Locking an object to prevent any data changes - c#

Bit of an odd one this...
Lets say I have the following class:
public class Wibble
{
public string Foo {get;set;}
public string Bar {get;set;}
}
This class is used a process where the values of Foo and Bar are updated/changed. However after a certain point in the process I want to "lock" the instance to prevent any changes from being made. So the question is how best to do this?
A solution of sorts would be something like this:
public class Wibble
{
private string _foo;
private string _bar;
public bool Locked {get; set;}
public string Foo
{
get
{
return this._foo
}
set
{
if (this.Locked)
{
throw new ObjectIsLockedException()
}
this._foo = value;
}
}
public string Bar
{
get
{
return this._bar
}
set
{
if (this.Locked)
{
throw new ObjectIsLockedException()
}
this._bar = value;
}
}
}
However this seems a little inelegant.
The reason for wanting to do this is that I have an application framework that uses externally developed plugins that use the class. The Wibble class is passed into the plugins however some of them should never change the contents, some of them can. The intention behind this is to catch development integration issues rather than runtime production issues. Having the object "locked" allows is to quickly identify plugins that are not coded as specified.

I've implemented something similar to your locked pattern, but also with a read-only interface implemented by a private sub-class containing the actual class data, so that you could pass out what is clearly a read-only view of the data and which can't be up-casted to the original 'mutable version'. The locking was purely to prevent the data provider from making further changes after it had provided an immutable view.
It worked reasonably well, but was a bit awkward, as you've noted. I think it's actually cleaner to have mutable 'Builder' objects which can then generate immutable snapshots. Think StringBuilder and String. This means you duplicate some property code and have to write the routines to do the copying, but it's less awkward, in my opinion, than having a write-lock on every property. It's also evident at compile-time that the snapshot is supposed to be read-only and the user of the Builder cannot modify the snapshots that it created earlier.

I would recommend this:
An immutable base class:
public class Wibble
{
public string Foo { get; private set; }
public string Bar { get; private set; }
public Wibble(string foo, string bar)
{
this.Foo = foo;
this.Bar = bar
}
}
Then a mutable class which you can change, and then create an immutable copy when the time comes.
public class MutableWibble
{
public string Foo { get; set; }
public string Bar { get; set; }
public Wibble CreateImmutableWibble()
{
return new Wibble(this.Foo, this.Bar);
}
}
I can't remember the C# syntax exactly, but you get the idea.
Further reading: http://msdn.microsoft.com/en-us/library/acdd6hb7%28v=vs.71%29.aspx

You cannot make an object immutable!
You can follow this post:
How do I create an immutable Class?
But I think you can always change property values by reflection!
update
"...Actually, string objects are not that
immutable and as far as I know there are at least 2 ways to break string
immutability. With pointers as shown by this code example and with some advanced System.Reflection usage...."
http://codebetter.com/patricksmacchia/2008/01/13/immutable-types-understand-them-and-use-them/

The other option you have is use the BinaryFormatter to create a memberwise clone of the object to be "locked". Though you're not locking the object you're creating a snapshot which can be discarded while the original remains unchanged.

Related

shortcutting access to another class properties, best practices

My app has a CurrentContext class, it provides access to properties used across the whole app (so there's no need to pass the objects via constructor parameters or methods).
Most of those properties do not change their value during a single session.
Because some classes use some of the properties quite often I decided to create properties inside them, now I'm refactoring my code so the access pattern everywhere is the same.
Which of the below pattern is a better practice?
What is the difference in memory usage or performance?
CurrentContext class:
public class CurrentContext
{
public Document Doc {get; set}
public LogFile LogFile {get; set;}
public bool AbortFlag {get; set;}
}
Class accessing the properties of CurrentContext class:
Variant 1:
public class Example
{
private Document Doc {get { return MyApp.CurrentContext.Doc; } }
private LogFile LogFile {get { return MyApp.CurrentContext.LogFile; } }
private bool AbortFlag {get { return MyApp.CurrentContext.AbortFlag; } }
}
Variant 2:
public class Example
{
private Document Doc {get; }
private LogFile LogFile {get; }
private bool AbortFlag {get; }
public Example()
{
Doc = MyApp.CurrentContext.Doc;
LogFile = MyApp.CurrentContext.LogFile;
AbortFlag = MyApp.CurrentContext.AbortFlag;
}
}
Your question is based on a false belief; that the only difference between both approaches is a supposedly gain (or loss) in performance. That is not true; the two options you are proposing have very different meanings.
The first will always return an updated value when the properties are accessed, the second will return the values at the time the object was created.
It’s up to you to decide which of the two is the correct approach. Performance wise the difference, if any, is absolutely insignificant unless the accessed properties themselves are expensive (which they shouldn’t if you follow best practices).
Were it my code, I’d probably push back on the whole set up. Repeating properties is boring and hard to maintain if the underlying object changes throughout the life of your application. I’d simply expose the object itself or if that’s not an option, I would expose a readonly interface.
The first version better, because it is returned the current value. When the value of any MyApp.CurrentContext.* variable is changing, your Example will also changing.
This version is little-bit slower, but in 99% percent this disadvantage is acceptable.
But please expression body member syntax. This syntax is designed for this case:
public class Example
{
private Document Doc => MyApp.CurrentContext.Doc;
private LogFile LogFile => MyApp.CurrentContext.LogFile;
private bool AbortFlag => MyApp.CurrentContext.AbortFlag;
}
This code is more understandable.

How to create a "pointer-like" class, easily exposing functions of member?

What I am trying to do is find the most elegant way to create a "pointer-like" class for a specific object/class type that I have in a project.
What I mean is a little confusing without an example. Take this really simple class:
public class MyClass
{
private string _name;
public string GetName() { return _name; }
public void SetName(string name) { _name = name; }
}
I want to create a second class which is like a pointer to it like this:
public class MyClassPtr
{
private MyClass _obj;
public bool IsValid = false;
public MyClassPtr(MyClass obj) { _obj = obj; IsValid = true; }
public void InvalidatePtr()
{
IsValid = false;
obj = null;
}
// SOME MAGIC HERE?
}
The challenge: The key is that I want to elegantly have MyClassPtr provide an interface to all of the public methods/members in MyClass without writing wrappers and/or accessors around each method/member.
I know that I could do this:
public class MyClassPtr
{
public string GetName() { return _obj.GetName(); }
...
}
But that's what I want to avoid. Is there some fundamental abstraction that I don't know of that I can apply to MyClassPtr to allow it to easily re-expose the methods/members in MyClass directed through _obj? I do NOT want MyClassPtr to inherit MyClass. Should MyClassPtr be a type instead, and some trick with accessors to expose the methods/members of MyClass?
Edit: More context on why I am looking for such a design through an example. Here is the overall goal. Imagine a platform that parses through data about people and when it finds information about a person, it creates an instance of Person with that information. You could get a handle to that person like:
Person person1 = platform.GetPerson(based_on_data);
Now, imagine the platform had two instances of Person that it thought were different people, but all of a sudden information came in that strongly suggested those two instances actually refer to the same person. So, the platform wants to merge the instances together in to a new object, let's call it personX.
Now, floating around in the platform someone had a copy of one of those two instances that got merged, which was person1. What I want to do is on-the-fly replace person1 with personX. Literally, I want person1==personX to be true, NOT just that they are two different objects with the same data. This is important since the platform could make a change to personX and unless the two objects are literally equal, a change to personX would not be automatically reflected in person1.
Since I can't on-the-fly replace person1 with personX I had that idea that I wouldn't give direct access to Person, instead I would give access to PersonPtr which the platform (on-the-fly) can change what Person it is pointing to. This would insurance that once person1ptr gets updated to point to personX, if a change is made in personX it will be seen in person1ptr
You could of course use something like
public class MyClassWrapper
{
MyClass _obj;
public MyClassWrapper(MyClass obj)
{
_obj = obj;
}
public void Invoke(Action<MyClass> action)
{
action(_obj);
}
public U Invoke<U>(Func<MyClass, U> func)
{
return func(_obj);
}
public void ChangeTo(MyClass obj)
{
_obj = obj;
}
}
Given your class looks like
public class MyClass
{
public string Name { get; set; }
}
Example:
var person1 = new MyClass { Name = "Instance1" };
var person2 = new MyClass { Name = "Instance2" };
var wrapper = new MyClassWrapper(person1);
wrapper.Invoke(x => x.Name += "original");
var x = wrapper.Invoke(x => x.Name); // Instance1original
wrapper.ChangeTo(person2);
var y = wrapper.Invoke(x => x.Name); // Instance2
but it has a major drawback: you can't access members directly, so you can't bind the data (to a DataTable or a Control).
It would be better to implement all members of your class also in your wrapper class. If you're afraid changes in your class will be forgotten to be implemented in your wrapper, just use an interface:
public interface IMyClass
{
string Name { get; set; }
}
public class MyClass : IMyClass
{
public string Name { get; set; }
}
public class MyClassWrapper: IMyClass
{
MyClass _obj;
public MyClassWrapper(MyClass obj)
{
_obj = obj;
}
public string Name
{
get { return _obj.Name; }
set { _obj.Name = value; }
}
}
Note that regardless which approach you use, you'll have to always keep a reference to the wrapper instance to actually change the underlying instance (using something like static aside).
Also, changing the underlying instance of such a wrapper without telling the component using it that it changed don't seem to be a good idea. Maybe your system is simple enough to get away with a wrapper; that's something you have to decide for yourself.
Maybe your wrapper should simply have an Invalid flag (and/or use an event to signal a change of the underlying object.). Once the underlying object is merged, it is set to true and each member access should throw an exception. This would force the component using the wrapper to deliberately react to changes and to reload the data from your service.
All in all, I think using such a wrapper will just clutter up your code and be error prone (just imagine adding multithreading to the mix). Think twice if you really need this wrapper.
Why not just simply ask your service for a new instance of your class everytime you use it (the service can simply use a cache)? Sure, you can't prevent that someone somewhere keeps a reference; but at least you'll keep your sanity.

Object Oriented - Class Variables

I am pretty new to OOP and looking into things in a bit more depth, but I have a bit of confusion between these 3 methods in C# and which one is best and what the differences are between 2 of them.
Example 1
So lets start with this one, which (so I understand) is the wrong way to do it:
public class MyClass
{
public string myAttribute;
}
and in this way I can set the attribute directly using:
myObject.myAttribute = "something";
Example 2
The next way I have seen and that seems to be recomended is this:
public class MyClass
{
public string myAttribute { get; set;}
}
With getters and setters, this where I dont understand the difference between the first 2 as the variable can still be set directly on the object?
Example 3
The third way, and the way that I understand the theory behind, is creating a set function
public class MyClass
{
string myAttribute;
public void setAttribute(string newSetting)
{
myAttribute = newSetting;
//obviously you can apply some logic in here to remove unwanted characters or validate etc.
}
}
So, what are the differences between the three? I assume example 1 is a big no-no so which is best out of 2 and 3, and why use one over the other?
Thanks
The second
public class MyClass
{
public string MyAttribute { get; set;}
}
is basically shorthand for:
public class MyClass
{
private string myPrivateAttribute;
public string MyAttribute
{
get {return myPrivateAttribute;}
set {myPrivateAttribute = value;}
}
}
That is an auto-implemented property, which is exactly the same as any regular property, you just do not have to implement it, when the compiler can do that for you.
So, what is a property? It's nothing more than a couple of methods, coupled with a name. I could do:
public class MyClass
{
private string myPrivateAttribute;
public string GetMyAttribute()
{
return myPrivateAttribute;
}
public void SetMyAttribute(string value)
{
myPrivateAttribute = value;
}
}
but then instead of writing
myClass.MyAttribute = "something";
string variable = myClass.MyAttribute;
I would have to use the more verbose, but not necessarily clearer form:
myClass.SetMyAttribute("something");
string variable = myClass.GetMyAttribute();
Note that nothing constraints the contents of the get and set methods (accessors in C# terminology), they are methods, just like any other. You can add as much or as little logic as you need inside them. I.e. it is useful to make a prototype with auto-implemented properties, and later to add any necessary logic (e.g. log property access, or add lazy initalization) with an explicit implementation.
What your asking here has to do with encapsulation in OOP languages.
The difference between them is in the way you can access the propriety of an object after you created an object from your class.
In the fist example you can access it directly new MyClass().MyAttribute whether you get or set it's value.
In the second example you declare 2 basic functions for accessing it:
public string MyAttribute
{
get {return myPrivateAttribute;}
set {myPrivateAttribute = value;}
}
In the third example you declare your own method for setting the value. This is useful if you want to customize the setter. For example you don't want to set the value passed, but the value multiplied by 2 or something else...
I recommend some reading. You can find something here and here.
Property is a syntactic sugar over private attribute with get and set methods and it's realy helpful and fast to type;
You may treat automatic property with { get; set;} as a public attribute. It has no additional logic but you may add it later without uset ever notice it.
Just exchange
public string MyLine { get; set;}
to
string myLine;
public string MyLine
{
get { return myLine; }
set { myLine = value + Environment.NewLine; }
}
for example if you need so.
You can also easily create read only property as { get; private set }.
So use Properties instead of public attributes every time just because its easier and faster to write and it's provides better encapsulation because user should not be used get and set methods if you decide to use it in new version of yours programm.
One of the main principles of OOP is encapsulation, and this is essentially the difference between the first example and the other 2.
The first example you have a private field which is exposed directly from the object - this is bad because you are allowing mutation of internal data from outside the object and therefore have no control over it.
The other 2 examples are syntactically equivalent, the second being recommended simply because it's less code to write. However, more importantly they both restrict access & control mutation of the internal data so give you complete control over how the data should be managed - this is ecapsulation.

Should you use properties to initialize your fields in the constructor?

Pretty simple question really, should I use my properties to initialize fields in the constructor or reference them directly?
Example:
public class Foo()
{
private string example;
public String Example
{
get/set etc..
}
public Foo(string exampleIn)
{
Example = exampleIn;
}
}
Or is it better practice to do this:
public class Foo()
{
private string example;
public String Example
{
get/set etc..
}
public Foo(string exampleIn)
{
example = exampleIn;
}
}
Either way, I don't think either would violate encapsulation so I am wondering if there is a preferred way to go?
There is really no right or wrong answer here (and because of that I am almost tempted to vote to close). But, I tend to agree with Jacob on this. I prefer the property getter and setter route especially now that we have automatic properties. Do keep in mind that you can have different access modifies on the getters and setters in case that influences your decision for any reason. I mean, if you are going to use the property in the constructor then try to be consistent and use it exclusively everywhere else in the class as well. That may mean that you do not want to expose the setter to the outside.
public class Foo()
{
private string example;
public String Example
{
get { return example; }
private set { example = value; }
}
public Foo(string exampleIn)
{
Example = exampleIn;
}
}
Before automatic properties, which were introduced in C# 3.0, your second example is more "proper" in my opinion. Now with automatic properties I think this is best:
public class Foo()
{
private string example;
public String Example
{
{ get; set; }
}
public Foo(string exampleIn)
{
Example = exampleIn;
}
}
It depends on whether the data value will further be processed inside the Setter. IF the value needs processing then it's better to use what #Jacob has said but if the value will not be further processed (which is the case in most scenarios), it's better to use the private member to avoid an extra method call to setter method. When CLR compiles the code, it create two methods for Get and Set property and using the Property to access/modify the value which defines the property will result in extra method call unnecessarily (if the value is not processed further).

What is a "mostly complete" (im)mutability approach for C#? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
Since immutability is not fully baked into C# to the degree it is for F#, or fully into the framework (BCL) despite some support in the CLR, what's a fairly complete solution for (im)mutability for C#?
My order of preference is a solution consisting of general patterns/principles compatible with
a single open-source library with few dependencies
a small number of complementary/compatible open-source libraries
something commercial
that
covers Lippert's kinds of immutability
offers decent performance (that's vague I know)
supports serialization
supports cloning/copying (deep/shallow/partial?)
feels natural in scenarios such as DDD, builder patterns, configuration, and threading
provides immutable collections
I'd also like to include patterns you as the community might come up with that don't exactly fit in a framework such as expressing mutability intent through interfaces (where both clients that shouldn't change something and may want to change something can only do so through interfaces, and not the backing class (yes, I know this isn't true immutability, but sufficient):
public interface IX
{
int Y{ get; }
ReadOnlyCollection<string> Z { get; }
IMutableX Clone();
}
public interface IMutableX: IX
{
new int Y{ get; set; }
new ICollection<string> Z{ get; } // or IList<string>
}
// generally no one should get ahold of an X directly
internal class X: IMutableX
{
public int Y{ get; set; }
ICollection<string> IMutableX.Z { get { return z; } }
public ReadOnlyCollection<string> Z
{
get { return new ReadOnlyCollection<string>(z); }
}
public IMutableX Clone()
{
var c = MemberwiseClone();
c.z = new List<string>(z);
return c;
}
private IList<string> z = new List<string>();
}
// ...
public void ContriveExample(IX x)
{
if (x.Y != 3 || x.Z.Count < 10) return;
var c= x.Clone();
c.Y++;
c.Z.Clear();
c.Z.Add("Bye, off to another thread");
// ...
}
Would the better solution be to just use F# where you want true immutability?
Use this T4 template I put together to solve this problem. It should generally suit your needs for whatever kinds of immutable objects you need to create.
There's no need to go with generics or use any interfaces. For my purposes, I do not want my immutable classes to be convertible to one another. Why would you? What common traits should they share that means they should be convertible to one another? Enforcing a code pattern should be the job of a code generator (or better yet, a nice-enough type system to allow you to do define general code patterns, which C# unfortunately does not have).
Here's some example output from the template to illustrate the basic concept at play (nevermind the types used for the properties):
public sealed partial class CommitPartial
{
public CommitID ID { get; private set; }
public TreeID TreeID { get; private set; }
public string Committer { get; private set; }
public DateTimeOffset DateCommitted { get; private set; }
public string Message { get; private set; }
public CommitPartial(Builder b)
{
this.ID = b.ID;
this.TreeID = b.TreeID;
this.Committer = b.Committer;
this.DateCommitted = b.DateCommitted;
this.Message = b.Message;
}
public sealed class Builder
{
public CommitID ID { get; set; }
public TreeID TreeID { get; set; }
public string Committer { get; set; }
public DateTimeOffset DateCommitted { get; set; }
public string Message { get; set; }
public Builder() { }
public Builder(CommitPartial imm)
{
this.ID = imm.ID;
this.TreeID = imm.TreeID;
this.Committer = imm.Committer;
this.DateCommitted = imm.DateCommitted;
this.Message = imm.Message;
}
public Builder(
CommitID pID
,TreeID pTreeID
,string pCommitter
,DateTimeOffset pDateCommitted
,string pMessage
)
{
this.ID = pID;
this.TreeID = pTreeID;
this.Committer = pCommitter;
this.DateCommitted = pDateCommitted;
this.Message = pMessage;
}
}
public static implicit operator CommitPartial(Builder b)
{
return new CommitPartial(b);
}
}
The basic pattern is to have an immutable class with a nested mutable Builder class that is used to construct instances of the immutable class in a mutable way. The only way to set the immutable class's properties is to construct a ImmutableType.Builder class and set that in the normal mutable way and convert that to its containing ImmutableType class with an implicit conversion operator.
You can extend the T4 template to add a default public ctor to the ImmutableType class itself so you can avoid a double allocation if you can set all the properties up-front.
Here's an example usage:
CommitPartial cp = new CommitPartial.Builder() { Message = "Hello", OtherFields = value, ... };
or...
CommitPartial.Builder cpb = new CommitPartial.Builder();
cpb.Message = "Hello";
...
// using the implicit conversion operator:
CommitPartial cp = cpb;
// alternatively, using an explicit cast to invoke the conversion operator:
CommitPartial cp = (CommitPartial)cpb;
Note that the implicit conversion operator from CommitPartial.Builder to CommitPartial is used in the assignment. That's the part that "freezes" the mutable CommitPartial.Builder by constructing a new immutable CommitPartial instance out of it with normal copy semantics.
Personally, I'm not really aware of any third party or previous solutions to this problem, so my apologies if I'm covering old ground. But, if I were going to implement some kind of immutability standard for a project I was working on, I would start with something like this:
public interface ISnaphot<T>
{
T TakeSnapshot();
}
public class Immutable<T> where T : ISnaphot<T>
{
private readonly T _item;
public T Copy { get { return _item.TakeSnapshot(); } }
public Immutable(T item)
{
_item = item.TakeSnapshot();
}
}
This interface would be implemented something like:
public class Customer : ISnaphot<Customer>
{
public string Name { get; set; }
private List<string> _creditCardNumbers = new List<string>();
public List<string> CreditCardNumbers { get { return _creditCardNumbers; } set { _creditCardNumbers = value; } }
public Customer TakeSnapshot()
{
return new Customer() { Name = this.Name, CreditCardNumbers = new List<string>(this.CreditCardNumbers) };
}
}
And client code would be something like:
public void Example()
{
var myCustomer = new Customer() { Name = "Erik";}
var myImmutableCustomer = new Immutable<Customer>(myCustomer);
myCustomer.Name = null;
myCustomer.CreditCardNumbers = null;
//These guys do not throw exceptions
Console.WriteLine(myImmutableCustomer.Copy.Name.Length);
Console.WriteLine("Credit card count: " + myImmutableCustomer.Copy.CreditCardNumbers.Count);
}
The glaring deficiency is that the implementation is only as good as the client of ISnapshot's implementation of TakeSnapshot, but at least it would standardize things and you'd know where to go searching if you had issues related to questionable mutability. The burden would also be on potential implementors to recognize whether or not they could provide snapshot immutability and not implement the interface, if not (i.e. the class returns a reference to a field that does not support any kind of clone/copy and thus cannot be snapshot-ed).
As I said, this is a start—how I'd probably start—certainly not an optimal solution or a finished, polished idea. From here, I'd see how my usage evolved and modify this approach accordingly. But, at least here I'd know that I could define how to make something immutable and write unit tests to assure myself that it was.
I realize that this isn't far removed from just implementing an object copy, but it standardizes copy vis a vis immutability. In a code base, you might see some implementors of ICloneable, some copy constructors, and some explicit copy methods, perhaps even in the same class. Defining something like this tells you that the intention is specifically related to immutability—I want a snapshot as opposed to a duplicate object because I happen to want n more of that object. The Immtuable<T> class also centralizes the relationship between immutability and copies; if you later want to optimize somehow, like caching the snapshot until dirty, you needn't do it in all implementors of copying logic.
If the goal is to have objects which behave as unshared mutable objects, but which can be shared when doing so would improve efficiency, I would suggest having a private, mutable "fundamental data" type. Although anyone holding a reference to objects of this type would be able to mutate it, no such references would ever escape the assembly. All outside manipulations to the data must be done through wrapper objects, each of which holds two references:
UnsharedVersion--Holds the only reference in existence to its internal data object, and is free to modify it
SharedImmutableVersion--Holds a reference to the data object, to which no references exist except in other SharedImmutableVersion fields; such objects may be of a mutable type, but will in practice be immutable because no references will ever be made available to code that would mutate them.
One or both fields may be populated; when both are populated, they should refer to instances with identical data.
If an attempt is made to mutate an object via the wrapper and the UnsharedVersion field is null, a clone of the object in SharedImmutableVersion should be stored in UnsharedVersion. Next, SharedImmutableCVersion should be cleared and the object in UnsharedVersion mutated as desired.
If an attempt is made to clone an object, and SharedImmutableVersion is empty, a clone of the object in UnsharedVersion should be stored into SharedImmutableVersion. Next, a new wrapper should be constructed with its UnsharedVersion field empty and its SharedImmutableVersion field populated with the SharedImmutableVersion from the original.
It multiple clones are made of an object, whether directly or indirectly, and the object hasn't been mutated between the construction of those clones, all clones will refer to the same object instance. Any of those clones may be mutated, however, without affecting the others. Any such mutation would generate a new instance and store it in UnsharedVersion.

Categories

Resources