I know that making a class static in a ASP.Net project will cause that class's runtime properties to be available to all sessions on the web server.
My question is this: If I declare nested classes static, but the container not, does the sharing of the classes across sessions still apply?
Example:
public class FooContainer
{
public static class Bar
{
}
public static class dog
{
}
}
Yes; a static nested class has the same behaviour as any other static class. The only time nested classes behave differently is when the outer class is generic type (the nested type is then implicitly generic via the parent, so FooContainer<X>.Bar would be independent of FooContainer<Y>.Bar).
And just be careful: static for sharing data between sessions is fraught with danger. Synchronize like a paranoid thing. Personally I would need a very good reason to do this... and it needs careful implementation. I only use that approach for things like configuration caching, and even then I'm insanely careful about it.
Ultimately, yes.
The nested static classes are compiled just the same as root-level static classes (Marc wisely notes subtle differences where generics are involved) - the only difference is the qualifying of the path of the type, but this is only natural in any environment and not a side-effect at all.
When I see someone say "static data" and "ASP.NET" in the same sentence all sorts of alerts go off.
Yes, as Marc said, static classes will be static even if they are nested, you just need to call them via the containing class
MyStaticClass.StaticField = 3; ///wont work
MyInstanceClass.MyStaticClass.StaticField = 3; // works
Any instantiable class can have static methods/properties/constructors, making a class explicitly static just has the added benefit that you can't make something non-static my mistake, clarifying the purpose and intent of the class.
But beware, static classes in ASP.net are trully static on an application level, so if you have multiple users, they will all see the same static data, regardless of authorizations, and a change of that data will affect all users who use it.
So a static variable might be the right place to put something that is read once from the db, and then just displayed, i.e. the current version of the application, or the application's start time, but it's a very wrong place to put user-specific data like language preferences, usernames, etc, etc...
Related
I'm new to c sharp and programming generally. I have a quick question - what is best practise with regards to static/non static variables.
I have a variable,private int x, which belongs to class y. To access this variable, i need to reference y. If x was static however, i can access this variable with no references to y.
Which is the best way to go, in a situation whereby several methods within the class y will be referencing this value ?
Hope this makes sense, and my question isn't too basic !
Many thanks
You need to think about static variables as belonging to the class, not to instances of the class.
If, in all instances of the class this variable should be identical, use a static variable.
If not, use an instance variable.
In general having public static variables is bad practice - it is a shared global resource and if you change it you need to synchronize access to it. Having global state is something you want to avoid as much as possible.
Best practice is to avoid public static. In OOP, class is meant to hide its members. Static is actually not a member of the instance but of the type.
Static comes handy if you are implementing singleton pattern. But then again they need to be made private and accessible through a public property.
You need to read Static Classes and Static Class Members (C# Programming Guide).
Well I can't conclusively say that one is better, because they serve different purposes.
Are you familiar with OOP? In OOP, static objects or members of a class that can be accessed directly from the class, while non-static members can only be accessed from the instance it belongs to.
C# follows a similar principle for the methods. The static methods can by accessed directly from the class, while non-static methods (or instance methods as I like to call them) have to be accessed from an instance. That is why instatiating needs to be done for instance methods, while for static methods it's just not needed, and furthermore impractical (see below).
In OOP, static variables are used for values which cannot be stored by an instance variable. Example: supposed you wanted to keep a count of how many instances of a class exists? How would you store that in a single instance?
The methods use a similar principle. They should be used for procedures for which it is impractical to do within an instance of a class. I tend to use them for broad procedures (not a technical term), meaning those that do not require me to instantiate an object. Example, adding two parameters. (This usage may or may not be correct, but I believe it is)
However, if you wanted to add two properties of an object, the method cannot be static, because as you would soon realize, static methods cannot access instance methods or variables within a class. Of course that makes sense because that static method would not know which instance of the class the get these from unless it were told, since it is not part of an instance itself)
For the sake of no further complicating things, I'll stop here. Let me know if you misunderstood anything.
Your choice depends on your architecture.
Static makes part of a Type, others make part of an instance of that type. If you want have some shared state (say) between different instances of the same type, use static. If you want that every instance have it's own value, independent from others, use instance fields.
In both cases, by the way, avoid to expose like a public fields, but use properties.
I completely agree with Mr Oded:
If, in all instances of the class this variable should be identical, use a static variable.
If not, use an instance variable.
Yes, adding static to a class member basically means you can access it without an instance, and only outside any instance. And yes, it becomes a global resource, or even a global variable if you will.
But I think there's at least another (heavily edited) good point to be made here...
Using static members as global vars go against OOP
This means once you set a static member you can't pass it around as an object. The more you use static as global var, the more difficult it is for unit testing / mocking classes.
There is a solution for that, Singletons. But they should never come without warnings!
At other hand, if you're sure you really need global vars, take a look at the Toolbox pattern. It's a not well known extension of Singleton pattern. It's so unknown in fact, if you google for it you won't find it with those keywords (toolbox pattern).
So plan ahead. Read more. Get to know about every option so you can decide better. Even get a book. Object Oriented Programming is more about applying concepts that will help in the long run than just making things work now.
In general if you want to have a variable public, either static or instance, you must wrap it in a property and expose it like that. This is for sure a principle that you will love to follow.
But despite some of the other answers I cannot say don't use static. Static is not the devil that you should avoid in any case. What you have to do will decide if you are going to use static or not, as long as you keep your program clean and easy to maintain.
Easily speaking, and not in the language of the elders, static stands for something that don't belong to any instance of this class but has an effect on them. An example of a static property in a class that generates instances is for example a factor, which should be global for all instances of the class, to take part in a calculation that is done inside instances. To this case, and to my opinion, it is better to have this factor declared as static rather that have it in every single instance. Especially if this factor changes in the lifetime of your program to affect the next calculation.
You need to ask a question to youself: why I need x to be static?
If you make x static it means that x is a part of all objects of class A, but when x is not static it means, than x is a part only of one object.
In geleral using of static fields is painfull for bug tracking, but in some cases this is very helpfull.
I suggest you to look in using of singelton http://en.wikipedia.org/wiki/Singleton
I've started a small application in WPF and used a Singleton class to handle all the application logic. Plus I had a few ObservableCollections there that are binded to DataGrids on the View.
The problem: what was supposed to be a small program started to grow in functionality and the code is now too hard to maintain, reuse and there is a high level of code coupling.
And so I've started to move the code to other classes. For example, I've a class that just handles the File readings. I've made this class static because I just run those methods once (when I need to import data to a database), and when they are finished I don't need those objects anymore and just forget that they exist.
Now I'm considering doing the same for other methods, like the ones that retrieve data form the database.
My doubt is if that is that the correct way to solve the problem? I'm afraid that the use of a static classes will be like a multiplication of singletons.
Static classes are considered evil by some people, but that is just an opinion. When I have these questions, I take a look at the .NET-framework: How is it solved inside there?
Sometimes a singleton can be refactored to a static class. It depends on the situation. If your singleton is of a type that inherits (read: must inherit) other classes or interfaces, it cannot be converted to a static class, since a static class cannot inherit anything.
If you create a static class, try to obey the following rules: (These rules are also obeyed by the .NET framework):
All static members must be thread safe.
That's it! :)
The rule sounds simple, but implies a lot:
All static members work independent of each other. So one call will never affect the result of another call.
A static class is not allowed to maintain a (static) state.
If the class has static fields, make sure they are readonly or const. Make sure the content of those fields never changes.
Of course there could be some little exceptions. For example: A static class could maintain an internal dictionary for caching results. Modifying this cache must be thread safe. Since it is internal stuff, for the outside world the static class still obeys the rules stated above.
So... in short: If your singleton is NOT thread safe (holds state, etc.) do NOT convert it to a static class.
* EDIT *
Using a singleton normally means you have a static property containing one instance of a certain type. Since this is a static property it also must obey above rules, which means that the instance must be thread safe.
If your (singleton) instance is not thread safe, redesign your application so it does not use this singleton or static class. Let all code create a new instance of this class when needed.
This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
When to Use Static Classes in C#
I will write code in which I need class which holds methods only. I thought it is good idea to make class static. Some senior programmer argue that do not use static class. I do not find any good reason why not to use static class. Can someone knows in C# language there is any harm in using static class. Can static class usage required more memory than creating object of class? I will clear that my class do not have single field and hence property too.
For further information I will explain code also.
We have product in which we need to done XML handling for chart settings. We read object from XML file in class Library which holds chart related properties. Now I have two Layers first is product second class Library and XML related operations. Actually senior programmers want independent class to read and write XML. I make this class static.
In another situation I have class of chartData. In that class I want methods like whether Line of Axis,series of chart is valid or not. Also whether color of chart stores in ARGB format or plain color name. They do not want those methods in same project. Now can I make class static or create object.
If your class does not have to manage state then there is absolutely no reason to not declare it static.
In C# some classes even have to be static like the ones that have extension methods.
Now if there's a chance that it requires state in the future, it's better to not declare it as static as if you change it afterwards, the consumers will need to change their code too.
One concern is that statics can be harder (not impossible) to test in some situations
The danger of static classes is that they often become God Objects. They know too much, they do too much, and they're usually called "Utilities.cs".
Also, just because your class holds methods only doesn't mean that you can't use a regular class, but it depends on what your class does. Does it have any state? Does it persist any data that's being modified in your methods?
Having static classes is not bad, but could make you think why you have those methods there. Some things to keep in mind about that:
if the methods manage behavior for classes you have in your project, you could just add the methods to those classes directly:
//doing this:
if(product.IsValid()) { ... }
//instead of:
if(ProductHelper.IsValid(product)) { ... }
if the methods manage behavior for classes you can't modify, you could use extension methods (that by the end of the day are static! but it adds syntactic sugar)
public static bool IsValid( this Product product ) { ... }
//so you can do:
if(product.IsValid()) { ... }
if the methods are coupled to external services you may want to mock, using a non-static class with virtual methods or implementing an interface will let you replace the instance with a mock one whenever you need to use it:
//instead of:
StaticService.Save(product);
//you can do:
public IService Service {get;set;}
...
Service.Save(product);
//and in your tests:
yourObject.Service = new MockService(); //MockService inherits from your actual class or implements the same IService interface
by the other hand, having the logic in non-static classes will let you make use of polymorphism and replace the instance with another one that extends the behavior.
finally, having the logic in non-static classes will let you use IoC (inversion of control) and proxy-based AOP. If you don't know about that, you could take a look at frameworks like Spring.net, Unity, Castle, Ninject, etc. Just for giving you an example of what you could do with this: you can make all the classes implementing IService log their methods, or check some security constraints, or open a database connection and close it when the method ends; everything without adding the actual code to the class.
Hope it helps.
It depends on the situation when to use static classes or not. In the general case you create static classes when you do not need to manage state. So for example, Math.cs, or Utility.cs - where you have basic utility functions - eg string formatting, etc.
Another scenario where you want to use static is when you expect the class to not be modified alot. When the system grows and you find that you have to modify this static class alot then its best to remove the static keyword. If not then you will miss out on some benefits of OOD - eg polymorphism, interfaces - For example you could find that I need to change a specific method in a static class, but since you can't override a static method, then you might have to 'copy and paste' with minor changes.
Some senior programmer argue that do not use static class.
Tell him he is a traineee, not even a junior. Simple. The static keyword is there for a reason. if your class only has methods without keeping state - and those cases exist - then putting them into a static class is valid. Point.
Can someone knows in C# language there is any harm in using static class.
No. The only valid argument is that your design isbroken (i.e. the class should not be static and keep state). But if you really have methods that do not keep state - and those cases exist, like the "Math" class - then sorry, this is a totally valid approach. There are no negatives.
Would it be considered a bad practice to nest a private static class inside of a non-static class?
public class Outer
{
private static class Inner
{
}
}
The idea here is that all instances of 'Outer' would share access to the static state. Another way to do it might be to just let the Inner class be non-static and use a static instance of it:
public class Outer
{
private static innerInstance = new Inner();
private class Inner
{
}
}
Similar effect. What are the pros / cons or other considerations with this approach?
I must admit that I almost never use nested classes, whether static or not, but I am interested in this particular concept..
Both approaches are entirely valid.
I wish developers would use private nested classes more often. In conjunction with c#'s partial keyword, it makes writing very complex classes much more maintainable. Imagine needing to build a class that has the complexity of a small application - much easier when you actually can build an entire private application, with classes that are totally internal to your complex outer class!
One very common case I've seen is enumerables - these can be quite complex, especially when you start building custom iterators that can be chained, like LINQ. Hiding the complexity inside the individual classes is the very definition of encapsulation.
If the class is used in a multi-threaded application, you may need to control access to the static state via locking. That's a problem with static state whether privately nested or not.
Nothing wrong with it in principle, though if you're wanting a nested static class to help organize static state or methods, it could be a warning sign that the class is growing too large. Nested private classes have a lot of uses (internal data structures, private implementations of passed out private interfaces, etc.), but a static private class is really just a way to group things together.
Imagine needing to build a class that has the complexity of a small
application ... with classes that are totally internal to your complex
outer class
No, don't imagine it.
Just don't build a class that has the complexity of an application, even if a small application.
By doing so, you will actually increase the complexity.
Use separate classes, each having, ideally, a single responsibility.
That is the way to reduce complexity.
There's nothing wrong at all with this, and why should there be?
The scope is limited, so that only instances of the outer class have access to it, and it's a great place to put constants and other common functionality that is private to the functionality of the outer class, without having to instantiate it all the time.
I don't see this as anything but good practice.
It's depend on what's Inner class do. If it's just a utility class static inner class is way to go.
public class Calculator
{
private static class HexToDecUtils
{
// converter code here
}
}
In other way, if Inner class is composite with other object, it should not be static class.
public class Car
{
private class Engine
{
// your code here
}
}
I'm doing code review and came across a class that uses all static methods. The entrance method takes several arguments and then starts calling the other static methods passing along all or some of the arguments the entrance method received.
It isn't like a Math class with largely unrelated utility functions. In my own normal programming, I rarely write methods where Resharper pops and says "this could be a static method", when I do, they tend to be mindless utility methods.
Is there anything wrong with this pattern? Is this just a matter of personal choice if the state of a class is held in fields and properties or passed around amongst static methods using arguments?
UPDATE: the particular state that is being passed around is the result set from the database. The class's responsibility is to populate an excel spreadsheet template from a result set from the DB. I don't know if this makes any difference.
Is there anything wrong with this
pattern? Is this just a matter of
personal choice if the state of a
class is held in fields and properties
or passed around amongst static
methods using arguments?
Speaking from my own personal experience, I've worked on 100 KLOC applications which have very very deep object hiearchies, everything inherits and overrides everything else, everything implements half a dozen interfaces, even the interfaces inherit half a dozen interfaces, the system implements every design pattern in the book, etc.
End result: a truly OOP-tastic architecture with so many levels of indirection that it takes hours to debug anything. I recently started a job with a system like this, where the learning curve was described to me as "a brick wall, followed by a mountain".
Sometimes overzealous OOP results in classes so granular that it actually a net harm.
By contrast, many functional programming languages, even the OO ones like F# and OCaml (and C#!), encourage flat and shallow hiearchy. Libraries in these languages tend to have the following properties:
Most objects are POCOs, or have at most one or two levels of inheritance, where the objects aren't much more than containers for logically related data.
Instead of classes calling into each other, you have modules (equivalent to static classes) controlling the interactions between objects.
Modules tend to act on a very limited number of data types, and so have a narrow scope. For example, the OCaml List module represents operations on lists, a Customer modules facilitates operations on customers. While modules have more or less the same functionality as instance methods on a class, the key difference with module-based libraries is that modules are much more self-contained, much less granular, and tend to have few if any dependencies on other modules.
There's usually no need to subclass objects override methods since you can pass around functions as first-class objects for specialization.
Although C# doesn't support this functionality, functors provide a means to subclass an specialize modules.
Most big libraries tend to be more wide than deep, for example the Win32 API, PHP libraries, Erlang BIFs, OCaml and Haskell libraries, stored procedures in a database, etc. So this style of programming is battle testing and seems to work well in the real world.
In my opinion, the best designed module-based APIs tend to be easier to work with than the best designed OOP APIs. However, coding style is just as important in API design, so if everyone else on your team is using OOP and someone goes off and implements something in a completely different style, then you should probably ask for a rewrite to more closely match your teams coding standards.
What you describe is simply structured programming, as could be done in C, Pascal or Algol. There is nothing intrinsically wrong with that. There are situations were OOP is more appropriate, but OOP is not the ultimate answer and if the problem at hand is best served by structured programming then a class full of static methods is the way to go.
Does it help to rephrase the question:
Can you describe the data that the static methods operates on as an entity having:
a clear meaning
responsibility for keeping it's internal state consistent.
In that case it should be an instantiated object, otherwise it may just be a bunch of related functions, much like a math library.
Here's a refactor workflow that I frequently encounter that involves static methods. It may lend some insight into your problem.
I'll start with a class that has reasonably good encapsulation. As I start to add features I run into a piece of functionality that doesn't really need access to the private fields in my class but seems to contain related functionality. After this happens a few times (sometimes just once) I start to see the outlines of a new class in the static methods I've implemented and how that new class relates to the old class in which I first implemented the static methods.
The benefit that I see of turning these static methods into one or more classes is, when you do this, it frequently becomes easier to understand and maintain your software.
I feel that if the class is required to maintain some form of state (e.g. properties) then it should be instantiated (i.e. a "normal" class.)
If there should only be one instance of this class (hence all the static methods) then there should be a singleton property/method or a factory method that creates an instance of the class the first time it's called, and then just provides that instance when anyone else asks for it.
Having said that, this is just my personal opinion and the way I'd implement it. I'm sure others would disagree with me. Without knowing anything more it's hard to give reasons for/against each method, to be honest.
The biggest problem IMO is that if you want to unit test classes that are calling the class you mention, there is no way to replace that dependency. So you are forced to test both the client class, and the staticly called class at once.
If we are talking about a class with utility methods like Math.floor() this is not really a problem. But if the class is a real dependency, for instance a data access object, then it ties all its clients in to its implementation.
EDIT: I don't agree with the people saying there is 'nothing wrong' with this type of 'structured programming'. I would say a class like this is at least a code smell when encountered within a normal Java project, and probably indicates misunderstanding of object-oriented design on the part of the creator.
There is nothing wrong with this pattern. C# in fact has a construct called static classes which is used to support this notion by enforcing the requirement that all methods be static. Additionally there are many classes in the framework which have this feature: Enumerable, Math, etc ...
Nothing is wrong with it. It is a more "functional" way to code. It can be easier to test (because no internal state) and better performance at runtime (because no overhead to instance an otherwise useless object).
But you immediately lose some OO capabilities
Static methods don't respond well (at all) to inheritance.
A static class cannot participate in many design patterns such as factory/ service locator.
No, many people tend to create completely static classes for utility functions that they wish to group under a related namespace. There are many valid reasons for having completely static classes.
One thing to consider in C# is that many classes previously written completely static are now eligible to be considered as .net extension classes which are also at their heart still static classes. A lot of the Linq extensions are based on this.
An example:
namespace Utils {
public static class IntUtils {
public static bool IsLessThanZero(this int source)
{
return (source < 0);
}
}
}
Which then allows you to simply do the following:
var intTest = 0;
var blNegative = intTest.IsLessThanZero();
One of the disadvantages of using a static class is that its clients cannot replace it by a test double in order to be unit tested.
In the same way, it's harder to unit test a static class because its collaborators cannot be replaced by test doubles (actually,this happens with all the classes that are not dependency-injected).
It depends on whether the passed arguments can really be classified as state.
Having static methods calling each other is OK in case it's all utility functionality split up in multiple methods to avoid duplication. For example:
public static File loadConfiguration(String name, Enum type) {
String fileName = (form file name based on name and type);
return loadFile(fileName); // static method in the same class
}
Well, personnally, I tend to think that a method modifying the state of an object should be an instance method of that object's class. In fact, i consider it a rule a thumb : a method modifying an object is an instance method of that object's class.
There however are a few exceptions :
methods that process strings (like uppercasing their first letters, or that kind of feature)
method that are stateless and simply assemble some things to produce a new one, without any internal state. They obviously are rare, but it is generally useful to make them static.
In fact, I consider the static keyword as what it is : an option that should be used with care since it breaks some of OOP principles.
Passing all state as method parameters can be a useful design pattern. It ensures that there is no shared mutable state, and so the class is intrinsicly thread-safe. Services are commonly implemented using this pattern.
However, passing all state via method parameters doesn't mean the methods have to be static - you can still use the same pattern with non-static methods. The advantages of making the methods static is that calling code can just use the class by referencing it by name. There's no need for injection, or lookup or any other middleman. The disadvantage is maintanability - static methods are not dynamic dispatch, and cannot be easily subclassed, nor refactored to an interface. I recommend using static methods when there is intrinsicly only one possible implementation of the class, and when there is a strong reason not to use non-static methods.
"state of a class is ...passed around amongst static methods using arguments?"
This is how procedual programming works.
A class with all static methods, and no instance variables (except static final constants) is normally a utility class, eg Math.
There is nothing wrong with making a unility class, (not in an of itself)
BTW: If making a utility class, you chould prevent the class aver being used to crteate an object. in java you would do this by explictily defining the constructor, but making the constructor private.
While as i said there is nothing wrong with creating a utility class,
If the bulk of the work is being done by a utiulity class (wich esc. isn't a class in the usual sense - it's more of a collection of functions)
then this is prob as sign the problem hasn't been solved using the object orientated paradim.
this may or maynot be a good thing
The entrance method takes several arguments and then starts calling the other static methods passing along all or some of the arguments the entrance method received.
from the sound of this, the whole class is just effectivly one method (this would definatly be the case is al lthe other static methods are private (and are just helper functions), and there are no instance variables (baring constants))
This may be and Ok thing,
It's esc. structured/procedual progamming, rather neat having them (the function and it's helper)all bundled in one class. (in C you'ld just put them all in one file, and declare the helper's static (meaning can't be accesses from out side this file))
if there's no need of creating an object of a class, then there's no issue in creating all method as static of that class, but i wanna know what you are doing with a class fullof static methods.
I'm not quite sure what you meant by entrance method but if you're talking about something like this:
MyMethod myMethod = new MyMethod();
myMethod.doSomething(1);
public class MyMethod {
public String doSomething(int a) {
String p1 = MyMethod.functionA(a);
String p2 = MyMethod.functionB(p1);
return p1 + P2;
}
public static String functionA(...) {...}
public static String functionB(...) {...}
}
That's not advisable.
I think using all static methods/singletons a good way to code your business logic when you don't have to persist anything in the class. I tend to use it over singletons but that's simply a preference.
MyClass.myStaticMethod(....);
as opposed to:
MyClass.getInstance().mySingletonMethod(...);
All static methods/singletons tend to use less memory as well but depending on how many users you have you may not even notice it.