I'm trying to do some async stuff in a webservice method. Let say I have the following API call: http://www.example.com/api.asmx
and the method is called GetProducts().
I this GetProducts methods, I do some stuff (eg. get data from database) then just before i return the result, I want to do some async stuff (eg. send me an email).
So this is what I did.
[WebMethod(Description = "Bal blah blah.")]
public IList<Product> GetProducts()
{
// Blah blah blah ..
// Get data from DB .. hi DB!
// var myData = .......
// Moar clbuttic blahs :) (yes, google for clbuttic if you don't know what that is)
// Ok .. now send me an email for no particular reason, but to prove that async stuff works.
var myObject = new MyObject();
myObject.SendDataAsync();
// Ok, now return the result.
return myData;
}
}
public class TrackingCode
{
public void SendDataAsync()
{
var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += BackgroundWorker_DoWork;
backgroundWorker.RunWorkerAsync();
//System.Threading.Thread.Sleep(1000 * 20);
}
private void BackgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
SendEmail();
}
}
Now, when I run this code the email is never sent. If I uncomment out the Thread.Sleep .. then the email is sent.
So ... why is it that the background worker thread is torn down? is it dependant on the parent thread? Is this the wrong way I should be doing background or forked threading, in asp.net web apps?
BackgroundWorker is useful when you need to synchronize back to (for example) a UI* thread, eg for affinity reasons. In this case, it would seem that simply using ThreadPool would be more than adequate (and much simpler). If you have high volumes, then a producer/consumer queue may allow better throttling (so you don't drown in threads) - but I suspect ThreadPool will be fine here...
public void SendDataAsync()
{
ThreadPool.QueueUserWorkItem(delegate
{
SendEmail();
});
}
Also - I'm not quite sure what you want to achieve by sleeping? This will just tie up a thread (not using CPU, but doing no good either). Care to elaborate? It looks like you are pausing your actual web page (i.e. the Sleep happens on the web-page thread, not the e-mail thread). What are you trying to do here?
*=actually, it will use whatever sync-context is in place
Re producer/consumer; basically - it is just worth keeping some kind of throttle. At the simplest level, a Semaphore could be used (along with the regular ThreadPool) to limit things to a known amount of work (to avoid saturating the thread pool); but a producer/consumer queue would probably be more efficient and managed.
Jon Skeet has such a queue here (CustomThreadPool). I could probably write some notes about it if you wanted.
That said: if you are calling off to an external web-site, it is quite likely that you will have a lot of waits on network IO / completion ports; as such, you can have a slightly higher number of threads... obviously (by contrast) if the work was CPU-bound, there is no point having more threads than you have CPU cores.
It may torn down because after 20 seconds, that BackgroundWorker instance may be garbage collected because it has no references (gone out of scope).
Related
Can someone tell me what the best practice/proper way of doing this is?
I'm also using WPF, not a console or ASP.NET.
Using Listener to accept clients and spin off a new "thread" for each client that handles all the I/O and Exception catching for that client.
Method 1: Fire and forget, and just throw it into a variable to get rid of the warning.
public static async Task Start(CancellationToken token)
{
m_server = TcpListener.Create(33777);
m_server.Start();
running = true;
clientCount = 0;
// TODO: Add try... catch
while (!token.IsCancellationRequested)
{
var client = await m_server.AcceptTcpClientAsync().ConfigureAwait(false);
Client c = new Client(client);
var _ = HandleClientAsync(c);
}
}
Here's the Client Handler code:
public static async Task HandleClientAsync(Client c)
{
// TODO: add try...catch
while (c.connected)
{
string data = await c.reader.ReadLineAsync();
// Now we will parse the data and update variables accordingly
// Just Regex and some parsing that updates variables
ParseAndUpdate(data);
}
}
Method 2: The same thing... but with Task.Run()
var _ = Task.Run(() => HandleClientAsync());
Method 3: an intermediate non async function (doubt this is good. Should be Async all the way)
But this at least gets rid of the squiggly line without using the variable trick which kinda feels dirty.
while (!token.IsCancellationRequested)
{
var client = await m_server.AcceptTcpClientAsync().ConfigureAwait(false);
Client c = new Client(client);
NonAsync(c);
}
public static void NonAsync(VClient vc)
{
Task.Run(() => HandleClientAsync(vc));
}
Method 4: Make HandleClientAsync an Async void instead of Async Task (really bad)
public static async Task HandleClientAsync(Client c)
// Would change to
public static async Void HandleClientAsync(Client c)
Questions:
Is it any better to use Task.Run() When doing a fire and forget task?
Is it just accepted that you need to use the var _ = FireAndForget() trick to do fire and forget? I could just ignore the warning but something feels wrong about it.
If I wanted to update my UI from a Client, how would I do that? Would I just use a dispatcher?
Thanks guys
I've never been a fan of background workers which you expect to run for a long time, being run in a task. Tasks get scheduled to run on threads drawn from a pool. As you schedule these long running tasks, the thread pool gets smaller and smaller. Eventually all of the threads from the pool are busy running your tasks, and things get really slow and unmanageable.
My recommendation here? Use the Thread class and manage them yourselves. In this way, you keep your thread pool and the overhead for for tasks out of the picture.
Addendum - Producer Consumer Model
Another interesting question to consider: Do you really need a thread for every client? Threads are reasonably costly to create and maintain in terms of memory overhead, and if your client interaction is such that the client threads spend the vast majority of their time waiting around on something to do, then perhaps a producer consumer model is more suited to your use case.
Example:
Client connects on listening thread, gets put in a client queue
Worker thread responsible for checking to see if the clients need anything comes along through that queue every so often and checks - does the client have a new message to service? If so, it services all messages the client has, then moves on
In this way, you limit the number of threads working to just the number needed to manage the message queue. You can even get fancy and add worker threads dynamically based on how long its been since all the clients have been serviced.
If you insist
If you really like what you have going, I suggest refactoring what youre doing a bit so that rather than HandleClientAsync you do something more akin to CreateServiceForClient(c);
This could be a synchronous method that returns something like a ClientService. ClientService could then create the task that does what your HandleClientAsync does now, and store that task as a member. It could also provide methods like
ClientService.WaitUntilEnd()
and
ClientService.Disconnect() (which could set a cancellation token, also stored as a member variable)
I can have a maximum of 5 threads running simultaneous at any one time which makes use of 5 separate hardware to speedup the computation of some complex calculations and return the result. The API (contains only one method) for each of this hardware is not thread safe and can only run on a single thread at any point in time. Once the computation is completed, the same thread can be re-used to start another computation on either the same or a different hardware depending on availability. Each computation is stand alone and does not depend on the results of the other computation. Hence, up to 5 threads may complete its execution in any order.
What is the most efficient C# (using .Net Framework 2.0) coding solution for keeping track of which hardware is free/available and assigning a thread to the appropriate hardware API for performing the computation? Note that other than the limitation of 5 concurrently running threads, I do not have any control over when or how the threads are fired.
Please correct me if I am wrong but a lock free solution is preferred as I believe it will result in increased efficiency and a more scalable solution.
Also note that this is not homework although it may sound like it...
.NET provides a thread pool that you can use. System.Threading.ThreadPool.QueueUserWorkItem() tells a thread in the pool to do some work for you.
Were I designing this, I'd not focus on mapping threads to your HW resources. Instead I'd expose a lockable object for each HW resource - this can simply be an array or queue of 5 Objects. Then for each bit of computation you have, call QueueUserWorkItem(). Inside the method you pass to QUWI, find the next available lockable object and lock it (aka, dequeue it). Use the HW resource, then re-enqueue the object, exit the QUWI method.
It won't matter how many times you call QUWI; there can be at most 5 locks held, each lock guards access to one instance of your special hardware device.
The doc page for Monitor.Enter() shows how to create a safe (blocking) Queue that can be accessed by multiple workers. In .NET 4.0, you would use the builtin BlockingCollection - it's the same thing.
That's basically what you want. Except don't call Thread.Create(). Use the thread pool.
cite: Advantage of using Thread.Start vs QueueUserWorkItem
// assume the SafeQueue class from the cited doc page.
SafeQueue<SpecialHardware> q = new SafeQueue<SpecialHardware>()
// set up the queue with objects protecting the 5 magic stones
private void Setup()
{
for (int i=0; i< 5; i++)
{
q.Enqueue(GetInstanceOfSpecialHardware(i));
}
}
// something like this gets called many times, by QueueUserWorkItem()
public void DoWork(WorkDescription d)
{
d.DoPrepWork();
// gain access to one of the special hardware devices
SpecialHardware shw = q.Dequeue();
try
{
shw.DoTheMagicThing();
}
finally
{
// ensure no matter what happens the HW device is released
q.Enqueue(shw);
// at this point another worker can use it.
}
d.DoFollowupWork();
}
A lock free solution is only beneficial if the computation time is very small.
I would create a facade for each hardware thread where jobs are enqueued and a callback is invoked each time a job finishes.
Something like:
public class Job
{
public string JobInfo {get;set;}
public Action<Job> Callback {get;set;}
}
public class MyHardwareService
{
Queue<Job> _jobs = new Queue<Job>();
Thread _hardwareThread;
ManualResetEvent _event = new ManualResetEvent(false);
public MyHardwareService()
{
_hardwareThread = new Thread(WorkerFunc);
}
public void Enqueue(Job job)
{
lock (_jobs)
_jobs.Enqueue(job);
_event.Set();
}
public void WorkerFunc()
{
while(true)
{
_event.Wait(Timeout.Infinite);
Job currentJob;
lock (_queue)
{
currentJob = jobs.Dequeue();
}
//invoke hardware here.
//trigger callback in a Thread Pool thread to be able
// to continue with the next job ASAP
ThreadPool.QueueUserWorkItem(() => job.Callback(job));
if (_queue.Count == 0)
_event.Reset();
}
}
}
Sounds like you need a thread pool with 5 threads where each one relinquishes the HW once it's done and adds it back to some queue. Would that work? If so, .Net makes thread pools very easy.
Sounds a lot like the Sleeping barber problem. I believe the standard solution to that is to use semaphores
I have a class that implements the Begin/End Invocation pattern where I initially used ThreadPool.QueueUserWorkItem() to thread my work. The work done on the thread doesn't loop but does takes a bit of time to process so the work itself is not easily stopped.
I now have the side effect where someone using my class is calling the Begin (with callback) a ton of times to do a lot of processing so ThreadPool.QueueUserWorkItem is creating a ton of threads to do the processing. That in itself isn't bad but there are instances where they want to abandon the processing and start a new process but they are forced to wait for their first request to finish.
Since ThreadPool.QueueUseWorkItem() doesn't allow me to cancel the threads I am trying to come up with a better way to queue up the work and maybe use an explicit FlushQueue() method in my class to allow the caller to abandon work in my queue.
Anyone have any suggestion on a threading pattern that fits my needs?
Edit: I'm currently targeting the 2.0 framework. I'm currently thinking that a Consumer/Producer queue might work. Does anyone have thoughts on the idea of flushing the queue?
Edit 2 Problem Clarification:
Since I'm using the Begin/End pattern in my class every time the caller uses the Begin with callback I create a whole new thread on the thread pool. This call does a very small amount of processing and is not where I want to cancel. It's the uncompleted jobs in the queue I wish to stop.
The fact that the ThreadPool will create 250 threads per processor by default means if you ask the ThreadPool to queue a large amount of items with QueueUserWorkItem() you end up creating a huge amount of concurrent threads that you have no way of stopping.
The caller is able to push the CPU to 100% with not only the work but the creation of the work because of the way I queued the threads.
I was thinking by using the Producer/Consumer pattern I could queue these threads into my own queue that would allow me to moderate how many threads I create to avoid the CPU spike creating all the concurrent threads. And that I might be able to allow the caller of my class to flush all the jobs in the queue when they are abandoning the requests.
I am currently trying to implement this myself but figured SO was a good place to have someone say look at this code or you won't be able to flush because of this or flushing isn't the right term you mean this.
EDIT My answer does not apply since OP is using 2.0. Leaving up and switching to CW for anyone who reads this question and using 4.0
If you are using C# 4.0, or can take a depedency on one of the earlier version of the parallel frameworks, you can use their built-in cancellation support. It's not as easy as cancelling a thread but the framework is much more reliable (cancelling a thread is very attractive but also very dangerous).
Reed did an excellent article on this you should take a look at
http://reedcopsey.com/2010/02/17/parallelism-in-net-part-10-cancellation-in-plinq-and-the-parallel-class/
A method I've used in the past, though it's certainly not a best practice is to dedicate a class instance to each thread, and have an abort flag on the class. Then create a ThrowIfAborting method on the class that is called periodically from the thread (particularly if the thread's running a loop, just call it every iteration). If the flag has been set, ThrowIfAborting will simply throw an exception, which is caught in the main method for the thread. Just make sure to clean up your resources as you're aborting.
You could extend the Begin/End pattern to become the Begin/Cancel/End pattern. The Cancel method could set a cancel flag that the worker thread polls periodically. When the worker thread detects a cancel request, it can stop its work, clean-up resources as needed, and report that the operation was canceled as part of the End arguments.
I've solved what I believe to be your exact problem by using a wrapper class around 1+ BackgroundWorker instances.
Unfortunately, I'm not able to post my entire class, but here's the basic concept along with it's limitations.
Usage:
You simply create an instance and call RunOrReplace(...) when you want to cancel your old worker and start a new one. If the old worker was busy, it is asked to cancel and then another worker is used to immediately execute your request.
public class BackgroundWorkerReplaceable : IDisposable
{
BackgroupWorker activeWorker = null;
object activeWorkerSyncRoot = new object();
List<BackgroupWorker> workerPool = new List<BackgroupWorker>();
DoWorkEventHandler doWork;
RunWorkerCompletedEventHandler runWorkerCompleted;
public bool IsBusy
{
get { return activeWorker != null ? activeWorker.IsBusy; : false }
}
public BackgroundWorkerReplaceable(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler runWorkerCompleted)
{
this.doWork = doWork;
this.runWorkerCompleted = runWorkerCompleted;
ResetActiveWorker();
}
public void RunOrReplace(Object param, ...) // Overloads could include ProgressChangedEventHandler and other stuff
{
try
{
lock(activeWorkerSyncRoot)
{
if(activeWorker.IsBusy)
{
ResetActiveWorker();
}
// This works because if IsBusy was false above, there is no way for it to become true without another thread obtaining a lock
if(!activeWorker.IsBusy)
{
// Optionally handle ProgressChangedEventHandler and other features (under the lock!)
// Work on this new param
activeWorker.RunWorkerAsync(param);
}
else
{ // This should never happen since we create new workers when there's none available!
throw new LogicException(...); // assert or similar
}
}
}
catch(...) // InvalidOperationException and Exception
{ // In my experience, it's safe to just show the user an error and ignore these, but that's going to depend on what you use this for and where you want the exception handling to be
}
}
public void Cancel()
{
ResetActiveWorker();
}
public void Dispose()
{ // You should implement a proper Dispose/Finalizer pattern
if(activeWorker != null)
{
activeWorker.CancelAsync();
}
foreach(BackgroundWorker worker in workerPool)
{
worker.CancelAsync();
worker.Dispose();
// perhaps use a for loop instead so you can set worker to null? This might help the GC, but it's probably not needed
}
}
void ResetActiveWorker()
{
lock(activeWorkerSyncRoot)
{
if(activeWorker == null)
{
activeWorker = GetAvailableWorker();
}
else if(activeWorker.IsBusy)
{ // Current worker is busy - issue a cancel and set another active worker
activeWorker.CancelAsync(); // Make sure WorkerSupportsCancellation must be set to true [Link9372]
// Optionally handle ProgressEventHandler -=
activeWorker = GetAvailableWorker(); // Ensure that the activeWorker is available
}
//else - do nothing, activeWorker is already ready for work!
}
}
BackgroupdWorker GetAvailableWorker()
{
// Loop through workerPool and return a worker if IsBusy is false
// if the loop exits without returning...
if(activeWorker != null)
{
workerPool.Add(activeWorker); // Save the old worker for possible future use
}
return GenerateNewWorker();
}
BackgroundWorker GenerateNewWorker()
{
BackgroundWorker worker = new BackgroundWorker();
worker.WorkerSupportsCancellation = true; // [Link9372]
//worker.WorkerReportsProgress
worker.DoWork += doWork;
worker.RunWorkerCompleted += runWorkerCompleted;
// Other stuff
return worker;
}
} // class
Pro/Con:
This has the benefit of having a very low delay in starting your new execution, since new threads don't have to wait for old ones to finish.
This comes at the cost of a theoretical never-ending growth of BackgroundWorker objects that never get GC'd. However, in practice the code below attempts to recycle old workers so you shouldn't normally encounter a large pool of ideal threads. If you are worried about this because of how you plan to use this class, you could implement a Timer which fires a CleanUpExcessWorkers(...) method, or have ResetActiveWorker() do this cleanup (at the cost of a longer RunOrReplace(...) delay).
The main cost from using this is precisely why it's beneficial - it doesn't wait for the previous thread to exit, so for example, if DoWork is performing a database call and you execute RunOrReplace(...) 10 times in rapid succession, the database call might not be immediately canceled when the thread is - so you'll have 10 queries running, making all of them slow! This generally tends to work fine with Oracle, causing only minor delays, but I do not have experiences with other databases (to speed up the cleanup, I have the canceled worker tell Oracle to cancel the command). Proper use of the EventArgs described below mostly solves this.
Another minor cost is that whatever code this BackgroundWorker is performing must be compatible with this concept - it must be able to safely recover from being canceled. The DoWorkEventArgs and RunWorkerCompletedEventArgs have a Cancel/Cancelled property which you should use. For example, if you do Database calls in the DoWork method (mainly what I use this class for), you need to make sure you periodically check these properties and take perform the appropriate clean-up.
[This appears to be a loooong question but I have tried to make it as clear as possible. Please have patience and help me...]
I have written a test class which supports an Async operation. That operation does nothing but reports 4 numbers:
class AsyncDemoUsingAsyncOperations
{
AsyncOperation asyncOp;
bool isBusy;
void NotifyStarted () {
isBusy = true;
Started (this, new EventArgs ());
}
void NotifyStopped () {
isBusy = false;
Stopped (this, new EventArgs ());
}
public void Start () {
if (isBusy)
throw new InvalidOperationException ("Already working you moron...");
asyncOp = AsyncOperationManager.CreateOperation (null);
ThreadPool.QueueUserWorkItem (new WaitCallback (StartOperation));
}
public event EventHandler Started = delegate { };
public event EventHandler Stopped = delegate { };
public event EventHandler<NewNumberEventArgs> NewNumber = delegate { };
private void StartOperation (object state) {
asyncOp.Post (args => NotifyStarted (), null);
for (int i = 1; i < 5; i++)
asyncOp.Post (args => NewNumber (this, args as NewNumberEventArgs), new NewNumberEventArgs (i));
asyncOp.Post (args => NotifyStopped (), null);
}
}
class NewNumberEventArgs: EventArgs
{
public int Num { get; private set; }
public NewNumberEventArgs (int num) {
Num = num;
}
}
Then I wrote 2 test programs; one as console app and another as windows form app. Windows form app works as expected when I call Start repeatedly:
But console app has hard time ensuring the order:
Since I am working on class library, I have to ensure that my library works correctly in all app models (Haven't tested in ASP.NET app yet). So I have following questions:
I have tested enough times and it appears to be working but is it OK to assume above code will always work in windows form app?
Whats the reason it (order) doesn't work correctly in console app? How can I fix it?
Not much experienced with ASP.NET. Will the order work in ASP.NET app?
[EDIT: Test stubs can be seen here if that helps.]
Unless I am missing something then given the code above I believe there is no way of guaranteeing the order of execution. I have never used the AsyncOperation and AsyncOperationManager class but I looked in reflector and as could be assumed AsyncOperation.Post uses the thread pool to execute the given code asynchronously.
This means that in the example you have provided 4 tasks will be queued to the thread pool synchronously in very quick succession. The thread pool will then dequeue the tasks in FIFO order (first in first out) but it's entirely possible for one of later threads to be scheduled before an earlier one or one of the later threads to complete before an earlier thread has completed its work.
Therefore given what you have there is no way to control the order in the way you desire. There are ways to do this, a good place to look is this article on MSDN.
http://msdn.microsoft.com/en-us/magazine/dd419664.aspx
I use a Queue you can then Enqueue stuff and Dequeue stuff in the correct order. This solved this problem for me.
The documentation for AsyncOperation.Post states:
Console applications do not synchronize the execution of Post calls. This can cause ProgressChanged events to be raised out of order. If you wish to have serialized execution of Post calls, implement and install a System.Threading.SynchronizationContext class.
I think this is the exact behavior you’re seeing. Basically, if the code that wants to subscribe to notifications from your asynchronous event wants to receive the updates in order, it must ensure that there is a synchronization context installed and that your AsyncOperationManager.CreateOperation() call is run inside of that context. If the code consuming the asynchronous events doesn’t care about receiving them in the correct order, it simply needs to avoid installing a synchronization context which will result in the “default” context being used (which just queues calls directly to the threadpool which may execute them in any order it wants to).
In the GUI version of your application, if you call your API from a UI thread, you will automatically have a synchronization context. This context is wired up to use the UI’s message queueing system which guarantees that posted messages are processed in order and serially (i.e., not concurrently).
In a Console application, unless if you manually install your own synchronization context, you will be using the default, non-synchronizing threadpool version. I am not exactly sure, but I don’t think that .net makes installing a serializing synchronization context very easy to do. I just use Nito.AsyncEx.AsyncContext from the Nito.AsyncEx nuget package to do that for me. Basically, if you call Nito.AsyncEx.AsyncContext.Run(MyMethod), it will capture the current thread and run an event loop with MyMethod as the first “handler” in that event loop. If MyMethod calls something that creates an AsyncOperation, that operation increments an “ongoing operations” counter and that loop will continue until the operation is completed via AsyncOperation.PostOperationCompleted or AsyncOperation.OperationCompleted. Just like the synchronization context provided by a UI thread, AsyncContext will queue posts from AsyncOperation.Post() in the order it receives them and run them serially in its event loop.
Here is an example of how to use AsyncContext with your demo asynchronous operation:
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Starting SynchronizationContext");
Nito.AsyncEx.AsyncContext.Run(Run);
Console.WriteLine("SynchronizationContext finished");
}
// This method is run like it is a UI callback. I.e., it has a
// single-threaded event-loop-based synchronization context which
// processes asynchronous callbacks.
static Task Run()
{
var remainingTasks = new Queue<Action>();
Action startNextTask = () =>
{
if (remainingTasks.Any())
remainingTasks.Dequeue()();
};
foreach (var i in Enumerable.Range(0, 4))
{
remainingTasks.Enqueue(
() =>
{
var demoOperation = new AsyncDemoUsingAsyncOperations();
demoOperation.Started += (sender, e) => Console.WriteLine("Started");
demoOperation.NewNumber += (sender, e) => Console.WriteLine($"Received number {e.Num}");
demoOperation.Stopped += (sender, e) =>
{
// The AsyncDemoUsingAsyncOperation has a bug where it fails to call
// AsyncOperation.OperationCompleted(). Do that for it. If we don’t,
// the AsyncContext will never exit because there are outstanding unfinished
// asynchronous operations.
((AsyncOperation)typeof(AsyncDemoUsingAsyncOperations).GetField("asyncOp", BindingFlags.NonPublic|BindingFlags.Instance).GetValue(demoOperation)).OperationCompleted();
Console.WriteLine("Stopped");
// Start the next task.
startNextTask();
};
demoOperation.Start();
});
}
// Start the first one.
startNextTask();
// AsyncContext requires us to return a Task because that is its
// normal use case.
return Nito.AsyncEx.TaskConstants.Completed;
}
}
With output:
Starting SynchronizationContext
Started
Received number 1
Received number 2
Received number 3
Received number 4
Stopped
Started
Received number 1
Received number 2
Received number 3
Received number 4
Stopped
Started
Received number 1
Received number 2
Received number 3
Received number 4
Stopped
Started
Received number 1
Received number 2
Received number 3
Received number 4
Stopped
SynchronizationContext finished
Note that in my example code I work around a bug in AsyncDemoUsingAsyncOperations which you should probably fix: when your operation stops, you never call AsyncOperation.OperationCompleted or AsyncOperation.PostOperationCompleted. This causes AsyncContext.Run() to hang forever because it is waiting for the outstanding operations to complete. You should make sure that your asynchronous operations complete—even in error cases. Otherwise you might run into similar issues elsewhere.
Also, my demo code, to imitate the output you showed in the winforms and console example, waits for each operation to finish before starting the next one. That kind of defeats the point of asynchronous coding. You can probably tell that my code could be greatly simplified by starting all four tasks at once. Each individual task would receive its callbacks in the correct order, but they would all make progress concurrently.
Recommendation
Because of how AsyncOperation seems to work and how it is intended to be used, it is the responsibility of the caller of an asynchronous API that uses this pattern to decide if it wants to receive events in order or not. If you are going to use AsyncOperation, you should document that the asynchronous events will only be received in order by the caller if the caller has a synchronization context that enforces serialization and suggest that the caller call your API on either a UI thread or in something like AsyncContext.Run(). If you try to use synchronization primitives and whatnot inside of the delegate you call with AsyncOperation.Post(), you could end up putting threadpool threads in a sleeping state which is a bad thing when considering performance and is completely redundant/wasteful when the caller of your API has properly set up a synchronization context already. This also enables the caller to decide that, if it is fine with receiving things out of order, that it is willing to process events concurrently and out of order. That may even enable speedup depending on what you’re doing. Or you might even decide to put something like a sequence number in your NewNumberEventArgs in case the caller wants both concurrency and still needs to be able to assemble the events into order at some point.
I have an object that requires a lot of initialization (1-2 seconds on a beefy machine). Though once it is initialized it only takes about 20 miliseconds to do a typical "job"
In order to prevent it from being re-initialized every time an app wants to use it (which could be 50 times a second or not at all for minutes in typical usage), I decided to give it a job que, and have it run on its own thread, checking to see if there is any work for it in the que. However I'm not entirely sure how to make a thread that runs indefinetly with or without work.
Here's what I have so far, any critique is welcomed
private void DoWork()
{
while (true)
{
if (JobQue.Count > 0)
{
// do work on JobQue.Dequeue()
}
else
{
System.Threading.Thread.Sleep(50);
}
}
}
After thought: I was thinking I may need to kill this thread gracefully insead of letting it run forever, so I think I will add a Job type that tells the thread to end. Any thoughts on how to end a thread like this also appreciated.
You need to lock anyway, so you can Wait and Pulse:
while(true) {
SomeType item;
lock(queue) {
while(queue.Count == 0) {
Monitor.Wait(queue); // releases lock, waits for a Pulse,
// and re-acquires the lock
}
item = queue.Dequeue(); // we have the lock, and there's data
}
// process item **outside** of the lock
}
with add like:
lock(queue) {
queue.Enqueue(item);
// if the queue was empty, the worker may be waiting - wake it up
if(queue.Count == 1) { Monitor.PulseAll(queue); }
}
You might also want to look at this question, which limits the size of the queue (blocking if it is too full).
You need a synchronization primitive, like a WaitHandle (look at the static methods) . This way you can 'signal' the worker thread that there is work. It checks the queue and keeps on working until the queue is empty, at which time it waits for the mutex to signal it again.
Make one of the job items be a quit command too, so that you can signal the worker thread when it's time to exit the thread
In most cases, I've done this quite similar to how you've set up -- but not in the same language. I had the advantage of working with a data structure (in Python) which will block the thread until an item is put into the queue, negating the need for the sleep call.
If .NET provides a class like that, I'd look into using it. A thread blocking is much better than a thread spinning on sleep calls.
The job you can pass could be as simple as a "null"; if the code receives a null, it knows it's time to break out of the while and go home.
If you don't really need to have the thread exit (and just want it to keep from keeping your application running) you can set Thread.IsBackground to true and it will end when all non background threads end. Will and Marc both have good solutions for handling the queue.
Grab the Parallel Framework. It has a BlockingCollection<T> which you can use as a job queue. How you'd use it is:
Create the BlockingCollection<T> that will hold your tasks/jobs.
Create some Threads which have a never-ending loop (while(true){ // get job off the queue)
Set the threads going
Add jobs to the collection when they come available
The threads will be blocked until an item appears in the collection. Whoever's turn it is will get it (depends on the CPU). I'm using this now and it works great.
It also has the advantage of relying on MS to write that particularly nasty bit of code where multiple threads access the same resource. And whenever you can get somebody else to write that you should go for it. Assuming, of course, they have more technical/testing resources and combined experience than you.
I've implemented a background-task queue without using any kind of while loop, or pulsing, or waiting, or, indeed, touching Thread objects at all. And it seems to work. (By which I mean it's been in production environments handling thousands of tasks a day for the last 18 months without any unexpected behavior.) It's a class with two significant properties, a Queue<Task> and a BackgroundWorker. There are three significant methods, abbreviated here:
private void BackgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
if (TaskQueue.Count > 0)
{
TaskQueue[0].Execute();
}
}
private void BackgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
Task t = TaskQueue[0];
lock (TaskQueue)
{
TaskQueue.Remove(t);
}
if (TaskQueue.Count > 0 && !BackgroundWorker.IsBusy)
{
BackgroundWorker.RunWorkerAsync();
}
}
public void Enqueue(Task t)
{
lock (TaskQueue)
{
TaskQueue.Add(t);
}
if (!BackgroundWorker.IsBusy)
{
BackgroundWorker.RunWorkerAsync();
}
}
It's not that there's no waiting and pulsing. But that all happens inside the BackgroundWorker. This just wakes up whenever a task is dropped in the queue, runs until the queue is empty, and then goes back to sleep.
I am far from an expert on threading. Is there a reason to mess around with System.Threading for a problem like this if using a BackgroundWorker will do?