Is there an equivalent of Monitor.Pulse and Monitor.Wait that I can use in conjunction with a ReaderWriterLockSlim?
I have a class where I've encapsulated multi-threaded access to an underlying queue. To enqueue something, I acquire a lock that protects the underlying queue (and a couple of other objects) then add the item and Monitor.Pulse the locked object to signal that something was added to the queue.
public void Enqueue(ITask task)
{
lock (mutex)
{
underlying.Enqueue(task);
Monitor.Pulse(mutex);
}
}
On the other end of the queue, I have a single background thread that continuously processes messages as they arrive on the queue. It uses Monitor.Wait when there are no items in the queue, to avoid unnecessary polling. (I consider this to be good design, but any flames (within reason) are welcome if they help me learn otherwise.)
private void DequeueForProcessing(object state)
{
while (true)
{
ITask task;
lock (mutex)
{
while (underlying.Count == 0)
{
Monitor.Wait(mutex);
}
task = underlying.Dequeue();
}
Process(task);
}
}
As more operations are added to this class (requiring read-only access to the lock protected underlying), someone suggested using ReaderWriterLockSlim. I've never used the class before, and assuming it can offer some performance benefit, I'm not against it, but only if I can keep the Pulse/Wait design.
No, basically. It is optimised to provide some specific/common scenarios. If you go outside those scenarios it won't work. If you need Pulse etc, use Monitor instead.
After playing around a bit (and after accepting Mark's challenge (I agree, my change isn't exactly basic)) I came up with this combination:
ReaderWriterLockSlim rwls;
AutoResetEvent are;
public void Enqueue(ITask task) {
rwls.EnterWriteLock();
try {
underlying.Enqueue(task);
if (underlying.Count == 1) {
are.Set();
}
} finally {
rwls.ExitWriteLock();
}
}
private void DequeueForProcessing(object state) {
while (true) {
ITask task;
rwls.EnterWriteLock();
try {
while (underlying.Count == 0) {
rwls.ExitWriteLock();
are.WaitOne();
rwls.EnterWriteLock();
}
task = underlying.Dequeue();
} finally {
rwls.ExitWriteLock();
}
Process(task);
}
}
To my untrained eye, it seems to fit the bill (though it's a little uglier, to be sure,) and it's not too different from the original version.
Related
I have a function to clean up some objects as well as the ReaderWriterLockSlim. But I need the ReaderWriterLockSlim to lock as writer lock to prevent the other thread read the data while I am doing the clean up.
ConcurrentDictionary<string, ReaderWriterLockSlim> RwLocks = new ConcurrentDictionary<string, ReaderWriterLockSlim>();
private ReaderWriterLockSlim GetRwLock(string key)
{
return RwLocks.GetOrAdd(key, _ => new ReaderWriterLockSlim());
}
public void CleanUp(string key)
{
ReaderWriterLockSlim rwLock = this.GetRwLock(key);
try
{
rwLock.EnterWriterLock();
// do some other clean up
this.RwLocks.TryRemove(key, out _);
}
finally
{
rwLock.ExitWriterLock();
// It is safe to do dispose here?
// could other thread enter the read lock or writer lock here?
// and the dispose will throw exceptions?
// What is the best practice to do the dispose?
rwLock.Dispose();
}
}
I have an idea to wrap the ReaderWriterLockSlim. Do you think it could solve the problem or have any potential risk
public class ReaderWriterLockSlimWrapper
{
private ReaderWriterLockSlim rwLock;
private volatile bool disposed;
public ReaderWriterLockSlimWrapper()
{
rwLock = new ReaderWriterLockSlim();
disposed = false;
}
private void DisposeInternal()
{
if (!rwLock.IsReadLockHeld && !rwLock.IsUpgradeableReadLockHeld && !rwLock.IsWriteLockHeld)
{
rwLock.Dispose();
}
}
public void Dispose()
{
disposed = true;
DisposeInternal();
}
public void EnterReadLock()
{
rwLock.EnterReadLock();
}
public void ExitReadLock()
{
rwLock.ExitReadLock();
if (disposed)
{
DisposeInternal();
}
}
public void EnterWriteLock()
{
rwLock.EnterWriteLock();
}
public void ExitWriteLock()
{
rwLock.ExitWriteLock();
if (disposed)
{
DisposeInternal();
}
}
}
You haven't described the specific scenario where you intend to use your two mechanisms, neither for the first one with the CleanUp/GetRwLock methods, nor for the second one with the ReaderWriterLockSlimWrapper class. So I guess the question is:
Are my two mechanisms safe to use in all possible multithreaded scenarios, where thread-safety and atomicity of operations is mandatory?
The answer is no, both of your mechanisms are riddled with race conditions, and offer no guarantees about atomicity. Using them in a multithreaded scenario would result in undefined behavior, including but not limited to:
Unexpected exceptions.
Violations of the policies that a correctly used ReaderWriterLockSlim is normally expected to enforce. In order words it is possible that two threads will acquire a writer lock for the same key concurrently to each other, or concurrently with others threads that have acquired a reader lock for the same key, or both.
Explaining why your mechanisms are flawed is quite involved. A general explanation is that whenever you use the pattern if (x.BooleanProperty) x.Method(); in a multithreaded environment, although the BooleanProperty and the Method might be individually thread-safe, you are allowing a second thread to preempt the current thread between the two invocations, and invalidate the result of the first check.
As a side note, be aware that the ReaderWriterLockSlim is not a cross-process synchronization primitive. So even if you fix your mechanisms and then attempt to use them in a web application, the policies might still be violated because the web server might decide at random moments to recycle the current process and start a new one. In that case the web application might by running concurrently on two processes, for a period of time that spans a few seconds or even minutes.
Please tell me if I am thinking it alright.
A different thread cannot enter the same critical section using
the same lock just because the first thread called Monitor.Wait, right? The Wait method only allows a different thread to acquire
the same monitor, i.e. the same synchronization lock but only for a different critical section and never for the same critical
section.
Is my understanding correct?
Because if the Wait method meant that anyone can now enter this
same critical section using this same lock, then that would defeat
the whole purpose of synchronization, right?
So, in the code below (written in notepad, so please forgive any
typos), ThreadProc2 can only use syncLock to enter the code in
ThreadProc2 and not in ThreadProc1 while the a previous thread
that held and subsequently relinquished the lock was executing
ThreadProc1, right?
Two or more threads can use the same synchronization lock to run
different pieces of code at the same time, right? Same question as
above, basically, but just confirming for the sake of symmetry with
point 3 below.
Two or more threads can use a different synchronization lock to
run the same piece of code, i.e. to enter the same critical section.
Boilerplate text to correct the formatting.
class Foo
{
private static object syncLock = new object();
public void ThreadProc1()
{
try
{
Monitor.Enter(syncLock);
Monitor.Wait(syncLock);
Thread.Sleep(1000);
}
finally
{
if (Monitor.IsLocked(syncLock))
{
Monitor.Exit(syncLock);
}
}
}
public void ThreadProc2()
{
bool acquired = false;
try
{
// Calling TryEnter instead of
// Enter just for the sake of variety
Monitor.TryEnter(syncLock, ref acquired);
if (acquired)
{
Thread.Sleep(200);
Monitor.Pulse(syncLock);
}
}
finally
{
if (acquired)
{
Monitor.Exit(syncLock);
}
}
}
}
Update
The following illustration confirms that #3 is correct although I don't think it will be a nice thing to do.
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace DifferentSyncLockSameCriticalSection
{
class Program
{
static void Main(string[] args)
{
var sathyaish = new Person { Name = "Sathyaish Chakravarthy" };
var superman = new Person { Name = "Superman" };
var tasks = new List<Task>();
// Must not lock on string so I am using
// an object of the Person class as a lock
tasks.Add(Task.Run( () => { Proc1(sathyaish); } ));
tasks.Add(Task.Run(() => { Proc1(superman); }));
Task.WhenAll(tasks);
Console.WriteLine("Press any key to exit.");
Console.ReadKey();
}
static void Proc1(object state)
{
// Although this would be a very bad practice
lock(state)
{
try
{
Console.WriteLine((state.ToString()).Length);
}
catch(Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}
}
class Person
{
public string Name { get; set; }
public override string ToString()
{
return Name;
}
}
}
When a thread calls Monitor.Wait it is suspended and the lock released. This will allow another thread to acquire the lock, update some state, and then call Monitor.Pulse in order to communicate to other threads that something has happened. You must have acquired the lock in order to call Pulse. Before Monitor.Wait returns the framework will reacquire the lock for the thread that called Wait.
In order for two threads to communicate with each other they need to use the same synchronization primitive. In your example you've used a monitor, but you usually need to combine this with some kind of test that the Wait returned in response to a Pulse. This is because it is technically possible to Wait to return even if Pulse wasn't called (although this doesn't happen in practice).
It's also worth remembering that a call to Pulse isn't "sticky", so if nobody is waiting on the monitor then Pulse does nothing and a subsequent call to Wait will miss the fact that Pulse was called. This is another reason why you tend to record the fact that something has been done before calling Pulse (see the example below).
It's perfectly valid for two different threads to use the same lock to run different bits of code - in fact this is the typical use-case. For example, one thread acquires the lock to write some data and another thread acquires the lock to read the data. However, it's important to realize that they don't run at the same time. The act of acquiring the lock prevents another thread from acquiring the same lock, so any thread attempting to acquire the lock when it is already locked will block until the other thread releases the lock.
In point 3 you ask:
Two or more threads can use a different synchronization lock to run
the same piece of code, i.e. to enter the same critical section.
However, if two threads are using different locks then they are not entering the same critical section. The critical section is denoted by the lock that protects it - if they're different locks then they are different sections that just happen to access some common data within the section. You should avoid doing this as it can lead to some difficult to debug data race conditions.
Your code is a bit over-complicated for what you're trying to accomplish. For example, let's say we've got 2 threads, and one will signal when there is data available for another to process:
class Foo
{
private readonly object syncLock = new object();
private bool dataAvailable = false;
public void ThreadProc1()
{
lock(syncLock)
{
while(!dataAvailable)
{
// Release the lock and suspend
Monitor.Wait(syncLock);
}
// Now process the data
}
}
public void ThreadProc2()
{
LoadData();
lock(syncLock)
{
dataAvailable = true;
Monitor.Pulse(syncLock);
}
}
private void LoadData()
{
// Gets some data
}
}
}
In my quest to build a condition variable class I stumbled on a trivially simple way of doing it and I'd like to share this with the stack overflow community. I was googling for the better part of an hour and was unable to actually find a good tutorial or .NET-ish example that felt right, hopefully this can be of use to other people out there.
It's actually incredibly simple, once you know about the semantics of lock and Monitor.
But first, you do need an object reference. You can use this, but remember that this is public, in the sense that anyone with a reference to your class can lock on that reference. If you are uncomfortable with this, you can create a new private reference, like this:
readonly object syncPrimitive = new object(); // this is legal
Somewhere in your code where you'd like to be able to provide notifications, it can be accomplished like this:
void Notify()
{
lock (syncPrimitive)
{
Monitor.Pulse(syncPrimitive);
}
}
And the place where you'd do the actual work is a simple looping construct, like this:
void RunLoop()
{
lock (syncPrimitive)
{
for (;;)
{
// do work here...
Monitor.Wait(syncPrimitive);
}
}
}
Yes, this looks incredibly deadlock-ish, but the locking protocol for Monitor is such that it will release the lock during the Monitor.Wait. In fact, it's a requirement that you have obtained the lock before you call either Monitor.Pulse, Monitor.PulseAll or Monitor.Wait.
There's one caveat with this approach that you should know about. Since the lock is required to be held before calling the communication methods of Monitor you should really only hang on to the lock for an as short duration as possible. A variation of the RunLoop that's more friendly towards long running background tasks would look like this:
void RunLoop()
{
for (;;)
{
// do work here...
lock (syncPrimitive)
{
Monitor.Wait(syncPrimitive);
}
}
}
But now we've changed up the problem a bit, because the lock is no longer protecting the shared resource throughout the processing. So, if some of your code in the do work here... bit needs to access a shared resource you'll need an separate lock managing access to that.
We can leverage the above to create a simple thread-safe producer consumer collection (although .NET already provides an excellent ConcurrentQueue<T> implementation; this is just to illustrate the simplicity of using Monitor in implementing such mechanisms).
class BlockingQueue<T>
{
// We base our queue on the (non-thread safe) .NET 2.0 Queue collection
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
q.Enqueue(item);
System.Threading.Monitor.Pulse(q);
}
}
public T Dequeue()
{
lock (q)
{
for (;;)
{
if (q.Count > 0)
{
return q.Dequeue();
}
System.Threading.Monitor.Wait(q);
}
}
}
}
Now the point here is not to build a blocking collection, that also available in the .NET framework (see BlockingCollection). The point is to illustrate how simple it is to build an event driven message system using the Monitor class in .NET to implement conditional variable. Hope you find this useful.
Use ManualResetEvent
The class that is similar to conditional variable is the ManualResetEvent, just that the method name is slightly different.
The notify_one() in C++ would be named Set() in C#.
The wait() in C++ would be named WaitOne() in C#.
Moreover, ManualResetEvent also provides a Reset() method to set the state of the event to non-signaled.
The accepted answer is not a good one.
According to the Dequeue() code, Wait() gets called in each loop, which causes unnecessary waiting thus excessive context switches. The correct paradigm should be, wait() is called when the waiting condition is met. In this case, the waiting condition is q.Count() == 0.
Here's a better pattern to follow when it comes to using a Monitor.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682052%28v=vs.85%29.aspx
Another comment on C# Monitor is, it does not make use of a condition variable(which will essentially wake up all threads waiting for that lock, regardless of the conditions in which they went to wait; consequently, some threads may grab the lock and immediately return to sleep when they find the waiting condition hasn't been changed). It does not provide you with as find-grained threading control as pthreads. But it's .Net anyway, so not completely unexpected.
=============upon the request of John, here's an improved version=============
class BlockingQueue<T>
{
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
while (false) // condition predicate(s) for producer; can be omitted in this particular case
{
System.Threading.Monitor.Wait(q);
}
// critical section
q.Enqueue(item);
}
// generally better to signal outside the lock scope
System.Threading.Monitor.Pulse(q);
}
public T Dequeue()
{
T t;
lock (q)
{
while (q.Count == 0) // condition predicate(s) for consumer
{
System.Threading.Monitor.Wait(q);
}
// critical section
t = q.Dequeue();
}
// this can be omitted in this particular case; but not if there's waiting condition for the producer as the producer needs to be woken up; and here's the problem caused by missing condition variable by C# monitor: all threads stay on the same waiting queue of the shared resource/lock.
System.Threading.Monitor.Pulse(q);
return t;
}
}
A few things I'd like to point out:
1, I think my solution captures the requirements & definitions more precisely than yours. Specifically, the consumer should be forced to wait if and only if there's nothing left in the queue; otherwise it's up to the OS/.Net runtime to schedule threads. In your solution, however, the consumer is forced to wait in each loop, regardless whether it has actually consumed anything or not - this is the excessive waiting/context switches I was talking about.
2, My solution is symmetric in the sense that both the consumer and the producer code share the same pattern while yours is not. If you did know the pattern and just omitted for this particular case, then I take back this point.
3, Your solution signals inside the lock scope, while my solutions signals outside the lock scope. Please refer to this answer as to why your solution is worse.
why should we signal outside the lock scope
I was talking about the flaw of missing condition variables in C# monitor, and here's its impact: there's simply no way for C# to implemented the solution of moving the waiting thread from the condition queue to the lock queue. Therefore, the excessive context switch is doomed to take place in the three-thread scenario proposed by the answer in the link.
Also, the lack of condition variable makes it impossible to distinguish between the various cases where threads wait on the same shared resource/lock, but for different reasons. All waiting threads are place on a big waiting queue for that shared resource, which undermines efficiency.
"But it's .Net anyway, so not completely unexpected" --- it's understandable that .Net does not pursue as high efficiency as C++, it's understandable. But it does not imply programmers should not know the differences and their impacts.
Go to deadlockempire.github.io/. They have an amazing tutorial that will help you understand the condition variable as well as locks and will cetainly help you write your desired class.
You can step through the following code at deadlockempire.github.io and trace it. Here is the code snippet
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
queue.Enqueue(42);
Monitor.PulseAll(mutex);
Monitor.Exit(mutex);
}
As has been pointed out by h9uest's answer and comments the Monitor's Wait interface does not allow for proper condition variables (i.e. it does not allow for waiting on multiple conditions per shared lock).
The good news is that the other synchronization primitives (e.g. SemaphoreSlim, lock keyword, Monitor.Enter/Exit) in .NET can be used to implement a proper condition variable.
The following ConditionVariable class will allow you to wait on multiple conditions using a shared lock.
class ConditionVariable
{
private int waiters = 0;
private object waitersLock = new object();
private SemaphoreSlim sema = new SemaphoreSlim(0, Int32.MaxValue);
public ConditionVariable() {
}
public void Pulse() {
bool release;
lock (waitersLock)
{
release = waiters > 0;
}
if (release) {
sema.Release();
}
}
public void Wait(object cs) {
lock (waitersLock) {
++waiters;
}
Monitor.Exit(cs);
sema.Wait();
lock (waitersLock) {
--waiters;
}
Monitor.Enter(cs);
}
}
All you need to do is create an instance of the ConditionVariable class for each condition you want to be able to wait on.
object queueLock = new object();
private ConditionVariable notFullCondition = new ConditionVariable();
private ConditionVariable notEmptyCondition = new ConditionVariable();
And then just like in the Monitor class, the ConditionVariable's Pulse and Wait methods must be invoked from within a synchronized block of code.
T Take() {
lock(queueLock) {
while(queue.Count == 0) {
// wait for queue to be not empty
notEmptyCondition.Wait(queueLock);
}
T item = queue.Dequeue();
if(queue.Count < 100) {
// notify producer queue not full anymore
notFullCondition.Pulse();
}
return item;
}
}
void Add(T item) {
lock(queueLock) {
while(queue.Count >= 100) {
// wait for queue to be not full
notFullCondition.Wait(queueLock);
}
queue.Enqueue(item);
// notify consumer queue not empty anymore
notEmptyCondition.Pulse();
}
}
Below is a link to the full source code of a proper Condition Variable class using 100% managed code in C#.
https://github.com/CodeExMachina/ConditionVariable
i think i found "The WAY" on the tipical problem of a
List<string> log;
used by multiple thread, one tha fill it and the other processing and the other one empting
avoiding empty
while(true){
//stuff
Thread.Sleep(100)
}
variables used in Program
public static readonly List<string> logList = new List<string>();
public static EventWaitHandle evtLogListFilled = new AutoResetEvent(false);
the processor work like
private void bw_DoWorkLog(object sender, DoWorkEventArgs e)
{
StringBuilder toFile = new StringBuilder();
while (true)
{
try
{
{
//waiting form a signal
Program.evtLogListFilled.WaitOne();
try
{
//critical section
Monitor.Enter(Program.logList);
int max = Program.logList.Count;
for (int i = 0; i < max; i++)
{
SetText(Program.logList[0]);
toFile.Append(Program.logList[0]);
toFile.Append("\r\n");
Program.logList.RemoveAt(0);
}
}
finally
{
Monitor.Exit(Program.logList);
// end critical section
}
try
{
if (toFile.Length > 0)
{
Logger.Log(toFile.ToString().Substring(0, toFile.Length - 2));
toFile.Clear();
}
}
catch
{
}
}
}
catch (Exception ex)
{
Logger.Log(System.Reflection.MethodBase.GetCurrentMethod(), ex);
}
Thread.Sleep(100);
}
}
On the filler thread we have
public static void logList_add(string str)
{
try
{
try
{
//critical section
Monitor.Enter(Program.logList);
Program.logList.Add(str);
}
finally
{
Monitor.Exit(Program.logList);
//end critical section
}
//set start
Program.evtLogListFilled.Set();
}
catch{}
}
this solution is fully tested, the istruction Program.evtLogListFilled.Set(); may release the lock on Program.evtLogListFilled.WaitOne() and also the next future lock.
I think this is the simpliest way.
I'm using a named mutex to lock access to a file (with path 'strFilePath') in a construction like this:
private void DoSomethingsWithAFile(string strFilePath)
{
Mutex mutex = new Mutex(false,strFilePath.Replace("\\",""));
try
{
mutex.WaitOne();
//do something with the file....
}
catch(Exception ex)
{
//handle exception
}
finally
{
mutex.ReleaseMutex();
}
}
So, this way the code will only block the thread when the same file is being processed already.
Well, I tested this and seemed to work okay, but I really would like to know your thoughts about this.
Since you are talking about a producer-consumer situation with multiple threads the "standard solution would be to use BlockingCollection which is part of .NET 4 and up - several links with information:
http://msdn.microsoft.com/en-us/library/dd997371.aspx
http://blogs.msdn.com/b/csharpfaq/archive/2010/08/12/blocking-collection-and-the-producer-consumer-problem.aspx
http://geekswithblogs.net/BlackRabbitCoder/archive/2011/03/03/c.net-little-wonders-concurrentbag-and-blockingcollection.aspx
http://www.albahari.com/threading/part5.aspx
IF you just want to make the locking process work then:
use a ConcurrentDictionary in combination with the TryAdd method call... if it returns true then the file was not "locked" and is now "locked" so the thread can proceed - and "unlock" it by calling Remove at the end... any other thread gets false in the meantime and can decide what to do...
I would definitely recommend the BlockingCollection approach though!
I ran into the same problem with many threads that can write in the same file.
The one of the reason that mutex not good because it slowly:
duration of call mutexSyncTest: 00:00:08.9795826
duration of call NamedLockTest: 00:00:00.2565797
BlockingCollection collection - very good idea, but for my case with rare collisions, parallel writes better than serial writes. Also way with dictionary much more easy to realise.
I use this solution (UPDATED):
public class NamedLock
{
private class LockAndRefCounter
{
public long refCount;
}
private ConcurrentDictionary<string, LockAndRefCounter> locksDictionary = new ConcurrentDictionary<string, LockAndRefCounter>();
public void DoWithLockBy(string key, Action actionWithLock)
{
var lockObject = new LockAndRefCounter();
var keyLock = locksDictionary.GetOrAdd(key, lockObject);
Interlocked.Increment(ref keyLock.refCount);
lock (keyLock)
{
actionWithLock();
Interlocked.Decrement(ref keyLock.refCount);
if (Interlocked.Read(ref keyLock.refCount) <= 0)
{
LockAndRefCounter removed;
locksDictionary.TryRemove(key, out removed);
}
}
}
}
An alternative would be: make one consumer thread which works on a queue, and blocks if it is empty. You can have several producer threads adding several filepaths to this queue and inform the consumer.
Since .net 4.0 there's a nice new class: System.Collections.Concurrent.BlockingCollection<T>
A while ago I had the same issue here on Stack Overflow - How do I implement my own advanced Producer/Consumer scenario?
I am using Enterprise Library 4 on one of my projects for logging (and other purposes). I've noticed that there is some cost to the logging that I am doing that I can mitigate by doing the logging on a separate thread.
The way I am doing this now is that I create a LogEntry object and then I call BeginInvoke on a delegate that calls Logger.Write.
new Action<LogEntry>(Logger.Write).BeginInvoke(le, null, null);
What I'd really like to do is add the log message to a queue and then have a single thread pulling LogEntry instances off the queue and performing the log operation. The benefit of this would be that logging is not interfering with the executing operation and not every logging operation results in a job getting thrown on the thread pool.
How can I create a shared queue that supports many writers and one reader in a thread safe way? Some examples of a queue implementation that is designed to support many writers (without causing synchronization/blocking) and a single reader would be really appreciated.
Recommendation regarding alternative approaches would also be appreciated, I am not interested in changing logging frameworks though.
I wrote this code a while back, feel free to use it.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
namespace MediaBrowser.Library.Logging {
public abstract class ThreadedLogger : LoggerBase {
Queue<Action> queue = new Queue<Action>();
AutoResetEvent hasNewItems = new AutoResetEvent(false);
volatile bool waiting = false;
public ThreadedLogger() : base() {
Thread loggingThread = new Thread(new ThreadStart(ProcessQueue));
loggingThread.IsBackground = true;
loggingThread.Start();
}
void ProcessQueue() {
while (true) {
waiting = true;
hasNewItems.WaitOne(10000,true);
waiting = false;
Queue<Action> queueCopy;
lock (queue) {
queueCopy = new Queue<Action>(queue);
queue.Clear();
}
foreach (var log in queueCopy) {
log();
}
}
}
public override void LogMessage(LogRow row) {
lock (queue) {
queue.Enqueue(() => AsyncLogMessage(row));
}
hasNewItems.Set();
}
protected abstract void AsyncLogMessage(LogRow row);
public override void Flush() {
while (!waiting) {
Thread.Sleep(1);
}
}
}
}
Some advantages:
It keeps the background logger alive, so it does not need to spin up and spin down threads.
It uses a single thread to service the queue, which means there will never be a situation where 100 threads are servicing the queue.
It copies the queues to ensure the queue is not blocked while the log operation is performed
It uses an AutoResetEvent to ensure the bg thread is in a wait state
It is, IMHO, very easy to follow
Here is a slightly improved version, keep in mind I performed very little testing on it, but it does address a few minor issues.
public abstract class ThreadedLogger : IDisposable {
Queue<Action> queue = new Queue<Action>();
ManualResetEvent hasNewItems = new ManualResetEvent(false);
ManualResetEvent terminate = new ManualResetEvent(false);
ManualResetEvent waiting = new ManualResetEvent(false);
Thread loggingThread;
public ThreadedLogger() {
loggingThread = new Thread(new ThreadStart(ProcessQueue));
loggingThread.IsBackground = true;
// this is performed from a bg thread, to ensure the queue is serviced from a single thread
loggingThread.Start();
}
void ProcessQueue() {
while (true) {
waiting.Set();
int i = ManualResetEvent.WaitAny(new WaitHandle[] { hasNewItems, terminate });
// terminate was signaled
if (i == 1) return;
hasNewItems.Reset();
waiting.Reset();
Queue<Action> queueCopy;
lock (queue) {
queueCopy = new Queue<Action>(queue);
queue.Clear();
}
foreach (var log in queueCopy) {
log();
}
}
}
public void LogMessage(LogRow row) {
lock (queue) {
queue.Enqueue(() => AsyncLogMessage(row));
}
hasNewItems.Set();
}
protected abstract void AsyncLogMessage(LogRow row);
public void Flush() {
waiting.WaitOne();
}
public void Dispose() {
terminate.Set();
loggingThread.Join();
}
}
Advantages over the original:
It's disposable, so you can get rid of the async logger
The flush semantics are improved
It will respond slightly better to a burst followed by silence
Yes, you need a producer/consumer queue. I have one example of this in my threading tutorial - if you look my "deadlocks / monitor methods" page you'll find the code in the second half.
There are plenty of other examples online, of course - and .NET 4.0 will ship with one in the framework too (rather more fully featured than mine!). In .NET 4.0 you'd probably wrap a ConcurrentQueue<T> in a BlockingCollection<T>.
The version on that page is non-generic (it was written a long time ago) but you'd probably want to make it generic - it would be trivial to do.
You would call Produce from each "normal" thread, and Consume from one thread, just looping round and logging whatever it consumes. It's probably easiest just to make the consumer thread a background thread, so you don't need to worry about "stopping" the queue when your app exits. That does mean there's a remote possibility of missing the final log entry though (if it's half way through writing it when the app exits) - or even more if you're producing faster than it can consume/log.
Here is what I came up with... also see Sam Saffron's answer. This answer is community wiki in case there are any problems that people see in the code and want to update.
/// <summary>
/// A singleton queue that manages writing log entries to the different logging sources (Enterprise Library Logging) off the executing thread.
/// This queue ensures that log entries are written in the order that they were executed and that logging is only utilizing one thread (backgroundworker) at any given time.
/// </summary>
public class AsyncLoggerQueue
{
//create singleton instance of logger queue
public static AsyncLoggerQueue Current = new AsyncLoggerQueue();
private static readonly object logEntryQueueLock = new object();
private Queue<LogEntry> _LogEntryQueue = new Queue<LogEntry>();
private BackgroundWorker _Logger = new BackgroundWorker();
private AsyncLoggerQueue()
{
//configure background worker
_Logger.WorkerSupportsCancellation = false;
_Logger.DoWork += new DoWorkEventHandler(_Logger_DoWork);
}
public void Enqueue(LogEntry le)
{
//lock during write
lock (logEntryQueueLock)
{
_LogEntryQueue.Enqueue(le);
//while locked check to see if the BW is running, if not start it
if (!_Logger.IsBusy)
_Logger.RunWorkerAsync();
}
}
private void _Logger_DoWork(object sender, DoWorkEventArgs e)
{
while (true)
{
LogEntry le = null;
bool skipEmptyCheck = false;
lock (logEntryQueueLock)
{
if (_LogEntryQueue.Count <= 0) //if queue is empty than BW is done
return;
else if (_LogEntryQueue.Count > 1) //if greater than 1 we can skip checking to see if anything has been enqueued during the logging operation
skipEmptyCheck = true;
//dequeue the LogEntry that will be written to the log
le = _LogEntryQueue.Dequeue();
}
//pass LogEntry to Enterprise Library
Logger.Write(le);
if (skipEmptyCheck) //if LogEntryQueue.Count was > 1 before we wrote the last LogEntry we know to continue without double checking
{
lock (logEntryQueueLock)
{
if (_LogEntryQueue.Count <= 0) //if queue is still empty than BW is done
return;
}
}
}
}
}
I suggest to start with measuring actual performance impact of logging on the overall system (i.e. by running profiler) and optionally switching to something faster like log4net (I've personally migrated to it from EntLib logging a long time ago).
If this does not work, you can try using this simple method from .NET Framework:
ThreadPool.QueueUserWorkItem
Queues a method for execution. The method executes when a thread pool thread becomes available.
MSDN Details
If this does not work either then you can resort to something like John Skeet has offered and actually code the async logging framework yourself.
In response to Sam Safrons post, I wanted to call flush and make sure everything was really finished writting. In my case, I am writing to a database in the queue thread and all my log events were getting queued up but sometimes the application stopped before everything was finished writing which is not acceptable in my situation. I changed several chunks of your code but the main thing I wanted to share was the flush:
public static void FlushLogs()
{
bool queueHasValues = true;
while (queueHasValues)
{
//wait for the current iteration to complete
m_waitingThreadEvent.WaitOne();
lock (m_loggerQueueSync)
{
queueHasValues = m_loggerQueue.Count > 0;
}
}
//force MEL to flush all its listeners
foreach (MEL.LogSource logSource in MEL.Logger.Writer.TraceSources.Values)
{
foreach (TraceListener listener in logSource.Listeners)
{
listener.Flush();
}
}
}
I hope that saves someone some frustration. It is especially apparent in parallel processes logging lots of data.
Thanks for sharing your solution, it set me into a good direction!
--Johnny S
I wanted to say that my previous post was kind of useless. You can simply set AutoFlush to true and you will not have to loop through all the listeners. However, I still had crazy problem with parallel threads trying to flush the logger. I had to create another boolean that was set to true during the copying of the queue and executing the LogEntry writes and then in the flush routine I had to check that boolean to make sure something was not already in the queue and the nothing was getting processed before returning.
Now multiple threads in parallel can hit this thing and when I call flush I know it is really flushed.
public static void FlushLogs()
{
int queueCount;
bool isProcessingLogs;
while (true)
{
//wait for the current iteration to complete
m_waitingThreadEvent.WaitOne();
//check to see if we are currently processing logs
lock (m_isProcessingLogsSync)
{
isProcessingLogs = m_isProcessingLogs;
}
//check to see if more events were added while the logger was processing the last batch
lock (m_loggerQueueSync)
{
queueCount = m_loggerQueue.Count;
}
if (queueCount == 0 && !isProcessingLogs)
break;
//since something is in the queue, reset the signal so we will not keep looping
Thread.Sleep(400);
}
}
Just an update:
Using enteprise library 5.0 with .NET 4.0 it can easily be done by:
static public void LogMessageAsync(LogEntry logEntry)
{
Task.Factory.StartNew(() => LogMessage(logEntry));
}
See:
http://randypaulo.wordpress.com/2011/07/28/c-enterprise-library-asynchronous-logging/
An extra level of indirection may help here.
Your first async method call can put messages onto a synchonized Queue and set an event -- so the locks are happening in the thread-pool, not on your worker threads -- and then have yet another thread pulling messages off the queue when the event is raised.
If you log something on a separate thread, the message may not be written if the application crashes, which makes it rather useless.
The reason goes why you should always flush after every written entry.
If what you have in mind is a SHARED queue, then I think you are going to have to synchronize the writes to it, the pushes and the pops.
But, I still think it's worth aiming at the shared queue design. In comparison to the IO of logging and probably in comparison to the other work your app is doing, the brief amount of blocking for the pushes and the pops will probably not be significant.