i + 1;
int currentMax = 1; // string has some value, so we start with 1
while (myArray[i] == myArray[j])
{
currentMax++;
if (max < currentMax)
{
max = currentMax;
}
j++;
}
}
}
return max;
}
The code above will return expected result, but there will be some unnecessary iteration in for loop that I want to avoid. In first iteration when i=0it will compare it until j=2 and then will get out of while loop and start second iteration in for loop comparing the one at [1] index with [2], which we already did in previous iteration.So basically, when first iteration is completed, next one should start from the last value of j. How can I achieve that ?
Thank You in advance.
Since you want "Largest substring..." let's take String as argument and return String
public static String GetMaxSubstring(String value) {
if (String.IsNullOrEmpty(value))
return "";
int bestCount = 0;
char bestChar = '\0';
int currentCount = 0;
char current = '\0';
for (int i = 0; i < value.Length; ++i) {
if ((i == 0) || (value[i] != current))
currentCount = 0;
currentCount += 1;
current = value[i];
if (currentCount > bestCount) {
bestCount = currentCount;
bestChar = current;
}
}
return new String(bestChar, bestCount);
}
....
// "ccccc"
String result = GetMaxSubstring("aaacccccdefffgg");
// 5
int length = result.Length;
Another approach:
public static int MaxSubstringLength(string s)
{
if (string.IsNullOrEmpty(s))
return 0;
int max = 0, cur = 1;
for (int i = 1; i < s.Length; ++i, ++cur)
{
if (s[i] != s[i-1])
{
max = cur > max ? cur : max;
cur = 0;
}
}
return cur > max ? cur : max;
}
[EDIT] Simplified the code.
[EDIT2] Simplified the code further.
you also can do it with one loop:
public static int GetMaxSubstringLenght(char[] myArray)
{
int max = 0;
char currentchar = myArray[0];
int count = 1;
for each(char c in myArray)
{
if(currentchar != c)
{
count = 1;
currentchar = c;
}
if(count > max)
{
max = count;
}
count++;
}
return max;
}
I changed the code... now this code does not use math.max and I think I eleminated the mistake... I've no IDE at the moment to test it
public static int GetMaxSubstringLenght(char[] myArray)
{
if (myArray.Length == 0)
return 0;
if (myArray.Length == 1)
return 1;
int max = 1;
int localMax = 1;
for (int i = 0; i < myArray.Length - max; i++ )
{
if (myArray[i] == myArray[i + 1])
{
localMax++;
}
else
{
max = Math.Max(max, localMax);
localMax = 1;
}
}
return Math.Max(max, localMax);
}
static int LongestCharSequence(string s)
{
if (string.IsNullOrEmpty(s)) return 0;
var prevChar = '\0';
int cmax = 0;
int max = 1;
foreach (char c in s)
{
if (c != prevChar)
{
cmax = 1;
prevChar = c;
}
else
{
if (++cmax > max) max = cmax;
}
}
return max;
}
recursion!
static int LongestCharSequence(string s)
{
int i = (s?.Length ?? 0) == 0 ? 0 : 1;
for (; i < s?.Length; i++)
if (s[i] != s[i - 1]) return Math.Max(i, LongestCharSequence(s.Substring(i)));
return i;
}
Another solution using my favorite nested loop technique:
public static int MaxSubstringLength(string s)
{
int maxLength = 0;
for (int length = s != null ? s.Length : 0, pos = 0; pos < length;)
{
int start = pos;
while (++pos < length && s[pos] == s[start]) { }
maxLength = Math.Max(maxLength, pos - start);
}
return maxLength;
}

How to random order a 3 digit number on a list box? [duplicate]

What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)
Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.
Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')
A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.
Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.
Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}

Find combination of numbers with backtrack

I'm looking for a backtrack algorithm in C# that will search the correct numbers from a List<int> where the sum of these numbers is closest to X.
e.g: list={5,1,3,5}, X = 10 the output should be (5,5) (5+5 is the closest to 10)
it cant be (3,3,3,1) because I can't use a number more than once from the List. (if we have two piece from number 3 than we can use two times)
e.g.2: list={4,1,3,4}, X=10 the output should be {4,1,3} and {1,3,4}.
I got this kind of code to start, but i cant do it;
(I know there are wikipedia about backtracking, and knapsack, but it doesn't help me)
static void BackTrack(int lvl, bool Van, int[] E)
{
int i = -1;
do
{
i++;
if (ft(lvl, i))
{
int k = 0;
while (k < szint && fk(E[i], E[k]))
{
k++;
}
if (k == szint)
{
E[k] = R[lvl,i];
if (lvl == E.Length - 1)
{
}
else
{
BackTrack(lvl + 1, Van, E);
}
}
}
}
while (i < E.Length - 1);
}
static bool fk(int nr, int nr2)
{
return (nr + nr2 <= 10);
}
static bool ft(int lvl, int nr)
{
return true;
}
From what i am reading, this example:
e.g.2: list={4,1,3,4}, X=10 the output should be {4,1,3} and {1,3,4}.
output should be {4,1,4} 9 is closer then 8.
Here is what i did. it works with the two examples you gave.
public List<int> highest(List<int> list, int number)
{
//probably a better way to do this
IEnumerable<int> orderedList = list.OrderByDescending(item => item);
var currentNumber = 0;
List<int> combinationResult = new List<int>();
foreach (var item in orderedList)
{
var temp = currentNumber + item;
if (temp <= number)
{
combinationResult.Add(item);
currentNumber = temp;
}
}
return combinationResult;
}

Implementation of an anagram function in C#

Possible Duplicate:
What is an easy way to tell if a list of words are anagrams of each other?
What is the best way (performance wide) to write a function in C# that takes two strings and returns true when the strings are anagrams of each other and otherwise returns false. Example of anagrams are:
abet beat beta bate
abides biased
anagrams link
In implementing this, is it possible that there is space in each string?
Any idea would be very much appreciated!
A simple (naïve?) way, using LINQ:
"abides".OrderBy(c=>c).SequenceEqual("biased".OrderBy(c=>c))
An easy solution would be to sort the characters alphabetically and compare them to one another.
public static class AnagramExtensions
{
public static bool IsAnagramOf(this string word1, string word2)
{
return word1.OrderBy(x => x).SequenceEqual(word2.OrderBy(x => x));
}
}
Then, to use it:
static void Main()
{
string word1 = "cat";
string word2 = "tac";
Console.WriteLine(word1.IsAnagramOf(word2));
string word3 = "cat";
string word4 = "dog";
Console.WriteLine(word3.IsAnagramOf(word4));
}
The output in this case would be
True
False
How not to do this: Remove all whitespace from each of the strings. Use one of the algorithms at Algorithm to generate anagrams to generate all possible permutations of the first string. Finally, search the list of permuations for a match; if there is one, then the two are anagrams, otherwise, not.
I have a solution for a List of Strings (Not just two Strings).
If you are interested in it or any other one, you can use it.
Given an array of strings, remove each string that is an anagram of an earlier string, then return the remaining array in stored order.
private static List<string> GencoAnagrams(List<string> textList)
{
var listCount = textList.Count;
if (listCount == 1) return textList;
for (var j = 1; j < listCount; j++)
{
for (var i = 0; i < j; i++)
{
if (string.Concat(textList[j].OrderBy(x => x)).Equals(string.Concat(textList[i].OrderBy(y => y))))
{
textList.RemoveAt(j);
--listCount;
--j;
if (listCount == 1) break;
}
}
if (listCount == 1) break;
}
return textList;
}
and count all sceniro (n*n+1)/2
public static int sherlockAndAnagrams(string s)
{
int count = 0;
string[] stringList = new string[(s.Length * (s.Length + 1)) / 2];
int index = 0;
Dictionary<string, int> hash = new Dictionary<string, int>();
for (int i = 0; i < s.Length; i++)
{
for (int j = i; j < s.Length; j++)
{
stringList[index] = s.Substring(i, j - i + 1);
index++;
}
}
foreach (var str in stringList)
{
var keyString = string.Concat(str.OrderBy(x => x));
if (hash.ContainsKey(keyString))
{
hash[keyString]++;
}
else
{
hash[keyString] = 1;
}
}
foreach (var key in hash.Keys)
{
if (hash[key] <= 1)
{
continue;
}
else
{
count = count + ((hash[key] * (hash[key] - 1) )/ 2);
}
}
return count;
}

Categories

Resources