Mutual Exclusion Required - c#

Code that not affecting the collection needs Mutual Exclusion
List<string> _itemColection = new List<string>();
object _criticalSection = new object();
private void Add(string item)
{
lock (_criticalSection)
{
_itemColection.Add(item);
}
}
private void Remove(string item)
{
lock (_criticalSection)
{
_itemColection.Remove(item);
}
}
private void GetCount()
{
///Is it lock is reuired here?
return _itemColection.Count;
}
//Thread method
private void Run()
{
lock (_criticalSection)
{
foreach (string item in _itemColection)
{
///Some operation
}
}
}
Is it Mutex is required in GetCount() method. The collection value's are not changed

Yes, you should lock there. You're requesting access to shared data, and if you don't have some sort of memory barrier there'll be no guarantee that it'll be "fresh" information. The memory model can be a real mind-bender sometimes :)
In addition, while I'd expect List<T>.Count to be a pretty simple operation, it could theoretically be complicated - and if another thread is mutating stuff (e.g. adding an item, which then requires a buffer expansion) while it's working out the count, you could theoretically run into trouble.
Basically, unless a type claims to be thread-safe for your particular scenario, I'd always make sure you don't perform two operations on it at the same time.

In practise its probably not needed, but I would include it myself to be on the safe side. _itemCollection.Count is a property, so effectively you are calling a function on the collection, and you have no guarantee what this function is doing.

Simple answer is yes because the values might get changed and you won't have up-to-date data.

That's an excelent question about concurency..
In my opinion it's always necessary to use lock when you are in presence of some concurrency.
EDIT
We just use lock in operations that need to change some information, and never need to use that in read-only objects.
Best regards

Related

c# lock function during async file write [duplicate]

I want to start some new threads each for one repeating operation. But when such an operation is already in progress, I want to discard the current task. In my scenario I need very current data only - dropped data is not an issue.
In the MSDN I found the Mutex class but as I understand it, it waits for its turn, blocking the current thread. Also I want to ask you: Does something exist in the .NET framework already, that does the following:
Is some method M already being executed?
If so, return (and let me increase some counter for statistics)
If not, start method M in a new thread
The lock(someObject) statement, which you may have come across, is syntactic sugar around Monitor.Enter and Monitor.Exit.
However, if you use the monitor in this more verbose way, you can also use Monitor.TryEnter which allows you to check if you'll be able to get the lock - hence checking if someone else already has it and is executing code.
So instead of this:
var lockObject = new object();
lock(lockObject)
{
// do some stuff
}
try this (option 1):
int _alreadyBeingExecutedCounter;
var lockObject = new object();
if (Monitor.TryEnter(lockObject))
{
// you'll only end up here if you got the lock when you tried to get it - otherwise you'll never execute this code.
// do some stuff
//call exit to release the lock
Monitor.Exit(lockObject);
}
else
{
// didn't get the lock - someone else was executing the code above - so I don't need to do any work!
Interlocked.Increment(ref _alreadyBeingExecutedCounter);
}
(you'll probably want to put a try..finally in there to ensure the lock is released)
or dispense with the explicit lock althogether and do this
(option 2)
private int _inUseCount;
public void MyMethod()
{
if (Interlocked.Increment(ref _inUseCount) == 1)
{
// do dome stuff
}
Interlocked.Decrement(ref _inUseCount);
}
[Edit: in response to your question about this]
No - don't use this to lock on. Create a privately scoped object to act as your lock.
Otherwise you have this potential problem:
public class MyClassWithLockInside
{
public void MethodThatTakesLock()
{
lock(this)
{
// do some work
}
}
}
public class Consumer
{
private static MyClassWithLockInside _instance = new MyClassWithLockInside();
public void ThreadACallsThis()
{
lock(_instance)
{
// Having taken a lock on our instance of MyClassWithLockInside,
// do something long running
Thread.Sleep(6000);
}
}
public void ThreadBCallsThis()
{
// If thread B calls this while thread A is still inside the lock above,
// this method will block as it tries to get a lock on the same object
// ["this" inside the class = _instance outside]
_instance.MethodThatTakesLock();
}
}
In the above example, some external code has managed to disrupt the internal locking of our class just by taking out a lock on something that was externally accessible.
Much better to create a private object that you control, and that no-one outside your class has access to, to avoid these sort of problems; this includes not using this or the type itself typeof(MyClassWithLockInside) for locking.
One option would be to work with a reentrancy sentinel:
You could define an int field (initialize with 0) and update it via Interlocked.Increment on entering the method and only proceed if it is 1. At the end just do a Interlocked.Decrement.
Another option:
From your description it seems that you have a Producer-Consumer-Scenario...
For this case it might be helpful to use something like BlockingCollection as it is thread-safe and mostly lock-free...
Another option would be to use ConcurrentQueue or ConcurrentStack...
You might find some useful information on the following site (the PDf is also downlaodable - recently downloaded it myself). The Adavnced threading Suspend and Resume or Aborting chapters maybe what you are inetrested in.
You should use Interlocked class atomic operations - for best performance - since you won't actually use system-level sychronizations(any "standard" primitive needs it, and involve system call overhead).
//simple non-reentrant mutex without ownership, easy to remake to support //these features(just set owner after acquiring lock(compare Thread reference with Thread.CurrentThread for example), and check for matching identity, add counter for reentrancy)
//can't use bool because it's not supported by CompareExchange
private int lock;
public bool TryLock()
{
//if (Interlocked.Increment(ref _inUseCount) == 1)
//that kind of code is buggy - since counter can change between increment return and
//condition check - increment is atomic, this if - isn't.
//Use CompareExchange instead
//checks if 0 then changes to 1 atomically, returns original value
//return true if thread succesfully occupied lock
return CompareExchange(ref lock, 1, 0)==0;
return false;
}
public bool Release()
{
//returns true if lock was occupied; false if it was free already
return CompareExchange(ref lock, 0, 1)==1;
}

Parallel.ForEach: Best way to save off a collection when its record count gets high?

So I'm running a Parallel.ForEach that basically generates a bunch of data which is ultimately going to be saved to a database. However, since collection of data can get quite large I need to be able to occasionally save/clear the collection so as to not run into an OutOfMemoryException.
I'm new to using Parallel.ForEach, concurrent collections, and locks, so I'm a little fuzzy on what exactly needs to be done to make sure everything works correctly (i.e. we don't get any records added to the collection between the Save and Clear operations).
Currently I'm saying, if the record count is above a certain threshold, save the data in the current collection, within a lock block.
ConcurrentStack<OutRecord> OutRecs = new ConcurrentStack<OutRecord>();
object StackLock = new object();
Parallel.ForEach(inputrecords, input =>
{
lock(StackLock)
{
if (OutRecs.Count >= 50000)
{
Save(OutRecs);
OutRecs.Clear();
}
}
OutRecs.Push(CreateOutputRecord(input);
});
if (OutRecs.Count > 0) Save(OutRecs);
I'm not 100% certain whether or not this works the way I think it does. Does the lock stop other instances of the loop from writing to output collection? If not is there a better way to do this?
Your lock will work correctly but it will not be very efficient because all your worker threads will be forced to pause for the entire duration of each save operation. Also, locks tends to be (relatively) expensive, so performing a lock in each iteration of each thread is a bit wasteful.
One of your comments mentioned giving each worker thread its own data storage: yes, you can do this. Here's an example that you could tailor to your needs:
Parallel.ForEach(
// collection of objects to iterate over
inputrecords,
// delegate to initialize thread-local data
() => new List<OutRecord>(),
// body of loop
(inputrecord, loopstate, localstorage) =>
{
localstorage.Add(CreateOutputRecord(inputrecord));
if (localstorage.Count > 1000)
{
// Save() must be thread-safe, or you'll need to wrap it in a lock
Save(localstorage);
localstorage.Clear();
}
return localstorage;
},
// finally block gets executed after each thread exits
localstorage =>
{
if (localstorage.Count > 0)
{
// Save() must be thread-safe, or you'll need to wrap it in a lock
Save(localstorage);
localstorage.Clear();
}
});
One approach is to define an abstraction that represents the destination for your data. It could be something like this:
public interface IRecordWriter<T> // perhaps come up with a better name.
{
void WriteRecord(T record);
void Flush();
}
Your class that processes the records in parallel doesn't need to worry about how those records are handled or what happens when there's too many of them. The implementation of IRecordWriter handles all those details, making your other class easier to test.
An implementation of IRecordWriter could look something like this:
public abstract class BufferedRecordWriter<T> : IRecordWriter<T>
{
private readonly ConcurrentQueue<T> _buffer = new ConcurrentQueue<T>();
private readonly int _maxCapacity;
private bool _flushing;
public ConcurrentQueueRecordOutput(int maxCapacity = 100)
{
_maxCapacity = maxCapacity;
}
public void WriteRecord(T record)
{
_buffer.Enqueue(record);
if (_buffer.Count >= _maxCapacity && !_flushing)
Flush();
}
public void Flush()
{
_flushing = true;
try
{
var recordsToWrite = new List<T>();
while (_buffer.TryDequeue(out T dequeued))
{
recordsToWrite.Add(dequeued);
}
if(recordsToWrite.Any())
WriteRecords(recordsToWrite);
}
finally
{
_flushing = false;
}
}
protected abstract void WriteRecords(IEnumerable<T> records);
}
When the buffer reaches the maximum size, all the records in it are sent to WriteRecords. Because _buffer is a ConcurrentQueue it can keep reading records even as they are added.
That Flush method could be anything specific to how you write your records. Instead of this being an abstract class the actual output to a database or file could be yet another dependency that gets injected into this one. You can make decisions like that, refactor, and change your mind because the very first class isn't affected by those changes. All it knows about is the IRecordWriter interface which doesn't change.
You might notice that I haven't made absolutely certain that Flush won't execute concurrently on different threads. I could put more locking around this, but it really doesn't matter. This will avoid most concurrent executions, but it's okay if concurrent executions both read from the ConcurrentQueue.
This is just a rough outline, but it shows how all of the steps become simpler and easier to test if we separate them. One class converts inputs to outputs. Another class buffers the outputs and writes them. That second class can even be split into two - one as a buffer, and another as the "final" writer that sends them to a database or file or some other destination.

Thread Safety: Lock vs Reference

I have a C# program that has a list that does writes and reads in separate threads. The write is user initiated and can change the data at any random point in time. The read runs in a constant loop. It doesn't matter if the read is missing data in any given loop, as long as the data it does receive is valid and it get's the new data in a future loop.
After considering ConcurrentBag, I settled on using locks for a variety of reasons (simplicity being one of them). After implementing the locks, a coworker mentioned to me that using temporary references to point to the old List in memory would work just as well, but I am concerned about what will happen if the new assignment and the reference assignment would happen at the same time.
Q: Is the temporary reference example below thread safe?
Update: User input provides a list of strings which are used in DoStuff(). You can think of these strings as a definition of constants and as such the strings need to be persisted for future loops. They are not deleted in DoStuff(), only read. UserInputHandler is the only thread that will ever change this list and DoStuff() is the only thread that will ever read from this list. Nothing else has access to it.
Additionally, I am aware of the the Concurrent namespace and have used most of the collections in it in other projects, but, I have chosen not to use them here because of extra code complexity that they add (i.e. ConcurrentBag doesn't have a simple Clear() function, etc.). A simple lock is good enough in this situation. The question is only whether the second example below is thread safe.
Lock
static List<string> constants = new List<string>();
//Thread A
public void UserInputHandler(List<string> userProvidedConstants)
{
lock(items)
{
items.Clear();
foreach(var constant in userProvidedConstants)
{
constants.Add(constant);
}
}
}
//Thread B
public void DoStuff()
{
lock(items)
{
//Do read only actions with items here
foreach(var constant in constants)
{
//readonly actions
}
}
}
Reference
static List<string> constants = new List<string>();
//Thread A
public void UserInputHandler(List<string> userProvidedConstants)
{
lock(items)
{
items = new List<string>();
foreach(var constant in userProvidedConstants)
{
constants.Add(constant);
}
}
}
//Thread B
public void DoStuff()
{
var constantsReference = constants;
//Do read only actions with constantsReference here
foreach(var constant in constantsReference)
{
//readonly actions
}
}
This is not safe without the lock. Copying the reference to the list doesn't really do anything for you in this context. It's still quite possible for the list that you are currently iterating to be mutated in another thread while you are iterating it, causing all sorts of possible badness.
I think what you're looking for is BlockingCollection. Check out the following link for getting starting using it:
http://msdn.microsoft.com/en-us/library/dd997371%28v=vs.110%29.aspx
Here's an example of using BlockingCollection. ThreadB won't start enumerating the BlockingCollection until there are items available, and when it runs out of items, it will stop enumerating until more items become available (or until the IsCompleted property returns true)
private static readonly BlockingCollection<int> Items = new BlockingCollection<int>();
//ThreadA
public void LoadStuff()
{
Items.Add(1);
Items.Add(2);
Items.Add(3);
}
//ThreadB
public void DoStuff()
{
foreach (var item in Items.GetConsumingEnumerable())
{
//Do stuff here
}
}
Lock Free is dangerous and not portable. Don't do it. If you need to read on how to do lock-free, you probably shouldn't be doing it.
I think I missed understood the question. I under the strange impression that the list was only ever added to or only the most recent version is what matters. No idea how I came to that when he explicitly shows a "clear()" call.
I apologize for the confusion.
This code is being disputed, use at your own risk, but I'm quite sure it should work on x86/x64, but no clue about ARM
You could do something like this
//Suggested to just use volatile instead of memorybarrier
static volatile T _MyList = new ReadOnlyList<T>();
void Load(){
T LocalList = _MyList.Copy();
LocalList.Add(1);
LocalList.Add(2);
LocalList.Add(3);
_MyList = LocalList.ReadOnly(); //Making it more clear
}
DoStuff(){
T LocalList = _MyList;
foreach(t tmp in LocalList)
}
This should work well for heavy read workloads. If you have more than one writer that modifies _MyList, you'll need to figure out a way to synchronize them.

Using a separate object for synchronisation

I see this a lot:
object lockObj;
List<string> myStrs;
// ...
lock(lockObj)
{
myStrs.Add("hello world");
}
Why have the separate object? Surely you can just do this:
List<string> myStrs;
// ...
lock(myStrs)
{
myStrs.Add("hello world");
}
It is a problem to lock directly on the list only if myStrs is public, and thus can be locked by other callers as well, resulting in a possible deadlock.
If it is a private member, then there should be no problem, but locking on a seperate object is a good habit in any case.
See this similar question for a more detailed answer:
Why is lock(this) {...} bad?
In general, avoid locking on a public type, or instances beyond your code's control. The common constructs lock (this), lock (typeof (MyType)), and lock ("myLock") violate this guideline:
lock (this) is a problem if the instance can be accessed publicly.
lock (typeof (MyType)) is a problem if MyType is publicly accessible.
lock(“myLock”) is a problem since any other code in the process using the same string, will share the same lock.
Best practice is to define a private object to lock on, or a private static object variable to protect data common to all instances.
Form the documentation lock c#
The idea is to always lock a private members that can only be accessed by the code that we are looking at. Whereas when we lock the members that we do not have control upon like public member or similar, chances are some other part of code can already hold a lock. This could lead to unexpected blocking behavior.
So, I think this had lead to thumb rule / best practice of having a private object especially for locking.
I would be interested in seeing if there are more reasons coming up.
Your list of string is a list used for internal implementation details.
The problem with the second version could rise if you change your implementation such a way that you re-initilazie the strings list.
Then the thread-safety of your implementation could be broken.
So it's better that you use a seperate object for synchronization and declare this object as read only.
If you use the list as the lock object, and it is reset to null, then the lock(myStringList) will throw an ArgumentNullException. Below the simple test code of a console application.
private static IList<string> mystringList = new List<string>();
static void Main(string[] args)
{
new Thread(() =>
{
try
{
while (true)
{
//Acquire the lock
lock (mystringList)
{
//Do something with the data
Thread.Sleep(100);
Console.WriteLine("Lock acquired");
}
}
}
catch (Exception exception)
{
Console.WriteLine("Exception: " +exception.Message);
}
}).Start();
new Thread(() =>
{
//Suppose we do something
Thread.Sleep(1000);
//And by some how reset the list to null
mystringList = null;
}).Start();
Console.ReadLine();
}

How to avoid double check locking when adding items to a Dictionary<> object in .NET?

I have a question about improving the efficiency of my program. I have a Dictionary<string, Thingey> defined to hold named Thingeys. This is a web application that will create multiple named Thingey’s over time. Thingey’s are somewhat expensive to create (not prohibitively so) but I’d like to avoid it whenever possible. My logic for getting the right Thingey for the request looks a lot like this:
private Dictionary<string, Thingey> Thingeys;
public Thingey GetThingey(Request request)
{
string thingeyName = request.ThingeyName;
if (!this.Thingeys.ContainsKey(thingeyName))
{
// create a new thingey on 1st reference
Thingey newThingey = new Thingey(request);
lock (this.Thingeys)
{
if (!this.Thingeys.ContainsKey(thingeyName))
{
this.Thingeys.Add(thingeyName, newThingey);
}
// else - oops someone else beat us to it
// newThingey will eventually get GCed
}
}
return this. Thingeys[thingeyName];
}
In this application, Thingeys live forever once created. We don’t know how to create them or which ones will be needed until the app starts and requests begin coming in. The question I have is in the above code is there are occasional instances where newThingey is created because we get multiple simultaneous requests for it before it’s been created. We end up creating 2 of them but only adding one to our collection.
Is there a better way to get Thingeys created and added that doesn’t involve check/create/lock/check/add with the rare extraneous thingey that we created but end up never using? (And this code works and has been running for some time. This is just the nagging bit that has always bothered me.)
I'm trying to avoid locking the dictionary for the duration of creating a Thingey.
This is the standard double check locking problem. The way it is implemented here is unsafe and can cause various problems - potentially up to the point of a crash in the first check if the internal state of the dictionary is screwed up bad enough.
It is unsafe because you are checking it without synchronization and if your luck is bad enough you can hit it while some other thread is in the middle of updating internal state of the dictionary
A simple solution is to place the first check under a lock as well. A problem with this is that this becomes a global lock and in web environment under heavy load it can become a serious bottleneck.
If we are talking about .NET environment, there are ways to work around this issue by piggybacking on the ASP.NET synchronization mechanism.
Here is how I did it in NDjango rendering engine: I keep one global dictionary and one dictionary per rendering thread. When a request comes I check the local dictionary first - this check does not have to be synchronized and if the thingy is there I just take it
If it is not I synchronize on the global dictionary check if it is there and if it is add it to my thread dictionary and release the lock. If it is not in the global dictionary I add it there first while still under lock.
Well, from my point of view simpler code is better, so I'd only use one lock:
private readonly object thingeysLock = new object();
private readonly Dictionary<string, Thingey> thingeys;
public Thingey GetThingey(Request request)
{
string key = request.ThingeyName;
lock (thingeysLock)
{
Thingey ret;
if (!thingeys.TryGetValue(key, out ret))
{
ret = new Thingey(request);
thingeys[key] = ret;
}
return ret;
}
}
Locks are really cheap when they're not contended. The downside is that this means that occasionally you will block everyone for the whole duration of the time you're creating a new Thingey. Clearly to avoid creating redundant thingeys you'd have to at least block while multiple threads create the Thingey for the same key. Reducing it so that they only block in that situation is somewhat harder.
I would suggest you use the above code but profile it to see whether it's fast enough. If you really need "only block when another thread is already creating the same thingey" then let us know and we'll see what we can do...
EDIT: You've commented on Adam's answer that you "don't want to lock while a new Thingey is being created" - you do realise that there's no getting away from that if there's contention for the same key, right? If thread 1 starts creating a Thingey, then thread 2 asks for the same key, your alternatives for thread 2 are either waiting or creating another instance.
EDIT: Okay, this is generally interesting, so here's a first pass at the "only block other threads asking for the same item".
private readonly object dictionaryLock = new object();
private readonly object creationLocksLock = new object();
private readonly Dictionary<string, Thingey> thingeys;
private readonly Dictionary<string, object> creationLocks;
public Thingey GetThingey(Request request)
{
string key = request.ThingeyName;
Thingey ret;
bool entryExists;
lock (dictionaryLock)
{
entryExists = thingeys.TryGetValue(key, out ret);
// Atomically mark the dictionary to say we're creating this item,
// and also set an entry for others to lock on
if (!entryExists)
{
thingeys[key] = null;
lock (creationLocksLock)
{
creationLocks[key] = new object();
}
}
}
// If we found something, great!
if (ret != null)
{
return ret;
}
// Otherwise, see if we're going to create it or whether we need to wait.
if (entryExists)
{
object creationLock;
lock (creationLocksLock)
{
creationLocks.TryGetValue(key, out creationLock);
}
// If creationLock is null, it means the creating thread has finished
// creating it and removed the creation lock, so we don't need to wait.
if (creationLock != null)
{
lock (creationLock)
{
Monitor.Wait(creationLock);
}
}
// We *know* it's in the dictionary now - so just return it.
lock (dictionaryLock)
{
return thingeys[key];
}
}
else // We said we'd create it
{
Thingey thingey = new Thingey(request);
// Put it in the dictionary
lock (dictionaryLock)
{
thingeys[key] = thingey;
}
// Tell anyone waiting that they can look now
lock (creationLocksLock)
{
Monitor.PulseAll(creationLocks[key]);
creationLocks.Remove(key);
}
return thingey;
}
}
Phew!
That's completely untested, and in particular it isn't in any way, shape or form robust in the face of exceptions in the creating thread... but I think it's the generally right idea :)
If you're looking to avoid blocking unrelated threads, then additional work is needed (and should only be necessary if you've profiled and found that performance is unacceptable with the simpler code). I would recommend using a lightweight wrapper class that asynchronously creates a Thingey and using that in your dictionary.
Dictionary<string, ThingeyWrapper> thingeys = new Dictionary<string, ThingeyWrapper>();
private class ThingeyWrapper
{
public Thingey Thing { get; private set; }
private object creationLock;
private Request request;
public ThingeyWrapper(Request request)
{
creationFlag = new object();
this.request = request;
}
public void WaitForCreation()
{
object flag = creationFlag;
if(flag != null)
{
lock(flag)
{
if(request != null) Thing = new Thingey(request);
creationFlag = null;
request = null;
}
}
}
}
public Thingey GetThingey(Request request)
{
string thingeyName = request.ThingeyName;
ThingeyWrapper output;
lock (this.Thingeys)
{
if(!this.Thingeys.TryGetValue(thingeyName, out output))
{
output = new ThingeyWrapper(request);
this.Thingeys.Add(thingeyName, output);
}
}
output.WaitForCreation();
return output.Thing;
}
While you are still locking on all calls, the creation process is much more lightweight.
Edit
This issue has stuck with me more than I expected it to, so I whipped together a somewhat more robust solution that follows this general pattern. You can find it here.
IMHO, if this piece of code is called from many thread simultaneous, it is recommended to check it twice.
(But: I'm not sure that you can safely call ContainsKey while some other thread is call Add. So it might not be possible to avoid the lock at all.)
If you just want to avoid the Thingy is created but not used, just create it within the locking block:
private Dictionary<string, Thingey> Thingeys;
public Thingey GetThingey(Request request)
{
string thingeyName = request.ThingeyName;
if (!this.Thingeys.ContainsKey(thingeyName))
{
lock (this.Thingeys)
{
// only one can create the same Thingy
Thingey newThingey = new Thingey(request);
if (!this.Thingeys.ContainsKey(thingeyName))
{
this.Thingeys.Add(thingeyName, newThingey);
}
}
}
return this. Thingeys[thingeyName];
}
You have to ask yourself the question whether the specific ContainsKey operation and the getter are themselfes threadsafe (and will stay that way in newer versions), because those may and willbe invokes while another thread has the dictionary locked and is performing the Add.
Typically, .NET locks are fairly efficient if used correctly, and I believe that in this situation you're better of doing this:
bool exists;
lock (thingeys) {
exists = thingeys.TryGetValue(thingeyName, out thingey);
}
if (!exists) {
thingey = new Thingey();
}
lock (thingeys) {
if (!thingeys.ContainsKey(thingeyName)) {
thingeys.Add(thingeyName, thingey);
}
}
return thingey;
Well I hope not being to naive at giving this answer. but what I would do, as Thingyes are expensive to create, would be to add the key with a null value. That is something like this
private Dictionary<string, Thingey> Thingeys;
public Thingey GetThingey(Request request)
{
string thingeyName = request.ThingeyName;
if (!this.Thingeys.ContainsKey(thingeyName))
{
lock (this.Thingeys)
{
this.Thingeys.Add(thingeyName, null);
if (!this.Thingeys.ContainsKey(thingeyName))
{
// create a new thingey on 1st reference
Thingey newThingey = new Thingey(request);
Thingeys[thingeyName] = newThingey;
}
// else - oops someone else beat us to it
// but it doesn't mather anymore since we only created one Thingey
}
}
return this.Thingeys[thingeyName];
}
I modified your code in a rush so no testing was done.
Anyway, I hope my idea is not so naive. :D
You might be able to buy a little bit of speed efficiency at the expense of memory. If you create an immutable array that lists all of the created Thingys and reference the array with a static variable, then you could check the existance of a Thingy outside of any lock, since immutable arrays are always thread safe. Then when adding a new Thingy, you can create a new array with the additional Thingy and replace it (in the static variable) in one (atomic) set operation. Some new Thingys may be missed, because of race conditions, but the program shouldn't fail. It just means that on rare occasions extra duplicate Thingys will be made.
This will not replace the need for duplicate checking when creating a new Thingy, and it will use a lot of memory resources, but it will not require that the lock be taken or held while creating a Thingy.
I'm thinking of something along these lines, sorta:
private Dictionary<string, Thingey> Thingeys;
// An immutable list of (most of) the thingeys that have been created.
private string[] existingThingeys;
public Thingey GetThingey(Request request)
{
string thingeyName = request.ThingeyName;
// Reference the same list throughout the method, just in case another
// thread replaces the global reference between operations.
string[] localThingyList = existingThingeys;
// Check to see if we already made this Thingey. (This might miss some,
// but it doesn't matter.
// This operation on an immutable array is thread-safe.
if (localThingyList.Contains(thingeyName))
{
// But referencing the dictionary is not thread-safe.
lock (this.Thingeys)
{
if (this.Thingeys.ContainsKey(thingeyName))
return this.Thingeys[thingeyName];
}
}
Thingey newThingey = new Thingey(request);
Thiney ret;
// We haven't locked anything at this point, but we have created a new
// Thingey that we probably needed.
lock (this.Thingeys)
{
// If it turns out that the Thingey was already there, then
// return the old one.
if (!Thingeys.TryGetValue(thingeyName, out ret))
{
// Otherwise, add the new one.
Thingeys.Add(thingeyName, newThingey);
ret = newThingey;
}
}
// Update our existingThingeys array atomically.
string[] newThingyList = new string[localThingyList.Length + 1];
Array.Copy(localThingyList, newThingey, localThingyList.Length);
newThingey[localThingyList.Length] = thingeyName;
existingThingeys = newThingyList; // Voila!
return ret;
}

Categories

Resources